

SEMITOP[®] 3

IGBT Module

SK60GB128

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- + $V_{ce,sat}$ with positive coefficient

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	Ts	= 25 °C, unless otherwise s	specified	
Symbol	Conditions		Values		
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	63	А	
		T _s = 80 °C	44	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А	
V _{GES}			± 20	V	
t _{psc}	$V_{CC} = 600 \text{ V}; \text{ V}_{GE} \le 20 \text{ V}; \\ \text{V}_{CES} < 1200 \text{ V}$	T _j = 125 °C	10	μs	
Inverse D	Diode				
I _F	T _j = 150 °C	T _s = 25 °C	57	А	
		T _s = 80 °C	38	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA
		T _j = 125 °C		0,2		mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ
		T _j = 125°C		18		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _i = 25°C _{chiplev.}	1,7	1,9	2,3	V
		T _j = 125°C _{chiplev.}		1,9	2,3	V
C _{ies}		· · ·		4,46		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,33		nF
C _{res}				0,21		nF
t _{d(on)}				80		ns
t,	R _{Gon} = 15 Ω	V _{CC} = 600V		50		ns
Eon		I _C = 50A		5,8		mJ
t _{d(off)}	R_{Goff} = 15 Ω	T _j = 125 °C		420		ns
t _f		V _{GE} =±15V		40		ns
E _{off}				4,8		mJ
R _{th(j-s)}	per IGBT				0,6	K/W

SEMITOP[®] 3

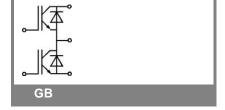
IGBT Module

SK60GB128

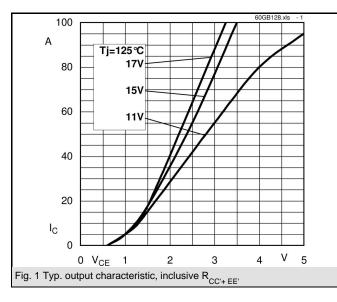
Preliminary Data

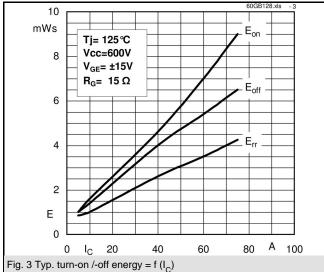
Features

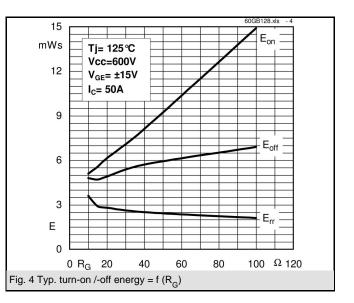
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

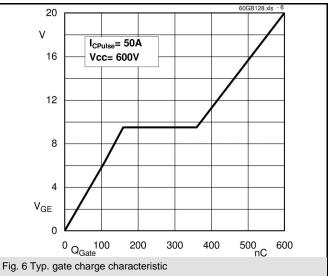

Typical Applications*

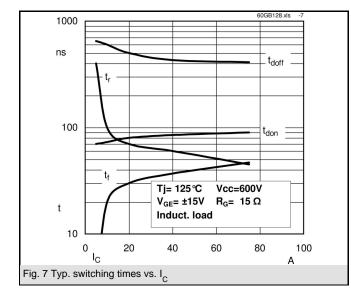
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

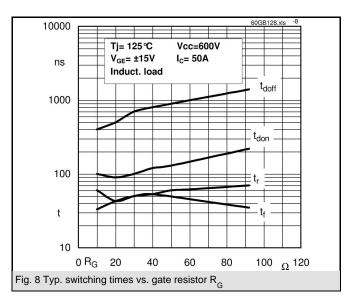

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	oide							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V		
		T _j = 125 °C _{chiplev.}		1,8	2,3	V		
V _{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		18	22	mΩ		
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		А		
Q _{rr}	di/dt = -800 A/µs			8		μC		
E _{rr}	V _{CC} = 600V			2		mJ		
R _{th(j-s)D}	per diode				0,9	K/W		
M _s	to heat sink M1		2,25		2,5	Nm		
w				29		g		

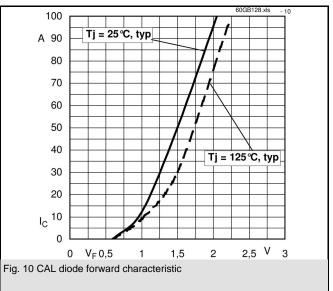

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

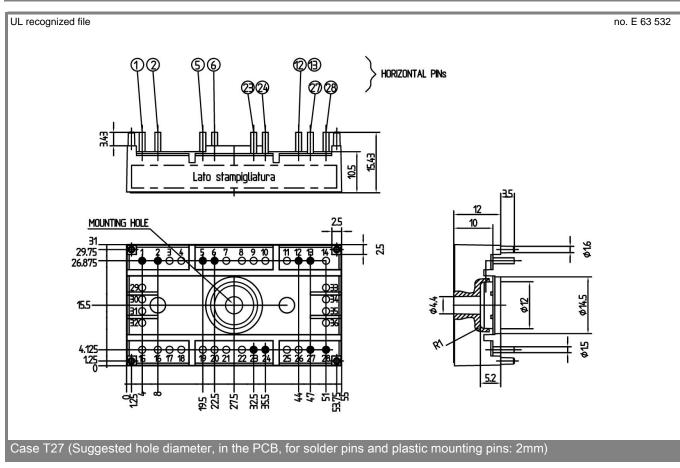

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

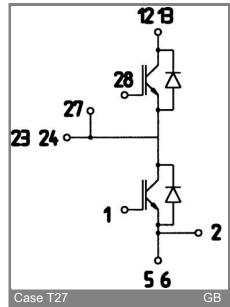



2









5