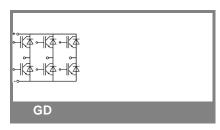
SK45GD063

IGBT Module

SK45GD063


Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	45	Α		
		T _s = 80 °C	30	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	Α		
V_{GES}			± 20	٧		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le$ 20 V; V_{CES} < 600 V	T _j = 125 °C	10	μs		
Inverse D	iode					
I _F	T _j = 125 °C	$T_s = 25 ^{\circ}C$	36	Α		
		$T_s = 80 ^{\circ}C$	24	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	Α		
Module						
$I_{t(RMS)}$				Α		
T_{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise specifie						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,15	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		20		mΩ
		T _j = 125°C				$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$				V
C _{ies}				2,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF
C _{res}				0,2		nF
Q_G	V _{GE} = 0 20 V			155		nC
t _{d(on)}				45		ns
t.	$R_{Gon} = 22 \Omega$	V _{CC} = 300V		40		ns
É _{on}	R _{Goff} = 22 Ω	I _C = 30A T _i = 125 °C		1,4 250		mJ ns
$t_{ m d(off)} \ t_{ m f}$	Goff 22 32	V _{GE} =±15V		30		ns
E _{off}		GE		1,2		mJ
R _{th(j-s)}	per IGBT				1	K/W

SK45GD063

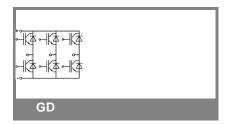
IGBT Module

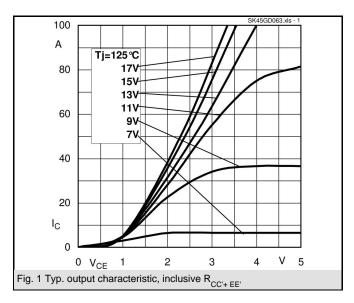
SK45GD063

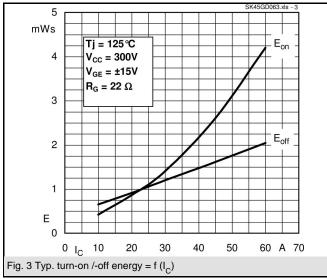
Preliminary Data

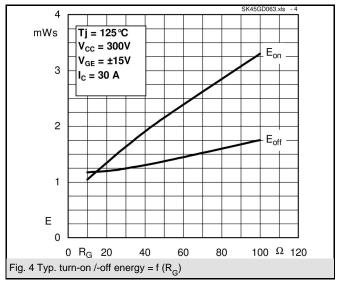
Features

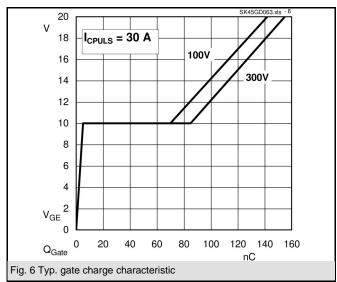
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications*


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45	1,7	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,75	V	
V_{F0}		T _j = 125 °C		0,85	0,9	٧	
r _F		T _j = 125 °C		22	16	mΩ	
I _{RRM}	I _F = 25 A	T _j = 125 °C		16		Α	
Q_{rr}	di/dt = -500 A/μs	,		2		μC	
E _{rr}	V _{CC} = 300V			0,25		mJ	
$R_{\text{th(j-s)D}}$	per diode				1,7	K/W	
M_s	to heat sink M1		2,25		2,5	Nm	
w				30	•	g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

