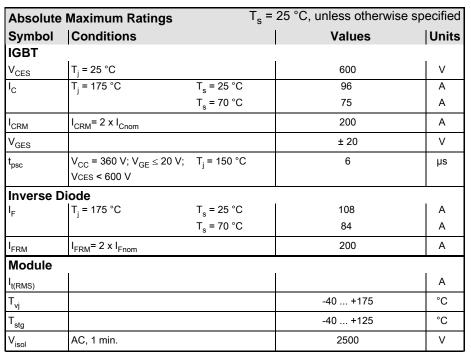


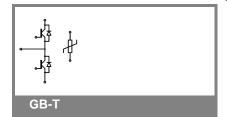
IGBT Module

SK100GB066T

Target Data


Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Remarks

V_{isol} = 3000V AC,50Hz,1s

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.6 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,0026	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA	
V_{CE0}		T _j = 25 °C		0,8	1,1	V	
		T _j = 125 °C		0,7	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		6,5	8	mΩ	
		T _j = 150°C		9,5	10,5	mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,45	1,85	V	
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V	
C _{ies}				6,28		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,4		nF	
C _{res}				0,19		nF	
Q_G	V _{GE} = -7V+15V			1000		nC	
t _{d(on)}				144		ns	
t,	$R_{Gon} = 32 \Omega$	V _{CC} = 300V		128		ns	
Ė _{on}	di/dt = 2575 A/µs	I _C = 100A		7		mJ	
^L d(off)	$R_{Goff} = 32 \Omega$	T _j = 150 °C		1040		ns	
t _f	di/dt = 2575 A/µs	V _{GE} =-7/+15V		91		ns	
E _{off}				6		mJ	
$R_{th(j-s)}$	per IGBT			0,78		K/W	

IGBT Module

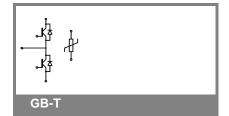
SK100GB066T

Target Data

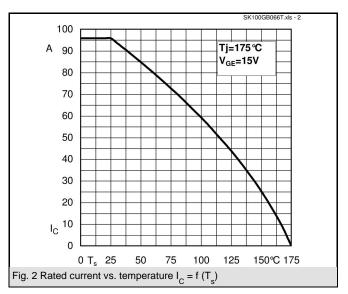
Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

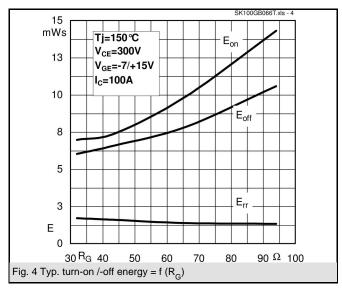
Typical Applications*

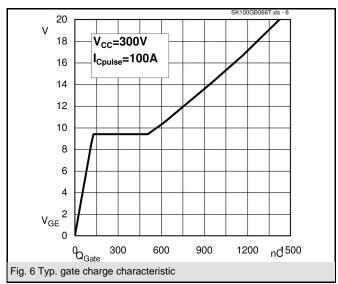

Remarks

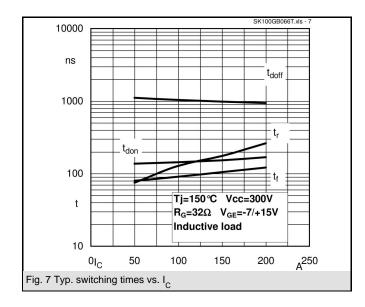
V_{isol} = 3000V AC,50Hz,1s

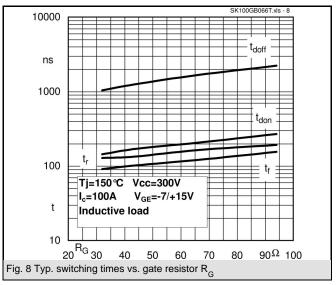

Characteristics										
Symbol	Conditions	ĺ	min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V}$	T _j = 25 °C _{chiplev.}		1,35		V				
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,31		V				
V_{F0}		T _j = 25 °C				V				
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,85		V				
r _F						mΩ				
		T _j = 150 °C T _i = 150 °C		6,3		mΩ				
I _{RRM}	I _F = 100 A	T _j = 150 °C		60		Α				
Q_{rr}	di/dt = 2575 A/µs			5,6		μC				
E _{rr}	V _R = 300V			1,7		mJ				
$R_{th(j-s)D}$	per diode			0,91		K/W				
Freewheeling Diode										
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	$T_j = {^{\circ}C_{chiplev.}}$				V				
V_{F0}		T _j = °C				V				
r _F		$T_j = ^{\circ}C$ $T_i = ^{\circ}C$				V				
I _{RRM}	I _F = A	T _j = °C				Α				
Q_{rr}						μC				
E _{rr}	V _R =300V					mJ				
$R_{th(j-s)FD}$	per diode					K/W				
M _s	to heat sink		2,5		2,75	Nm				
w				60		g				
Temperature sensor										
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω				

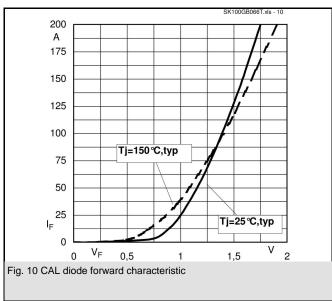

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

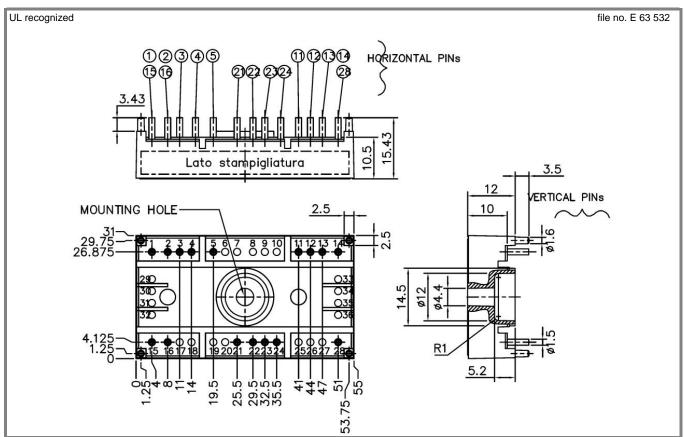

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

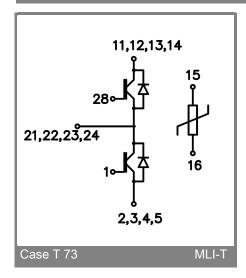












Case T 73 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

