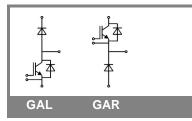


SEMITOP[®] 2

IGBT Module

SK60GAL128 SK60GAR128


Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

	te Maximum Ratings	's	25 °C, unless otherwis	<u>.</u>
Symbo	I Conditions		Values	Units
IGBT				
V _{CES}	$T_{j} = 25 \text{ °C}$ $T_{j} = 125 \text{ °C}$		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	63	А
		T _s = 80 °C	44	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse	Diode		•	
۱ _F	T _j = 150 °C	T _s = 25 °C	33	А
		T _s = 80 °C	23	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	110	А
Freewh	eeling Diode		·	•
I _F	T _j = 150 °C	T _{case} = 25 °C	57	А
		T _{case} = 80 °C	38	А
I _{FRM}				А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А
Module	!		•	
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,2		mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 125 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ	
		T _j = 125°C		18		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V		1,7	1,9	2,3	V	
		T _j = 125°C _{chiplev.}		1,9	2,3	V	
C _{ies}				4,46		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,33		nF	
C _{res}				0,21		nF	
t _{d(on)}				80		ns	
t _r E _{on}	R_{Gon} = 15 Ω	$V_{\rm CC} = 600V$		50		ns	
E _{on}	D = 15 0	I _C = 50A		5,8		mJ	
t _{d(off)}	$R_{Goff} = 15 \Omega$	$T_j = 125 \ ^{\circ}C$		420 40		ns	
t _f		V _{GE} =±15V				ns	
E _{off}				4,8		mJ	
R _{th(j-s)}	per IGBT				0,6	K/W	

08-03-2007 SCT

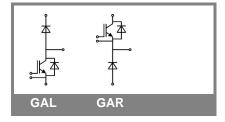
IGBT Module

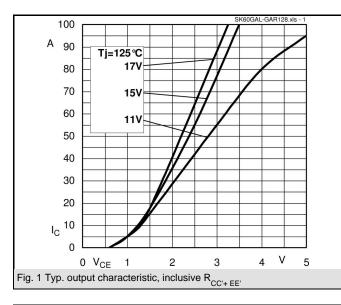
SK60GAL128 SK60GAR128

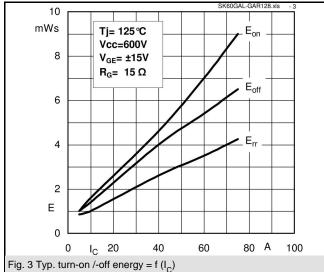
Preliminary Data

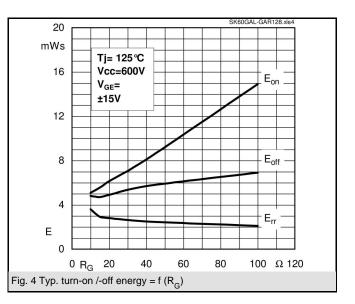
Features

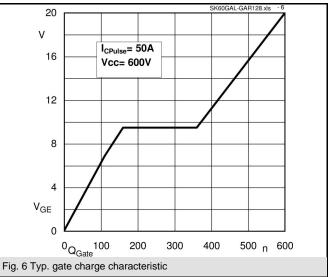
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

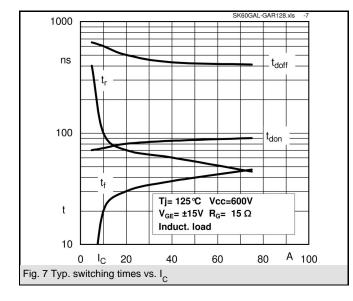

Typical Applications*

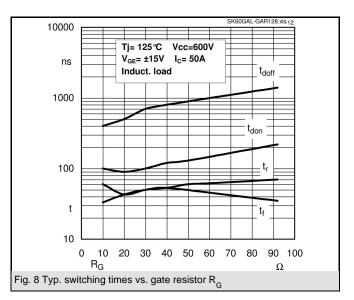

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

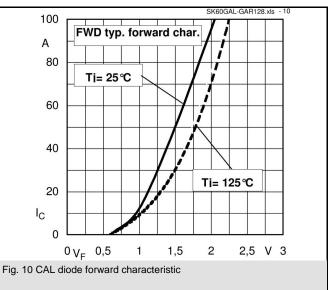

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I _{Fnom} = 10 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8	2,3	V
V _{F0}		T _j = 125 °C		1,2		V
r _F		T _j = 125 °C		62,7		mΩ
I _{RRM}	I _F = 10 A	T _j = 125 °C		12		А
Q _{rr}	di/dt = -300 A/µs			1,8		μC
E _{rr}	V _{CC} = 600V			0,4		mJ
R _{th(j-s)D}	per diode				2,1	K/W
	eling Diode					
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,8		V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		18	22	V
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		Α
Q _{rr}	di/dt = -800 A/µs			8		μC
E _{rr}	V _R =600V			2,3		mJ
R _{th(j-s)FD}	per diode				0,9	K/W
M _s	to heat sink M1				2	Nm
w				21		g

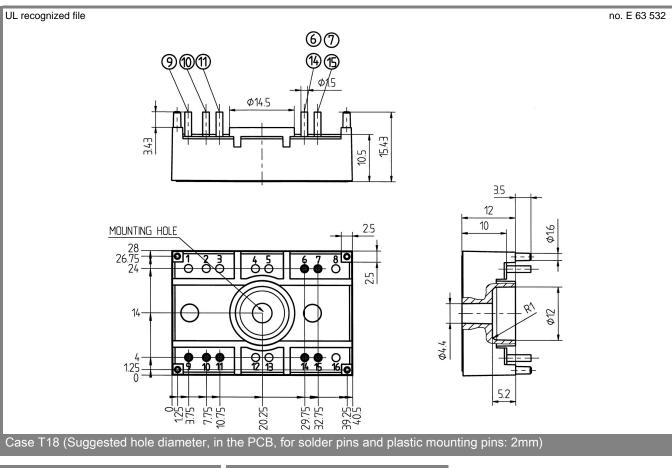

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

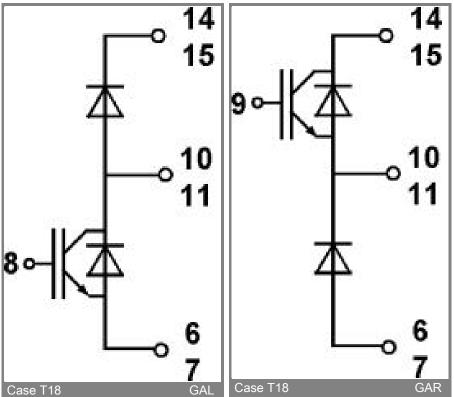

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.








3


08-03-2007 SCT

