1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

General Description

The MAX893L smart, low-voltage, P-channel, MOSFET power switch is intended for high-side load-switching applications. This switch operates with inputs from +2.7 V to +5.5 V , making it ideal for both +3 V and +5 V systems. Internal current-limiting circuitry protects the input supply against overload. Thermal overload protection limits power dissipation and junction temperature.
The MAX893L's maximum programmed current limit is 1.2A. The typical short-circuit current is 1.5 times the programmed current; therefore, a 1.2A programmed limit will result in a 1.8A short-circuit current limit. The current limit through the switch is programmed with a resistor from SET to ground. The quiescent supply current is a low $13 \mu \mathrm{~A}$. When the switch is off, the supply current decreases to $0.1 \mu \mathrm{~A}$.
The MAX893L is available in an 8-pin SO package.
Applications
USB Ports
USB Hubs
PCMCIA Slots
Access Bus Slots
Portable Equipment

Typical Operating Circuit

*USB SPECIFICATIONS REQUIRE HIGHER CAPACITANCE.

- +2.7V to +5.5V Input Range
- Programmable Current Limit
0.2A to 1.2A Range $\pm 20 \%$ Accuracy
- 1.2A Continuous Load Current
- 1.8A Short-Circuit Current
- Low Quiescent Current
$13 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$
$0.1 \mu \mathrm{~A}$ with Switch Off
- Thermal Shutdown
- FAULT Indicator Output
- 0.07 On-Resistance

Features

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

ABSOLUTE MAXIMUM RATINGS

IN to GND
$\overline{\mathrm{ON}}, \overline{\text { FAULT }}$ to GND \qquad 0.3 V to +6 V

SET, OUT to GND - 0.3 V to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$)
Maximum Continuous Short-Circuit Switch Current \qquad
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad . .471 mW

Operating Temperature Range
MAX893LESA .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage		2.7		5.5	V
Quiescent Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{I}$ IOUT $=0$		13	20	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0.03	1	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		0.04	15	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1\% hysteresis	2.0	2.4	2.6	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		70	125	$\mathrm{m} \Omega$
	V IN $=3.0 \mathrm{~V}$		88	160	
Current-Limit-Amplifier Threshold	$\mathrm{V}_{\text {SET }}$ required to turn the switch off (Note 1)	1.178	1.240	1.302	V
Maximum Programmable Continuous Output Current Limit			1.2		A
Short-Circuit Current			1.8		A
IOUT to ISET Current Ratio	IOUT $=500 \mathrm{~mA}$, $\mathrm{V}_{\text {OUT }}>1.6 \mathrm{~V}$	920	1080	1250	A/A
$\overline{\mathrm{ON}}$ Input Voltage Low	V IN $=2.7 \mathrm{~V}$ to 5.5 V			0.8	V
$\overline{\mathrm{ON}}$ Input Voltage High	V IN $=2.7 \mathrm{~V}$ to 3.6 V	2.0			V
	V IN $=4.5 \mathrm{~V}$ to 5.5 V	2.4			
$\overline{\mathrm{ON}}$ Input Leakage Current	$\mathrm{V} \overline{\mathrm{ON}}=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
ISET Bias Current	$\mathrm{V}_{\text {SET }}=1.24 \mathrm{~V}$, IOUT $=0 ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$		0.5	3	$\mu \mathrm{A}$
$\overline{\text { FAULT Logic Output Voltage Low }}$	ISINK $=1 \mathrm{~mA}, \mathrm{~V}_{\text {SET }}=1.4 \mathrm{~V}$			0.4	V
FAULT Logic Output High Leakage Current	$\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=1 \mathrm{~V}$		0.05	1	$\mu \mathrm{A}$
Slow Current-Loop Response Time	20\% current overdrive, VIN $=5 \mathrm{~V}$		5		$\mu \mathrm{s}$
Fast Current-Loop Response Time			2		$\mu \mathrm{s}$
Turn-On Time	V IN $=5 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$		80	200	$\mu \mathrm{s}$
	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$		115		
Turn-Off Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, I OUT $=500 \mathrm{~mA}$	2	4		$\mu \mathrm{s}$

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\boldsymbol{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (Note 2)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
Operating Voltage		3.0	5.5	\checkmark
Quiescent Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{I}$ OUT $=0$		30	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		2.2	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}$ IN $=5.5 \mathrm{~V}, \mathrm{~V}$ OUT $=0$		15	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1\% hysteresis	2.0	2.9	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		125	$\mathrm{m} \Omega$
	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$		160	
Current-Limit-Amplifier Threshold	$\mathrm{V}_{\text {SET }}$ required to turn the switch off (Note 1)	1.14	1.34	V
IOUT to ISET Current Ratio	IOUT $=500 \mathrm{~mA}$, Vout $>1.6 \mathrm{~V}$	865	1300	A/A
FAULT Logic Output Voltage Low	ISINK $=1 \mathrm{~mA}, \mathrm{~V}$ SET $=1.4 \mathrm{~V}$		0.4	V
Turn-On Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$		200	$\mu \mathrm{s}$
Turn-Off Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$	1	20	$\mu \mathrm{s}$

Note 1: Tested with IOUT $=100 \mathrm{~mA}$ and $\mathrm{V}_{\text {SET }}$ raised until $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }} \geq 0.8 \mathrm{~V}$.
Note 2: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OFF-SWITCH CURRENT
vs. TEMPERATURE

NORMALIZED OUTPUT CURRENT
vs. OUTPUT VOLTAGE

QUIESCENT CURRENT
vs. TEMPERATURE

NORMALIZED ON-RESISTANCE
vs. TEMPERATURE

TURN-ON TIME vs. TEMPERATURE

OFF-SUPPLY CURRENT vs. TEMPERATURE

Iout/lset Ratio vs. lumit

TURN-OFF TIME
vs. TEMPERATURE

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=\mathrm{I}_{\mathrm{LIMIT} / 2}$
A: $V_{\overline{O N}, 2 \mathrm{~V}} \mathrm{~V}$ div
B: Vout, 2V/div

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

PIN	NAME	FUNCTION
1,2	IN	Input. P-channel MOSFET source. Bypass IN with a 1 μ F capacitor to ground.
3	$\overline{\text { ON }}$	Active-Low Switch On Input. A logic low turns the switch on.
4	GND	Ground
5	SET	Set Current-Limit Input. A resistor from SET to ground sets the current limit for the switch. RSET $=1.34 \cdot 10^{3} /$ ILIMIT, where ILIMIT is the desired current limit in amperes.
6,7	OUT	Switch Output. P-channel MOSFET drain. Bypass OUT with a 0.1μ F capacitor to ground.
8	$\overline{\text { FAULT }}$	Fault-Indicator Output. This open-drain output goes low when in current limit or when the die temperature exceeds $+165^{\circ} \mathrm{C}$.

Detailed Description

The MAX893L P-channel MOSFET power switch limits output current to a programmed level. When the output current is increased beyond the programmed current limit, or 1.2A (IMAX), the current also increases through the replica switch (Iout / 1080) and through RSET (Figure 1). The current-limit error amplifier compares the voltage across RSET to the internal 1.24 V reference, and regulates the current to the programmed current limit (ILIMIT).
This switch is not bidirectional; therefore, the input voltage must be higher than the output voltage.

Setting the Current Limit
The MAX893L features internal current-limiting circuitry with a maximum programmable value (IMAX) of 1.2A. For best performance, set the current limit (ILIMIT) between $0.2 \mathrm{~A} \leq$ ILIMIT $\leq 1.2 \mathrm{~A}$. This current limit remains in effect throughout the input supply-voltage range.
Program the current limit with a resistor (RSET) from SET to ground (Figure 2) as follows:

$$
\begin{gathered}
\text { ISET }=\text { ILIMIT } / 1080 \\
\text { RSET }=1.24 \mathrm{~V} / \mathrm{ISET}=1.34 \cdot 10^{3} / \mathrm{ILIMIT}
\end{gathered}
$$

where ILIMIT is the desired current limit.

Short-Circuit Protection

The MAX893L is a short-circuit protected switch. In the event of an output short circuit or a current overload condition, the current through the switch is limited by the internal current-limiting error amplifier to 1.5 - ILIMIT. The short-circuit current is typically 1.8 A for a programmed current limit of 1.2A. When the short-circuit condition is removed, the replica error amplifier will set the current limit back to lLIMIT.

Figure 1. Functional Diagram

For a high $\Delta \mathrm{V}_{\mathrm{DS}} / \Delta \mathrm{t}$ during an output short-circuit condition, the switch turns off and disconnects the input supply from the output. The current-limiting amplifier then slowly turns the switch on with the output current limited to $1.5 \cdot \operatorname{lLIMIT}$. When the short-circuit condition is removed, the current limit is set back to llimit. See Output ShortCircuit (Fast-Loop Response) and Output Overload (Slow-Loop Response) in the Typical Operating Characteristics.

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Figure 2. Setting the Current Limit

Thermal Shutdown

The MAX893L features thermal shutdown. The switch turns off when the junction temperature exceeds $+165^{\circ} \mathrm{C}$. Once the device cools by $10^{\circ} \mathrm{C}$, the switch turns back on. If the fault condition is not removed, the switch will cycle on and off, resulting in a pulsed output.

Fault Indicator The MAX893L provides a fault output (FAULT). This open-drain output goes low when in current limit or when the die temperature exceeds $+165^{\circ} \mathrm{C}$. A $100 \mathrm{k} \Omega$ pull-up resistor from FAULT to IN provides a logiccontrol signal.

Fault Blanking
During start-up in USB applications, the MAX893L charges the relatively large USB capacitance. This may activate an unwanted fault signal if the charging current exceeds the programmed current limit. To "blank out" this start-up fault signal, add a simple lowpass RC delay circuit as shown in Figure 3. This circuit provides a 10 ms delay.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor no more than 5 mm from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor will be adequate for most applications; however, higher capacitor values will further reduce the voltage drop at the input.

Figure 3. Fault-Blanking Circuit

Output Capacitor

Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal-Dissipation Considerations

To take full advantage of the switch-response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close to the device as possible (no more than 5 mm).
Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power as follows:

$$
\mathrm{P}=(\mathrm{ILIMIT})^{2} \cdot \operatorname{RON}
$$

where Ron is the on-resistance of the switch.
When the output is short circuited, the voltage drop across the switch equals the input supply. Hence, the power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-shutdown protection circuitry turns the switch off until the die temperature falls by $10^{\circ} \mathrm{C}$. A ground plane in contact with the device will help dissipate additional heat.

Chip Information
TRANSISTOR COUNT: 340

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad

