SK 20 DGD 065 ET

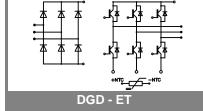
3-phase bridge rectifier +3-phase bridge inverter

SK 20 DGD 065 ET

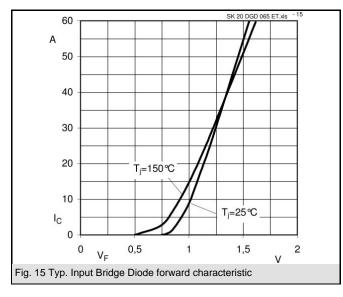

Preliminary Data

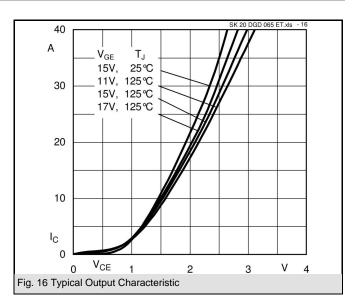
Features

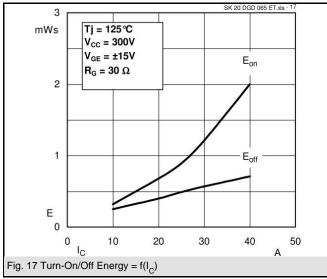
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL Technology FWD
- Integrated NTC temperature sensor

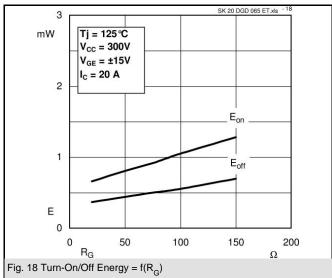

Typical Applications*

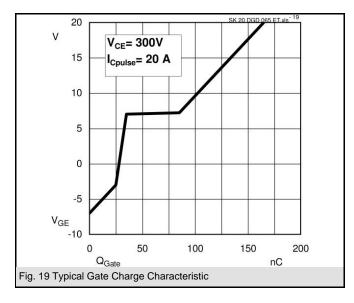
Inverter

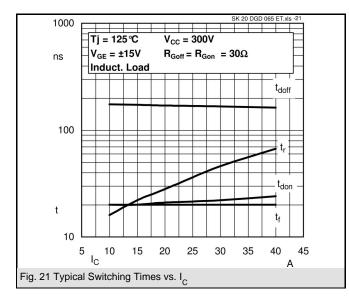


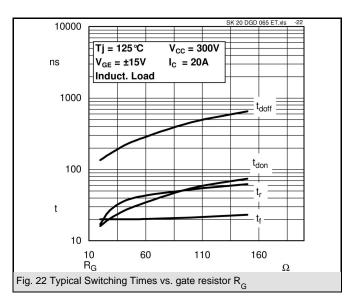

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	T _s = 25 (80) °C	26 (18)	Α				
I _{CRM}	I_{CRM} = 2 x I_{Cnom} , t_p = 1 ms	40	Α				
V_{GES}		±20	V				
T_j		-40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (80) °C	25 (18)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	50	Α				
T _j		-40 + 150	°C				
Rectifier							
V_{RRM}		800	V				
I _F	T _s = 80 °C	31	Α				
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms} \text{ , sin } 180 ^\circ \text{ ,} T_j = 25 ^\circ\text{C}$	370	Α				
I ² t	t _p = 10 ms , sin 180 ° ,T _j = 25 °C	685	A²s				
T _j		-40 + 150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				

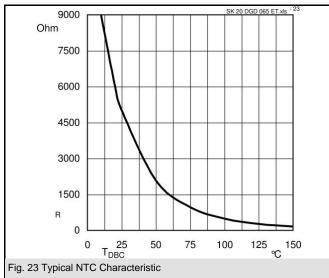

Characteristics		T _s = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT - Inverter, Chopper							
V_{CEsat}	I _C = 20 A, T _j = 25 (125) °C		2 (2,2)	2,5	V		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$	3	4	5	V		
V _{CE(TO)}	T _j = 25 °C (125) °C		1,2 (1,1)	1,3	V		
r _T	T _j = 25 °C (125) °C		40 (55)	60	mΩ		
C _{ies}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		1,2		nF		
C _{oes}	$V_{CE} = V_{GE} = 0 \text{ V, } f = 1 \text{ MHz}$		-		nF nF		
C _{res}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		-				
R _{th(j-s)}	per IGBT			1,7	K/W		
t _{d(on)}	under following conditions		21		ns		
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		28		ns		
t _{d(off)}	$I_C = 20 \text{ A}, T_j = 125 ^{\circ}\text{C}$		170 20		ns		
t _f E _{on}	$R_{Gon} = R_{Goff} = 30 \Omega$		0,66		ns mJ		
	inductive load		0,00				
E _{off}			0,4		mJ		
	verter, Chopper	i			1		
	$I_F = 20 \text{ A}, T_j = 25(125) ^{\circ}\text{C}$		1,6 (1,6)		V		
V _(TO)	T _j = 25 °C (125) °C		1 (0,9)		V		
r _T	T _j = 25 °C (125) °C		30 (33)		mΩ		
R _{th(j-s)}	per diode			1,7	K/W		
I _{RRM}	under following conditions		-		Α		
Q _{rr}	$I_F = A, V_R = V$		-		μC		
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = ^{\circ}\text{C}$				mJ		
	di _F /dt = - A/µs						
Diode rectifier							
V_{F}	I _F = 15 A, T _j = 25() °C		1,1		V		
$V_{(TO)}$	T _j = 150 °C		0,8		V		
r _T	T _j = 150 °C		15		mΩ		
$R_{th(j-s)}$	per diode			1,7	K/W		
Temperatur sensor							
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω		
Mechanical data							
w			30		g		
M_s	Mounting torque			2,5	Nm		

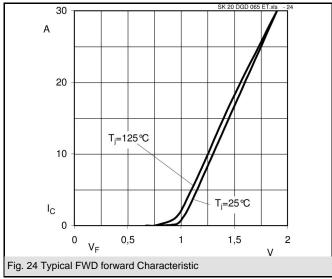


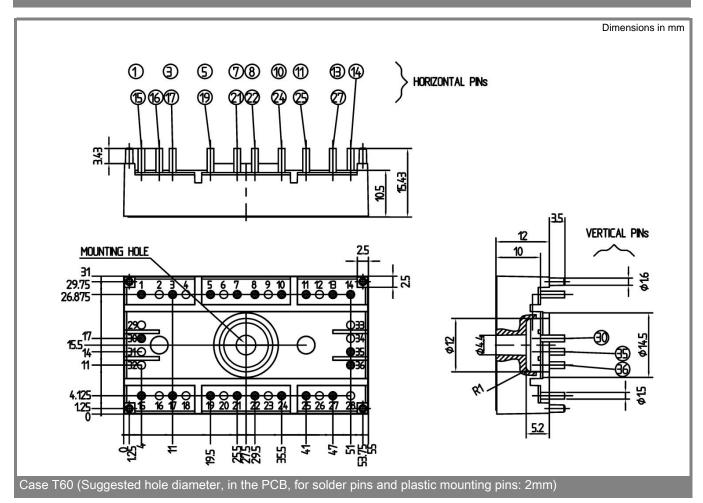

SK 20 DGD 065 ET

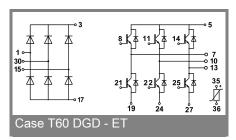









SK 20 DGD 065 ET



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.