

MiniSKiiP®1

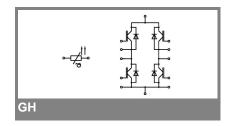
H-bridge inverter

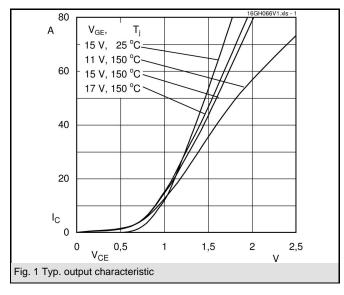
SKiiP 16GH066V1

Features

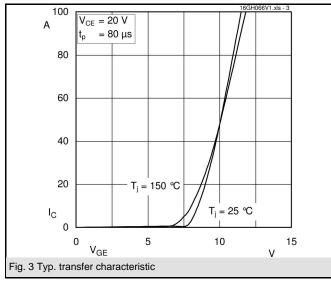
- Trench IGBTs
- Robust and soft freewheeling diode in CAL technology
- Highly reliable spring contacts for electrical connection
- UL recognised file no. E63532

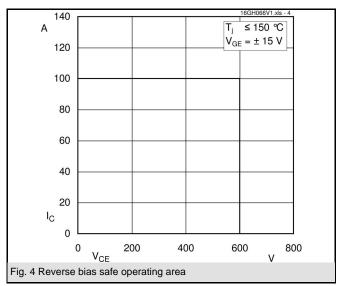
Typical Applications*

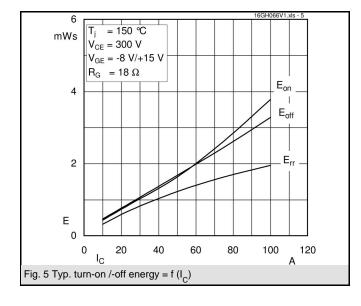

- Single-phase inverter up to 9.5 kVA
- Single-phase motor power 4 kW

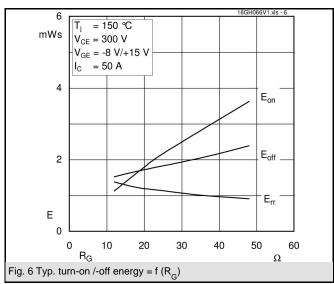

Remarks

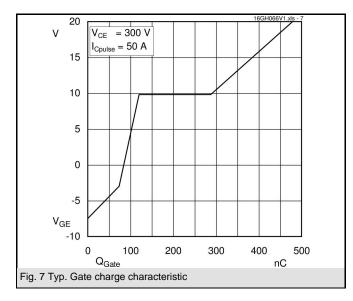

- Case temperature limited to T_C =
- · Product reliability results are valid
- for T_j = 150°C SC data: $t_p \le 6 \ \mu s; \ V_{GE} \le 15 \ V; \ T_j$ = 150°C; V_{CC} = 360 V $V_{CEsat}, \ V_F$ = chip level value

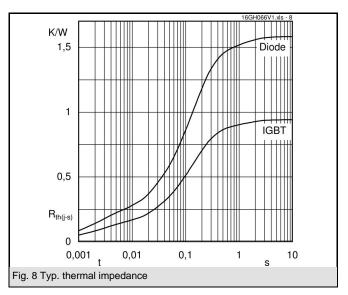

Absolute Maximum Ratings		T_S = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		600	V					
I _C	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	59 (40)	Α					
I _C	$T_s = 25 (70) ^{\circ}C , T_i = 175 ^{\circ}C$	65 (49)	Α					
I _{CRM}	t _p = 1 ms	100	Α					
V_{GES}	·	±20	V					
T_j		-40+175	°C					
Diode - Inverter								
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	47 (31)	Α					
I _F	T _s = 25 (70) °C ,T _i = 175 °C	56 (40)	Α					
I _{FRM}	t _p = 1 ms	100	Α					
T_{j}		-40+175	°C					
I _{tRMS}	per power terminal (20 A / spring)	60	Α					
T _{stg}	$T_{op} \le T_{stg}$	-40+125	°C					
V _{isol}	AC, 1 min.	2500	V					

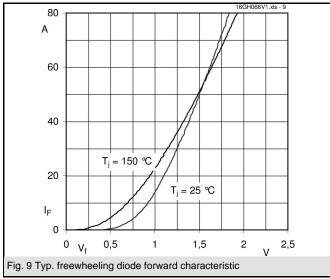

Characteristics T _S = 25 °C, unless otherwise specifi									
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter									
$\begin{array}{l} V_{CEsat} \\ V_{GE(th)} \\ V_{CE(TO)} \\ r_{T} \\ C_{ies} \\ C_{oes} \\ C_{res} \end{array}$	$\begin{split} &I_{Cnom} = 50 \text{ A }, T_{j} = 25 \text{ (150) °C} \\ &V_{GE} = V_{CE}, I_{C} = 1 \text{ mA} \\ &T_{j} = 25 \text{ (150) °C} \\ &T_{j} = 25 \text{ (150) °C} \\ &V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} \end{split}$	1,05	1,45 (1,65) 5,8 0,9 (0,8) 11 (17) 2,87 0,6 0,46	,	V V V mΩ nF nF				
R _{CC'+EE'}	spring contact-chip $T_s = 25 (150)^{\circ}C$		0,10		mΩ				
R _{th(j-s)}	per IGBT		0,95		K/W				
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	under following conditions $\begin{aligned} &V_{CC} = 300 \text{ V}, V_{GE} = -8\text{V}/+15\text{V} \\ &I_{Cnom} = 50 \text{ A}, T_j = 150 \text{ °C} \\ &R_{Gon} = R_{Goff} = 18 \Omega \end{aligned}$ inductive load		40 40 425 40		ns ns ns ns				
E _{on} (E _{off})			1,7 (1,7)		mJ				
Diode - In $V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	verter $I_{Fnom} = 50 \text{ A}, T_j = 25 (150) ^{\circ}\text{C}$ $T_j = 25 (150) ^{\circ}\text{C}$ $T_j = 25 (150) ^{\circ}\text{C}$ per diode		1,5 (1,5) 1 (0,9) 10 (12) 1,6		V V mΩ K/W				
I _{RRM} Q _{rr} E _{rr}	under following conditions I_{Fnom} = 50 A, V_{R} = 300 V V_{GE} = 0 V, T_{j} = 150 °C di_{F}/dt = 1400 A/ μ s		44 5,5 1,3		Α μC mJ				
Temperat	Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanic m			35		g				
M_s	Mounting torque	2		2,5	Nm				

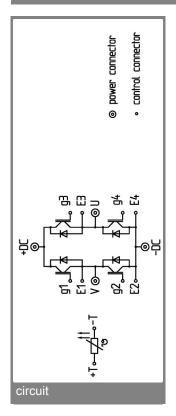


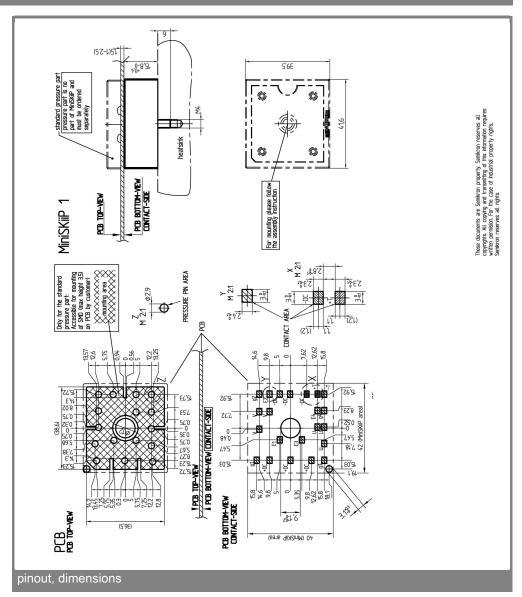












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.