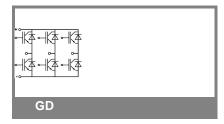
SK 9GD065

IGBT Module

SK 9GD065

Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions			Values		
IGBT					•	
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		11	Α	
		T_s = 80 °C		8	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			12	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse [Diode		•		•	
I _F	T _j = 125 °C	$T_s = 25 ^{\circ}C$		22	Α	
		T_s = 80 °C		15	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			30	Α	
Module						
$I_{t(RMS)}$					Α	
T _{vj}				-40 + 150	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics		T _s =	s = 25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 0.2 \text{ mA}$		3	4	5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,03	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		133		mΩ	
		T _j = 125°C		183		mΩ	
V _{CE(sat)}	I _{Cnom} = 6 A, V _{GE} = 15 V			2	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	2,7	V	
C _{ies}				0,35		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,038		nF	
C _{res}				0,023		nF	
t _{d(on)}		.,		20		ns	
ţ,	$R_{Gon} = 120 \Omega$	$V_{CC} = 300V$ $I_{C} = 6A$		25		ns m.l	
Ė _{on}	$R_{Goff} = 120 \Omega$	T _i = 125 °C		0,22 145		mJ ns	
${rac{t_{d(off)}}{t_f}}$	Goff = 120 32	V _{GE} =±15V		25		ns	
E _{off}		GE .		0,12		mJ	
R _{th(j-s)}	per IGBT	<u> </u>			2,6	K/W	

SK 9GD065

SEMITOP® 2

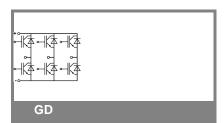
IGBT Module

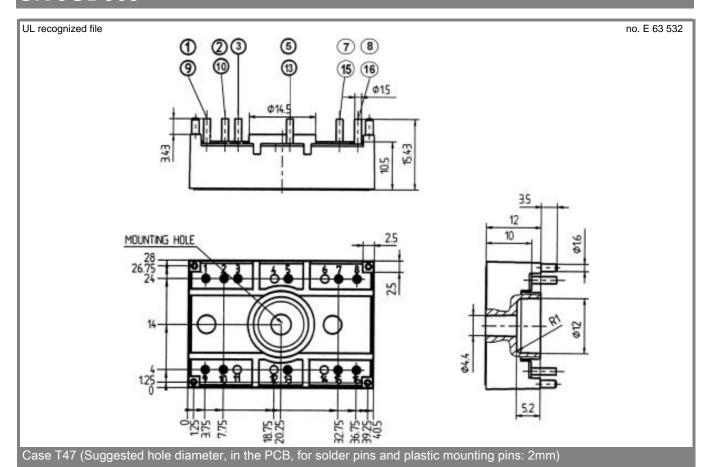
SK 9GD065

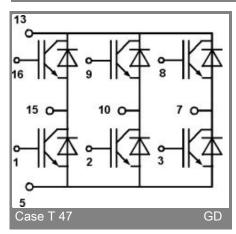
Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- · CAL technology FWD


Typical Applications*


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions	İ	min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,4	1,7	V	
		T _j = 125 °C _{chiplev.}		1,4	1,7	V	
V_{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,9	1	V	
r _F		T _j = 25 °C		30	40	mΩ	
		T _j = 125 °C		33	47	$m\Omega$	
I _{RRM}	I _F = 15 A	T _i = 125 °C		22		Α	
Q_{rr}	di/dt = 1100 A/µs	,		1,5		μC	
E _{rr}	V _{CC} = 300V			0,31		mJ	
R _{th(j-s)D}	per diode				2,3	K/W	
M _s	to heat sink				2	Nm	
w				21		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

