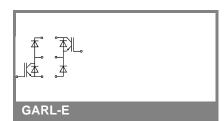


IGBT Module

SK75GARL065E


Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications*

- Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- Multilevel inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	80	Α		
		T _s = 80 °C	55	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		180	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse	Diode			•		
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	57	Α		
		T _s = 80 °C	38	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440	Α		
Freewh	eeling Diode		<u>.</u>			
I _F	T _j = 150 °C	T _{case} = 25 °C	103	Α		
		T _{case} = 80 °C	69	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	880	Α		
Module	<u> </u>		<u>.</u>			
I _{t(RMS)}				Α		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise specifie						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2.1 \text{ mA}$		3	4	5	V
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0066	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			360	nA
V _{CE0}		T _j = 25 °C		1,2	1,3	V
		T _j = 125 °C		1,1	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C			7,7	mΩ
		T _j = 125°C			14	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 90 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2	V
		T _j = 125°C _{chiplev.}		2,2	2,2	V
C _{ies}				4,8		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,45		nF
C _{res}				0,27		nF
Q_G	V _{GE} =0 20 V			750		nC
t _{d(on)}				54		ns
Ţ,	$R_{Gon} = 13 \Omega$	V _{CC} = 300V		58		ns
E _{on}		I _C = 100A		2,71		mJ
^t d(off)	R_{Goff} = 13 Ω	T _j = 125 °C		410		ns
t _f		V _{GE} = ±15V		36		ns
E _{off}				2,75		mJ
$R_{th(j-s)}$	per IGBT				0,6	K/W

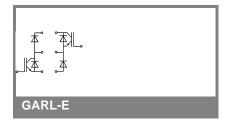
IGBT Module

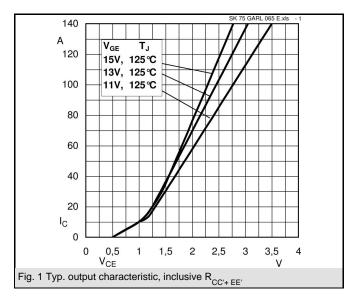
SK75GARL065E

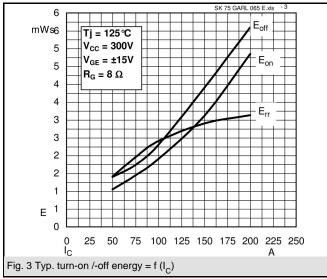
Preliminary Data

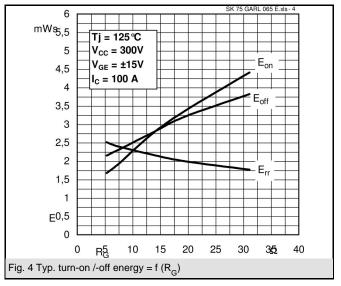
Features

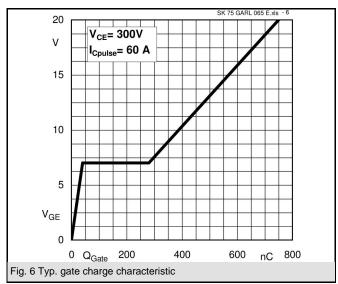
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence


Typical Applications*


- Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- · Multilevel inverter


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$			1,3	1,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,2	1,45	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		9	16	mΩ		
I _{RRM}	I _F = 30 A	T _j = 125 °C		22		Α		
Q_{rr}	di/dt = -500 A/μs	•		2,2		μC		
E _{rr}	V _{CC} =300V			0,2		mJ		
$R_{th(j-s)D}$	per diode				1,2	K/W		
	Freewheeling diode							
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45		V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4		V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		5	9	V		
I _{RRM}	I _F = 100 A	T _j = 125 °C		92		Α		
Q_{rr}	di/dt = -9200 A/µs	•		39,1		μC		
E _{rr}	V _R =300V			1,85		mJ		
$R_{th(j-s)D}$	per diode				0,6	K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				30		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

