
/VAXI/U
Quad ECL/PECL Differential Buffers/Receivers

General Description

The MAX9401/MAX9404 are extremely fast and lowskew quad ECL/PECL differential buffers/receivers for data and clock signals. The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.
The MAX9401 has high-impedance (open) input and the MAX9404 has an integrated 100Ω differential input termination, which reduces external component count. Both devices have double amplitude swing open emitter outputs suitable for driving long cables. The MAX9401/MAX9404 operate over a VCC - VEE $=+3.0 \mathrm{~V}$ to +5.5 V supply range, and are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. These devices are offered in space-saving 32-pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN exposed-paddle (EP) and TQFP packages.

Applications

Data and Clock Driver and Buffer
Central Office Backplane Clock Distribution
DSLAM Backplane
Base Station
ATE

Functional Diagram appears at end of data sheet.

Features

- Differential Double-Swing ECL/PECL Outputs
- Input Compatible with LVECL/LVPECL
- Guaranteed 900mV Differential Output at 3.0GHz Clock Rate
- 365ps Propagation Delay in Asynchronous Mode
- 10ps Channel-to-Channel Skew in Synchronous Mode
- Integrated 100Ω Input Terminations (MAX9404)
- Compatible +3.3V/+5.0V Nominal Supplies
- Selectable Synchronous/Asynchronous Operation

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	INPUT IMPEDANCE
MAX9401EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	Open
MAX9401EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	Open
MAX9404EGJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 QFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	100Ω
MAX9404EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	100Ω

*Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed paddle

Pin Configurations

Quad ECL/PECL Differential Buffers/Receivers

ABSOLUTE MAXIMUM RATINGS

Continuous Output Cur	70mA
Surge Output Curren	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
$32-P i n 5 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	761 mW
32-Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN-EP (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	1.7 W
unction-to-Ambient Thermal Resistance in Still Air	
32-Pin TQFP	$105^{\circ} \mathrm{C} / \mathrm{W}$
32-Pin QFN-EP.	$\ldots+47^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-Ambient Thermal Resistance with 500LFPM Airflow	
Junction-to-Case Thermal Resistance	
32-Pin TQFP	$+25^{\circ} \mathrm{C} /$
32-Pin QFN-EP	$+2^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range- $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature	
Storage Temperature Range	$.65^{\circ} \mathrm{C}$ to +150
ESD Protection	
Human Body Model (Inputs and Outputs).	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($V_{C C}-V_{E E}=+3.0 \mathrm{~V}$ to +5.5 V , outputs terminated with $50 \Omega \pm 1 \%$ to $V_{C C}-3.3 \mathrm{~V}$, inputs are driven, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUTS (IN_, $\overline{\text { IN_, }}$, CLK, $\overline{\text { CLK }}$, EN, $\overline{\text { EN }}$, SEL, $\overline{\text { SEL }}$)							
Differential Input High Voltage	$\mathrm{V}_{1 H D}$	Figure 3		$\begin{gathered} \text { VEE + } \\ 2.0 \end{gathered}$		$V_{C C}$	V
Differential Input Low Voltage	VILD	Figure 3		VEE		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.2 \end{gathered}$	V
Differential Input Voltage	$V_{\text {ID }}$	Figure 3		0.2		3.0	V
Input Current		MAX9401	EN, $\overline{E N}, \mathrm{SEL}, \overline{\mathrm{SEL}}, \mathrm{IN}_{-}, I \overline{N_{-}}$, CLK, or $\overline{\mathrm{CLK}}=\mathrm{V}_{\text {IHD }}$ or VILD	-10		25	$\mu \mathrm{A}$
Input Current	, IL	MAX9404	EN, EN , SEL, $\overline{\text { SEL, CLK, or }}$ $\overline{C L K}=V_{\text {IHD }}$ or VILD	-10		25	
IN to $\overline{I N}$ Differential Input Resistance	RIN	MAX9404		86		114	Ω
OUTPUTS (OUT_, $\overline{\text { OUT_) }}$							
Differential Output Voltage	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\text {OL }}$	Figure 3		1.2	1.4		V
Output Common-Mode Voltage	Vocm	Figure 3		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.8 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.4 \end{gathered}$	V
POWER SUPPLY							
Supply Current	IEE	(Note 4)			84	118	mA

Quad ECL/PECL Differential Buffers/Receivers

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V} \mathrm{CC}-\mathrm{V}_{\mathrm{EE}}=+3.0 \mathrm{~V}$ to +5.5 V , outputs terminated with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-3.3 \mathrm{~V}$, outputs are enabled, input transition time $=125 \mathrm{ps}$ (20% to 80%), fCLK $=3.0 \mathrm{GHz}$, fiN $=1.5 \mathrm{GHz}, \mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {ILD }}=\mathrm{V}_{E E}$ to $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.2$ to 3.0 V , unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN to OUT Differential Propagation Delay	tPLH1, tPHL1	SEL = high, Figure 4	300	365	550	ps
CLK to OUT Differential Propagation Delay	tPLH2, tPHL2	SEL = low, Figure 5	580	620	758	ps
IN to OUT Channel-to-Channel Skew	tSKD1	SEL $=$ high (Note 6)		15	55	ps
CLK to OUT Channel-toChannel Skew	tSKD2	SEL = low (Note 6)		10	40	ps
Maximum Clock Frequency	fCLK(MAX)	$\mathrm{V}_{\text {OH }}-\mathrm{V}_{\text {OL }} \geq 900 \mathrm{mV}$, SEL $=$ low	3.0			GHz
Maximum Data Frequency	finc(MAX)	SEL = high, $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\text {OL }} \geq 900 \mathrm{mV}$	1.5			GHz
Added Random Jitter (Note 7)	tr J	$\begin{aligned} & \mathrm{SEL}=\text { low, } \mathrm{fIN}=1.5 \mathrm{GHz}, \mathrm{fCLK}=3.0 \mathrm{GHz} \text {, } \\ & \text { clock } \end{aligned}$		1.4	2.5	ps (RMS)
		$\mathrm{SEL}=$ high, $\mathrm{fIN}=1.5 \mathrm{GHz}$		0.9	2.7	
Added Deterministic Jitter (Note 7)	tDJ	$\begin{aligned} & \text { SEL }=\text { low, fCLK }=3.0 \mathrm{GHz}, \mathrm{IN}_{-}=1.5 \mathrm{Gbps}, \\ & 2^{23}-1 \text { PRBS pattern } \end{aligned}$		20	30	psp-p
		SEL = high, IN _ $=1.5 \mathrm{Gbps}, 2^{23}-1 \mathrm{PRBS}$ pattern		36	55	
IN to CLK Setup Time	ts	Figure 5	80			ps
CLK to IN Hold Time	th	Figure 5	80			ps
Output Rise Time	tR	Figure 4		116	145	ps
Output Fall Time	t_{F}	Figure 4		115	145	ps
Propagation Delay Temperature Coefficient	$\Delta \mathrm{tpD} / \Delta \mathrm{T}$				1	$\mathrm{ps} /{ }^{\circ} \mathrm{C}$

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to V_{EE} except V_{ID} and V_{OD}.
Note 3: DC parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterization over the full operating range.
Note 4: Outputs are open. Inputs driven high or low.
Note 5: Guaranteed by design and characterization. Limits are set to ± 6 sigma.
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 7: Device jitter added to the input signal.

Quad ECL/PECL Differential Buffers/Receivers

(Outputs terminated with 50Ω to $\mathrm{V}_{C C}-3.3 \mathrm{~V}, \mathrm{~V}_{C C}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$, output is enabled, $\mathrm{SEL}=$ high, $\overline{\mathrm{SEL}}=$ low, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, $\mathrm{f} \mathrm{CLK}=3.0 \mathrm{GHz}, \mathrm{fiN}_{\mathrm{IN}}=1.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
$1,8,11,17$, 24,30	VCC	Positive Supply Voltage. Bypass $V_{C C}$ to $V_{E E}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting SEL $=$ high and $\overline{\text { SEL }}=$ low (differential high) enables all four channels to operate asynchronously. Setting $\mathrm{SEL}=$ low and $\overline{\mathrm{SEL}}=$ high (differential low) enables all four channels to operate in synchronized mode.
3	$\overline{\mathrm{SEL}}$	Inverting Differential Select Input
4	$\overline{\mathrm{CLK}}$	Inverting Differential Clock Input. A rising edge on CLK (and falling on $\overline{\mathrm{CLK}}$) transfers data from the inputs to the outputs when SEL = low.
5	CLK	Noninverting Differential Clock Input

Quad ECL/PECL Differential Buffers/Receivers

Pin Description (continued)

PIN	NAME	FUNCTION
6	EN	Noninverting Differential Output Enable Input. Setting EN = high and $\overline{\mathrm{EN}}=$ low (differential high) enables the outputs. Setting $\mathrm{EN}=$ low and $\overline{\mathrm{EN}}=$ high (differential low) sets the outputs to logic low.
7	EN	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	IN3	Inverting Differential Input 3
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
14, 20, 21, 27	VEE	Negative Supply Voltage
15	IN2	Noninverting Differential Input 2
16	IN2	Inverting Differential Input 2
18	OUT2	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	$\overline{\text { IN1 }}$	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUTO	Noninverting Differential Output 0
29	OUTO	Inverting Differential Output 0
31	INO	Inverting Differential Input 0
32	INO	Noninverting Differential Input 0
-	EP*	Exposed Paddle. EP is electrically connected to VEE. Solder EP to PC board.

*QFN-EP package only.

Detailed Description

The MAX9401/MAX9404 are extremely fast, low-skew quad ECL/PECL buffers/receivers designed for highspeed data and clock driver applications. These devices feature ultra-low propagation delay of 365ps and channel-to-channel skew of 15ps in asynchronous mode with 84 mA supply current, making them ideal for driving long cables and double termination applications (Functional Diagram).
The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input
provides the ability to force all the outputs to a differential low state.

Data Input Termination

Figure 1 shows the input and output configuration of the MAX9401/MAX9404. The MAX9401 has highimpedance inputs and requires external termination. The MAX9404 has integrated 100Ω differential input termination resistors across each of the four inputs (IN_ to $\overline{\mathrm{N}}$ _), reducing external component count.

Outputs

The MAX9401/MAX9404 have double-swing open-emitter outputs as shown in Figure 1. The double-amplitude swing outputs can drive double-terminated links or long

Quad ECL/PECL Differential Buffers/Receivers

Figure 1. MAX9401/MAX9404 Input and Output Configurations
cables. External termination is required. See the Output Termination section.

Enable

Setting $E N=$ high and $\overline{E N}=$ low enables the outputs. Setting EN = low and $\overline{E N}=$ high forces the outputs to a differential low when disabled. All changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL $=$ high and $\overline{\text { SEL }}$ = low enables four channels to operate independently as a buffer/receiver (CLK is ignored). In asynchronous mode, the CLK sig-
nal should be set to either logic low or high state to minimize noise coupling.

Synchronous Operation

Setting SEL = low and SEL = high enables all four channels to operate in synchronous mode. In this mode, buffered inputs are clocked into flip-flops simultaneously on every rising edge of the differential clock input (CLK and CLK).

Differential Signal Input Limit

The maximum differential input signal magnitude is 3.0 V .

Supply Voltages

For interfacing to differential PECL signals, the VCC range is from +3.0 V to +5.5 V (with V_{EE} grounded). For interfacing to differential $E C L$, the $V_{E E}$ range is -3.0 V to -5.5 V (with VCC grounded). Output levels are referenced to VCC and are considered PECL or ECL, depending on the level of the $\mathrm{V}_{C C}$ supply.

Applications Information

Input Bias

Unused inputs should be biased to avoid noise coupling that might cause toggling at the unused outputs. See Figure 2 for the biasing network.

Output Termination

Terminate the outputs through 50Ω to $V_{C C}-3.3 \mathrm{~V}$ or use an equivalent Thevenin termination. Use identical terminations on each OUT for the lowest skew. When a sin-gle-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and OUT_.

Figure 2. Input Bias Circuits for Unused Pins for MAX9401/MAX9404

Quad ECL/PECL Differential Buffers/Receivers

Figure 3. Input and Output Voltage Definitions

Figure 4. IN to OUT Propagation Delay Timing Diagram

Ensure that the output currents do not exceed the current limits as specified in the Absolute Maximum Ratings. Under all operating conditions, the device's total thermal limits should be observed

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass $V_{C C}$ to $V_{E E}$ with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors as close to the device as
possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins. Use multiple bypass vias for connection to minimize inductance.

Circuit Board Traces
Input and output trace characteristics affect the performance of the MAX9401/MAX9404. Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by main-

Quad ECL/PECL Differential Buffers/Receivers

Figure 5. CLK to OUT Propagation Delay Timing Diagram
taining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Chip Information
TRANSISTOR COUNT: 748
PROCESS: Bipolar

Quad ECL／PECL Differential Buffers／Receivers

Functional Diagram

Quad ECL/PECL Differential Buffers/Receivers

Quad ECL/PECL Differential Buffers/Receivers

natest

1. ALL DIMENSIONING AND TOLERANCING CZNFDRM TO ANSI Y14.5-1982.
2. DATUM PLANE EH- IS LDCATED AT MDLD PARTING LINE AND

CIINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BDDY AT
BOTTDM DF PARTING LINE.
3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MILD PROTRUSION ALLIWABLE MILD PRDTRUSION IS 0.254 MM aN D1 AND E1 DTMENSIONS.
4. the tup of package is smaller than the battam of package BY 0.15 MILLIMETERS.
5. DIMENSION b DOES NDT INCLUDE DAMBAR PROTRUSION. ALLIWWBLE DAMBAR PRDTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSIIN AT MAXIMUM MATERIAL CZNDITIIN.
6. CONTROLLING DIMENSION: MILLIMETER.
7. THIS DUTLINE CZNFIRMS TD JEDEC PUBLICATION 95, REGISTRATION MD-136.
8. LEADS SHALL BE CDPLANAR WITHIN . 004 INCH
9. EXPISED DIE PAD SHALL be CIPLANAR WITH BGTTIM OF PACKAGE WITHIN 2 MILS (. 05 MM)
10. DIMENSIONS X AND Y APPLY TO EXPOSED PAD (EP) VERSIONS ONLY. SEE INDIVIDUAL PRIDUCT DATASHEET TO DETERMINE IF A PRIDUCT USES EXPISED PAD PACKAGE.

	JEDEC VARIATIUNS DIMENSIONS IN MILLIMETERS			
	AA		AA-EP*	
	$5 \times 5 \times 1.0 \mathrm{MM}$		$5 \times 5 \times 1.0 \mathrm{MM}$	
	MIN.	MAX.	MIN.	MAX.
A	x^{2}	1.20	- ${ }_{\text {c }}$	1.20
A_{1}	0.05	0.15	0.05	0.15
A_{2}	0.95	1.05	0.95	1.05
D	7.00 BSC.		7.00 BSC.	
D_{1}	5.00 BSC.		5.00 BSC.	
E	7.00 BSC.		7.00 BSC .	
E_{1}	5.00 BSC.		5.00 BSC.	
L	0.45	0.75	0.45	0.75
M	0.15	x	0.15	-
N	32		32	
e	0.50 BSC.		0.50 BSC.	
b	0.17	0.27	0.17	0.27
b1	0.17	0.23	0.17	0.23
*X	N/A	N/A	2.70	3.30
*Y	N/A	N/A	2.70	3.30

Quad ECL/PECL Differential Buffers/Receivers

Quad ECL/PECL Differential Buffers/Receivers

Package Information (continued)

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. N IS THE NUMBER OF TERMINALS.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION \&
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
4. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.
6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MILLIMETERS.
8. PACKAGE WARPAGE MAX 0.05 mm .
9. APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.

10. MEETS JEDEC MO220.
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) and to saw singulation (straight sides) qFN styles.

${ }_{5}^{5}$	PITCH VARIATION B					PITCH VARIATION					PITCH VARIATION C					PITCH VARIATION D			${ }^{\circ}{ }_{\text {T }}^{E}$
	0.80 BSC				-	0.65 BSC					0.50 BSC				E	0.50 BSC			
N	$\frac{16}{16}$			3	N				3	N		28		3	N		32		3
Nd	4			3	Nd	5			3	Nd	7			3	Nd	8			3
Ne	4			3	Ne		5		3	Ne				3	Ne		8		3
	0.35	0.55	0.75		L	0.35	0.55	0.75			0.35	0.55	0.75			0.30	0.40	0.50	
b	0.28	0.33	0.40	4	b	0.23	0.28	0.35	4	b	0.18	0.23	0.30	4	b	0.18	0.23	0.30	4

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

