Quad Differential LVECL-to-LVPECL Translators

Abstract

General Description The MAX9420-MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for highspeed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps. The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state. These devices operate with a negative supply voltage of -2.0 V to -3.6 V , compatible with LVECL input signals. The positive supply range is 2.375 V to 3.6 V for differential LVPECL output signals. A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50Ω series outputs. The MAX9422 has 100Ω differential input impedance and open-emitter outputs. The MAX9423 has 100Ω differential input impedance and 50Ω series outputs. The MAX9420-MAX9423 are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and are offered in space-saving 32 -pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP and 32 -lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN packages.

Applications

Data and Clock Driver and Buffer
Central Office Backplane Clock Distribution
DSLAM Backplane
Base Station
ATE

- $>500 \mathrm{mV}$ Differential Output at 3.0 GHz Clock
- 336ps (typ) Propagation Delay in Asynchronous Mode
- 17ps (typ) Channel-to-Channel Skew
- Integrated 50 Outputs (MAX9421/MAX9423)
- Integrated 100Ω Inputs (MAX9422/MAX9423)
- Synchronous/Asynchronous Operation

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	DATA INPUT	OUTPUT
MAX9420EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	Open	Open
MAX9420EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	Open	Open
MAX9421EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	Open	50Ω
MAX9421EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	Open	50Ω
MAX9422EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	100Ω	Open
MAX9422EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	100Ω	Open
MAX9423EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	100Ω	50Ω
MAX9423EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN	100Ω	50Ω

*Future product-contact factory for availability.

Pin Configurations

Quad Differential LVECL-to-LVPECL Translators

Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow
32-Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP.. $+73^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance
32-Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP
$+25^{\circ} \mathrm{C} / \mathrm{W}$
32-Lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN ... $+2^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection
Human Body Model ($\mathrm{IN}_{-}, \overline{\mathbb{N}} \mathbf{N}_{-}$).......................................500V
Others..1.2kV
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{E E}=-2.0 \mathrm{~V}\right.$ to $-3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{MAX9420} / \mathrm{MAX} 9422$ outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V} C \mathrm{C}-2.0 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IHD}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=-1.7 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LVECL INPUTS (IN_, $\overline{\mathbf{N}}$, CLK, ${ }^{\text {CLK }}$, EN, $\overline{\text { EN, }}$, SEL, $\overline{\text { SEL }}$)							
Differential Input High Voltage	VIHD	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.4 \end{gathered}$		0	V
Differential Input Low Voltage	VILD	Figure 1		V_{EE}		-0.2	V
Differential Input Voltage	$V_{\text {ID }}$	Figure 1	$V_{E E} \leq-3.0 \mathrm{~V}$	0.2		3.0	V
			$V_{E E}>-3.0 \mathrm{~V}$	0.2		V_{EE}	
Input Current	IIH, IIL	MAX9420/ MAX9421	EN, $\overline{E N}, S E L, \overline{S E L}, I_{-}, I \overline{N_{-}}$, CLK, or $\overline{C L K}=V_{I H D}$ or VILD	-10		25	$\mu \mathrm{A}$
		MAX9422/ MAX9423	EN, $\overline{E N}$, SEL, $\overline{\text { SEL, }}$ CLK, or $\overline{C L K}=V_{\text {IHD }}$ or $\mathrm{V}_{\text {ILD }}$	-10		25	
Differential Input Resistance (IN, $\overline{\mathrm{N}}$)	RIN	MAX9422/MAX9423		86	100	114	Ω
LVPECL OUTPUTS (OUT_, $\overline{\text { OUT__ }}$) $^{\text {a }}$							
Differential Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OH}}- \\ \mathrm{V}_{\mathrm{OL}} \end{gathered}$	Figure 1		600		660	mV
Output Common-Mode Voltage	Vocm	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.5 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.25 \end{gathered}$	$\begin{gathered} \hline V_{C C}- \\ 1.1 \end{gathered}$	V
Internal Current Source	ISINK	MAX9421/MAX9423, Figure 2		6.5	8.2	10.0	mA
Output Impedance	Rout	MAX9421/MAX9423, Figure 2		40	50	60	Ω

Quad Differential LVECL-to-LVPECL Translators

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{E E}=-2.0 \mathrm{~V}\right.$ to $-3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0$, MAX9420/MAX9422 outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V} \mathrm{CC}-2.0 \mathrm{~V}$. Typical values are at $\mathrm{V}_{E E}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IHD }}=-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=-1.7 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Negative Supply Current	IeE	$\begin{aligned} & \text { OUT_, } \overline{\text { OUT_}_{-}} \\ & \text {open } \end{aligned}$	$\begin{aligned} & \text { MAX9421/MAX9422/ } \\ & \text { MAX9423 } \end{aligned}$		7	10	mA
Positive Supply Current	Icc	$\begin{aligned} & \text { OUT_, } \overline{\text { OUT_}_{-}} \\ & \text {open } \end{aligned}$	MAX9421/MAX9423		153	-180	mA
			MAX9420/MAX9422		87	105	

AC ELECTRICAL CHARACTERISTICS

$\left(V_{E E}=-2.0 \mathrm{~V}\right.$ to $-3.6 \mathrm{~V}, \mathrm{~V}_{C C}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0$, outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. For $\mathrm{SEL}=$ high, $\mathrm{CLK}=$ high or low, $\mathrm{fIN}=2.0 \mathrm{GHz}$. For SEL = low, $\mathrm{FIN}=1.5 \mathrm{GHz}, \mathrm{CLK}=3.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{EE}}+1.4 \mathrm{~V}$ to $0, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {EE }}$ to $-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.2 \mathrm{~V}$ to the smaller of 3.0 V or $\mathrm{V}_{\text {EEI }}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IHD }}=-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=-1.7 \mathrm{~V}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN-to-OUT Differential	tPLH1, tPHL1	SEL = high, Figure 3	250	336	450	ps
CLK-to-OUT Differential	tPLH2, tPHL2	SEL = low, Figure 4	350	506	575	ps
IN-to-OUT Channel-to-Channel Skew (Note 5)	tSKD1	SEL = high		17	60	ps
CLK-to-OUT Channel-toChannel Skew (Note 5)	tSKD2	SEL = low		17	55	ps
Maximum Clock Frequency	fCLK(MAX)	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 500 \mathrm{mV}$, SEL $=$ low	3.0			GHz
Maximum Data Frequency	fin(max)	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 400 \mathrm{mV}$, SEL $=$ high	2			GHz
Added Random Jitter (Note 6)	tr J	SEL $=$ low, fCLK $=3.0 \mathrm{GHz}, \mathrm{fIN}=1.5 \mathrm{GHz}$		0.65	1.0	ps(RMS)
		SEL = high, fiN = 2GHz		0.53	1.0	ps (RMS)
Added Deterministic Jitter (Note 6)	tDJ	SEL = low, fCLK = 3.0GHz, IN = = 3.0Gbps, $2^{23}-1 \text { PRBS pattern }$		28	45	$\mathrm{ps}(\mathrm{P}-\mathrm{P})$
		SEL = high, $\mathrm{IN}_{-}=3.0 \mathrm{Gbps} 2^{23}-1$ PRBS pattern		23	45	
IN-to-CLK Setup Time	ts	Figure 4	80			ps
CLK-to-IN Hold Time	th	Figure 4	80			ps
Output Rise Time	tR	Figure 3		90	120	ps

Quad Differential LVECL-to-LVPECL Translators

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{E E}=-2.0 \mathrm{~V}\right.$ to $-3.6 \mathrm{~V}, \mathrm{~V}_{C C}=2.375 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0$, outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. For $\mathrm{SEL}=$ high, $\mathrm{CLK}=$ high or low, $\mathrm{fIN}=2.0 \mathrm{GHz}$. For SEL = low, $\mathrm{FIN}=1.5 \mathrm{GHz}, \mathrm{CLK}=3.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{EE}}+1.4 \mathrm{~V}$ to $0, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{EE}}$ to $-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.2 \mathrm{~V}$ to the smaller of 3.0 V or $\mathrm{V}_{\text {EEI }}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IHD }}=-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=-1.7 \mathrm{~V}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Fall Time	t_{F}	Figure 3		90	120	ps
Propagation Delay Temperature Coefficient	$\Delta \mathrm{tPD} /$ ΔT			0.2	1	ps/ ${ }^{\circ} \mathrm{C}$

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterization over the full operating temperature range.
Note 4: Guaranteed by design and characterization. Limits are set to ± 6 sigma.
Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 6: Device jitter added to the input signal.
Typical Operating Characteristics
$\left(V_{E E}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0, \mathrm{MAX9420} / \mathrm{MAX9422}\right.$ outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}, \mathrm{SEL}=$ high, fCLK $=3.0 \mathrm{GHz}$, $\mathrm{f}_{\mathrm{IN}}=1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=-1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

Quad Differential LVECL-to-LVPECL Translators

PIN	NAME	FUNCTION
1, 8	VEE	Negative Supply Voltage. Bypass V_{EE} to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting SEL = high and $\overline{\text { SEL }}=$ low (differential high) enables all four channels to operate asynchronously. Setting SEL = low and $\overline{\text { SEL }}=$ high (differential low) enables all four channels to operate in synchronous mode.
3	$\overline{\text { SEL }}$	Inverting Differential Select Input
4	$\overline{\text { CLK }}$	Inverting Differential Clock Input. A rising edge on CLK (and falling on $\overline{\text { CLK }}$) transfers data from the inputs to the outputs when SEL = differential low.
5	CLK	Noninverting Differential Clock Input
6	EN	Noninverting Differential Output Enable Input. Setting EN = high and $\overline{\mathrm{EN}}=$ low (differential high) enables the outputs. Setting EN = low and $\overline{\mathrm{EN}}=$ high (differential low) drives the output low.
7	$\overline{\mathrm{EN}}$	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	IN3	Inverting Differential Input 3
$\begin{aligned} & 11,17, \\ & 24,30 \end{aligned}$	VCC	Positive Supply Voltage. Bypass V_{CC} to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
$\begin{aligned} & \hline 14,20, \\ & 21,27 \end{aligned}$	GND	Ground
15	IN2	Noninverting Differential Input 2
16	IN2	Inverting Differential Input 2
18	$\overline{\text { OUT2 }}$	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	IN1	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUTO	Noninverting Differential Output 0
29	$\overline{\text { OUTO }}$	Inverting Differential Output 0
31	INO	Inverting Differential Input 0
32	INO	Noninverting Differential Input 0
-	EP	Exposed Paddle (MAX942_EGJ only). Connected to VEE internally. See package dimensions.

Quad Differential LVECL-to-LVPECL Translators

__Detailed Description
The MAX9420-MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for highspeed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.
The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.
These devices operate with a negative supply voltage of -2.0 V to -3.6 V , compatible with LVECL input signals. The positive supply range is 2.375 V to 3.6 V for differential LVPECL output signals.
A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50Ω series outputs. The MAX9422 has 100Ω differential input impedance and open-emitter outputs. The MAX9423 has 100Ω differential input impedance and 50Ω series outputs.

Supply Voltages

For interfacing to differential LVECL input levels, the V_{EE} range is -2.0 V to -3.6 V with $\mathrm{GND}=0$. The VCC range is from 2.375 V to 3.6 V , compatible with LVPECL logic. Output levels are referenced to VCC.

Data Inputs

The MAX9420/MAX9421 have open inputs and require external termination. The MAX9422/MAX9423 have integrated 100Ω differential input termination resistors from $\mathrm{IN}_{\mathbf{-}}$ to $\overline{\mathrm{IN}}_{-}$, reducing external component count.

Outputs
The MAX9421/MAX9423 have internal 50Ω series output termination resistors and 8 mA internal pulldown current sources. Using integrated resistors reduces external component count.
The MAX9420/MAX9422 have open-emitter outputs. An external termination is required. See the Output Termination section.

Enable

Setting EN = high and $\overline{\mathrm{EN}}=$ low enables the device. Setting EN = low and $\overline{E N}=$ high forces the outputs to a differential low. All changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL $=$ high and SEL $=$ low enables the four channels to operate independently as LVECL-toLVPECL translators. The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either logic low or high state to minimize noise coupling.

Synchronous Operation

Setting SEL = low and SEL = high enables all four channels to operate in synchronized mode. In this mode, buffered inputs are clocked into flip-flops simultaneously on the rising edge of the differential clock input (CLK and $\overline{C L K}$).

Differential Signal Input Limit
The maximum signal magnitude of all the differential inputs is 3.0 V .

Figure 1. Input and Output Voltage Definitions

Quad Differential LVECL-to-LVPECL Translators

Figure 2. Input and Output Configurations

Figure 3. IN-to-OUT Propagation Delay Timing Diagram

Quad Differential LVECL-to-LVPECL Translators

Figure 4. CLK-to-OUT Propagation Delay Timing Diagram

Applications Information

Input Bias
Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.

Output Termination

Terminate open-emitter outputs (MAX9420/MAX9422) through 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. Terminate outputs using identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and OUT_{-}. Ensure that the output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass VCC to GND and VEE to GND with high-frequency sur-face-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins. Use multi-
ple parallel vias for ground-plane connection to minimize inductance.

Circuit Board Traces
Input and output trace characteristics affect the performance of the MAX9420-MAX9423. Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce the reflections by maintaining 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Chip Information

TRANSISTOR COUNT: 927
PROCESS: Bipolar

Quad Differential LVECL-to-LVPECL Translators

Figure 5. Input Bias Circuits for Unused Inputs
Pin Configurations (continued)

Quad Differential LVECL-to-LVPECL Translators

\qquad

Quad Differential LVECL-to-LVPECL Translators

Quad Differential LVECL-to-LVPECL Translators

\qquad

Quad Differential LVECL-to-LVPECL Translators

Package Information (continued)

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. N IS THE NUMBER OF TERMINALS.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION \& Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
4. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.
6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MILLIMETERS.
8. PACKAGE WARPAGE MAX 0.05 mm .
9. APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.

10. MEETS JEDEC MO220.
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

