Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Abstract

General Description The MAX4800A/MAX4802A provide high-voltage switching on eight channels for ultrasonic imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-chargeinjection SPST switches, controlled by a 20MHz serial interface. Data is clocked into an internal 8-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up. The devices operate with a wide range of high-voltage supplies including: VPP/VNN $=+100 \mathrm{~V} /-100 \mathrm{~V},+185 \mathrm{~V} /-15 \mathrm{~V}$, and $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate VDD supply from +2.7 V to +6 V . Digital inputs DIN, CLK, LE, and CLR are +6V tolerant, independent of the VDD supply voltage. The MAX4802A provides integrated $35 \mathrm{k} \Omega$ bleed resistors on each switch terminal to discharge capacitive loads. The devices are drop-in replacements for the Supertex HV2203 and HV2303. They are available in the 48-pin LQFP, 26-bump CSBGA, and 28-pin PLCC packages. All devices are specified for the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range

Applications
Ultrasound Imaging
Printers
Ordering Information/ Selector Guide

PART	BLEED RESISTORS	SECOND SOURCE	PIN- PACKAGE
MAX4800ACXZ+ ${ }^{\star}$	No	-	26 CSBGA
MAX4800ACQI+	No	HV2203PJ-G	28 PLCC
MAX4800ACCM $+^{\star}$	No	HV2203FG-G	48 LQFP
MAX4802ACXZ ${ }^{\star}$	Yes	-	26 CSBGA
MAX4802ACQI+	Yes	HV2303PJ-G	28 PLCC
MAX4802ACCM $+^{\star}$	Yes	HV2303FG-G	48 LQFP

Note: All devices are specified over the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
*Future product-contact factory for availability.
+Denotes a lead(Pb)-free/RoHS-compliant package.

SPI is a trademark of Motorola, Inc.

- Fast SPI ${ }^{\text {TM }}$ Interface 20MHz
- Pin-Compatible Replacement for Supertex HV2203 (MAX4800A)
- Pin-Compatible Replacement for Supertex HV2303 (MAX4802A)
- Flexible High-Voltage Supplies Up to VPP - VNN = 200V
- Low-Charge-Injection, Low-Capacitance 22Ω Switches
- DC to 50MHz Analog-Signal Frequency Range
- -77dB Off-Isolation at 5MHz
- Low 10~A Quiescent Current
- Integrated Bleed Resistors (MAX4802A Only)
- Available in Standard PLCC, LQFP, and CSBGA Packages

Pin/Bump Configurations

Pin/Bump Configurations continued at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

VDD Logic Supply Voltage.......................................-0.3V to +7 V
VPP - V \qquad
\qquad220V
VPp Positive Supply Voltage......................-0.3V to (VNN + 220V)
$V_{N N}$ Negative Supply Voltage + . 3 V to - 220 V
Logic Inputs LE, CLR, CLK, DIN-0.3V to +7 V
DOUT...-. 0.3 V to (VDD +0.3 V)
RGND (MAX4802A)... 4.5 V to +0.3 V
COM_, NO_.. $V_{N N}$ to $V_{P P}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
26-Bump CSBGA (derate $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. 941 mW
28-Pin PLCC (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots842 \mathrm{~mW}$
48-Pin LQFP (derate $22.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1818 mW

Operating Temperature Range................................$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Lead Temperature (excluding CSBGA, soldering, 10s)..+300 ${ }^{\circ} \mathrm{C}$ Soldering Temperature (reflow)

28 PLCC.. $+245^{\circ} \mathrm{C}$
All other packages .. $+260^{\circ} \mathrm{C}$

PACKAGE THERMAL CHARACTERISTICS (Note 1)

```
26 CSBGA
    Junction-to-Ambient Thermal Resistance ( }0\textrm{JA}\mathrm{ )........... }8\mp@subsup{5}{}{\circ}\textrm{C}/\textrm{W
    Junction-to-Case Thermal Resistance (0JC)...
```

\qquad
\qquad

``` \(.23^{\circ} \mathrm{C} / \mathrm{W}\)
28 PLCC
Junction-to-Ambient Thermal Resistance ( \(\theta \mathrm{JA}\) )
``` \(\qquad\)
``` \(.44^{\circ} \mathrm{C} / \mathrm{W}\)
Junction-to-Case Thermal Resistance ( \(\theta \mathrm{Jc}\) ) \(.10^{\circ} \mathrm{C} / \mathrm{W}\)
```

48 LQFP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)........... $44^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ JC). $10^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to T_{MA}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog-Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}_{-}} \end{gathered}$	(Note 3)			$\begin{gathered} \mathrm{V}_{\mathrm{NN}}+ \\ 10 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{PP}}- \\ 10 \end{gathered}$	V
Small-Signal Switch On-Resistance	Rons	$\begin{aligned} & V_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{ICOM}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			30	Ω
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		26	38	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			48	
			$\begin{aligned} & \text { ICOM }= \\ & 200 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			32	
		$\begin{aligned} & V_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{ICOM}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			30	
			$\begin{aligned} & \text { ICOM }= \\ & 200 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			18	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		18	24	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			27	

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Logic Input Capacitance	CIN	(Note 4)					10	pF
Logic Input Leakage	IIN				-1		+1	$\mu \mathrm{A}$
DOUT Low Voltage	VOL	$\mathrm{ISINK}=1 \mathrm{~mA}$					0.4	V
DOUT High Voltage	VOH	ISOURCE $=0.75 \mathrm{~mA}$			$\begin{gathered} \text { VDD } \\ 0.5 \end{gathered}$			V
POWER SUPPLIES								
VDD Supply Voltage	VDD				2.7		6.0	V
Vpp Supply Voltage	VPP				40		$\begin{gathered} V_{\text {NN }}+ \\ 200 \end{gathered}$	V
V NN Supply Voltage	$V_{\text {NN }}$				-160		-15	V
VDD Supply Quiescent Current	IDDQ	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}$	$=\mathrm{V}_{\text {PSD }}, \mathrm{fCLK}=0$				3	$\mu \mathrm{A}$
VDD Supply Dynamic Current	IDD	$\begin{aligned} & V_{D D}=+5 \mathrm{~V}, \mathrm{~V} \\ & \mathrm{f} L \mathrm{LK}=5 \mathrm{MHz} \end{aligned}$	$\mathrm{L}=\mathrm{OV}, \mathrm{~V}_{\mathrm{IH}}=$				2	mA
Vpp Supply Quiescent Current	IPPQ	All switches ICOM_(ON) =	emain on or off mA			10	50	$\mu \mathrm{A}$
VPP Supply Dynamic Current	IPP	50 kHz output switching frequency with no load	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			6.5	
			$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
			$\begin{aligned} & V_{P P}=+160 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
VNN Supply Quiescent Current	INNQ	All switches remain on or off, ICOM_(ON) = 5mA				10	50	$\mu \mathrm{A}$
VNN Supply Dynamic Current	INN	50 kHz output switching frequency with no load	$\begin{aligned} & V_{P P}=+40 V, \\ & V_{N N}=-160 V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			6.5	
			$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
			$\begin{aligned} & V_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

TIMING CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Turn-On Time	ton	$\begin{aligned} & V_{N O_{-}}=V_{P P}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-160 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{s}$
Turn-Off Time	toFF	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-160 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{s}$
Output Switching Frequency	fsw	Duty cycle $=50 \%$				50	kHz
Maximum $\mathrm{V}_{\mathrm{COM}}$, V_{NO} _Slew Rate	dV/dt	(Note 4)		20			V/ns
LOGIC TIMING (Figure 1)							
CLK Frequency	${ }_{\text {f CLK }}$	Daisy chaining	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$			20	MHz
			$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$			10	
DIN to CLK Setup Time	tDS	$V_{D D}=+5 \mathrm{~V} \pm 10 \%$				10	ns
		$V_{D D}=+3 \mathrm{~V} \pm 10 \%$				16	
DIN to CLK Hold Time	tDH	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$		3			ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$		3			
CLK to $\overline{L E}$ Setup Time	tcs	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$		36			ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$		65			
$\overline{\text { LE Low Pulse Width }}$	twL	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$		14			ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$		22			
CLR High Pulse Width	twC	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$		20			ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$		40			
CLK Rise and Fall Times (Note 4)	$t_{\text {R, }}, \mathrm{tF}^{\text {r }}$	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$				50	ns
		$\mathrm{V}_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$				50	
CLK to DOUT Delay	tDO	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%, \mathrm{CL} \leq 20 \mathrm{pF}$		6		42	ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%, \mathrm{CL}^{\text {S }}$ 20pF		12		80	

Note 2: Specifications at $0^{\circ} \mathrm{C}$ are guaranteed by correlation and design.
Note 3: The analog-signal input $\mathrm{V}_{C O M}$ and $\mathrm{V}_{\text {NO_ }}$ must satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{V}_{C O M}, \mathrm{~V}_{\mathrm{NO}}\right) \leq \mathrm{V}_{\mathrm{PP}}$, or remain unconnected during power-up and power-down.
Note 4: Guaranteed by design and characterization; not production tested.

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20 MHz Serial Interface

Pin/Bump Descriptions

PIN/BUMP			NAME	FUNCTION
MAX4800A LQFP	$\begin{aligned} & \text { MAX4800A } \\ & \text { CSBGA } \end{aligned}$	$\begin{aligned} & \text { MAX4800A } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	COM5	Analog Switch 5-Common Terminal
$\begin{gathered} \hline 2,4,6,7,9, \\ 11,13,15,17, \\ 19,21,23,26, \\ 27,30,31,32, \\ 38,40,42,44, \\ 46,48 \end{gathered}$	D6	9, 11, 15	N.C.	No Connection. Not connected internally.
3	E1	27	COM4	Analog Switch 4-Common Terminal
5	E3	28	NO4	Analog Switch 4-Normally Open Terminal
8	D1	1	COM3	Analog Switch 3-Common Terminal
10	D3	2	NO3	Analog Switch 3-Normally Open Terminal
12	D4	3	COM2	Analog Switch 2-Common Terminal
14	C3	4	NO2	Analog Switch 2-Normally Open Terminal
16	C4	5	COM1	Analog Switch 1-Common Terminal
18	A4	6	NO1	Analog Switch 1-Normally Open Terminal
20	C5	7	COM0	Analog Switch 0-Common Terminal
22	D5	8	NOO	Analog Switch 0-Normally Open Terminal
24	C6	10	VPP	Positive High-Voltage Supply. Bypass Vpp to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	V_{NN}	Negative High-Voltage Supply. Bypass VNN to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
28	D7	13	GND	Ground
29	D9	14	$V_{D D}$	Digital Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	DIN	Serial-Data Input
34	E7	17	CLK	Serial-Clock Input
35	E6	18	$\overline{\text { LE }}$	Latch-Enable Input, Active Low
36	F7	19	CLR	Latch Clear Input
37	F6	20	DOUT	Serial-Data Output
39	E5	21	COM7	Analog Switch 7-Common Terminal
41	F5	22	NO7	Analog Switch 7-Normally Open Terminal
43	F4	23	COM6	Analog Switch 6-Common Terminal
45	H4	24	NO6	Analog Switch 6-Normally Open Terminal
47	F3	25	NO5	Analog Switch 5-Normally Open Terminal

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Pin/Bump Descriptions (continued)

PIN/BUMP			NAME	FUNCTION
$\begin{aligned} & \text { MAX4802A } \\ & \text { LQFP } \end{aligned}$	MAX4802A CSBGA	$\begin{aligned} & \text { MAX4802A } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	COM5	Analog Switch 5-Common Terminal
$\begin{gathered} \hline 2,4,6,7,9, \\ 11,13,15,17, \\ 19,21,23,26, \\ 30,31,32,38, \\ 40,42,44,46, \\ 48 \end{gathered}$	-	9, 15	N.C.	No Connection. Not connected internally.
3	E1	27	COM4	Analog Switch 4-Common Terminal
5	E3	28	NO4	Analog Switch 4-Normally Open Terminal
8	D1	1	COM3	Analog Switch 3-Common Terminal
10	D3	2	NO3	Analog Switch 3-Normally Open Terminal
12	D4	3	COM2	Analog Switch 2-Common Terminal
14	C3	4	NO2	Analog Switch 2-Normally Open Terminal
16	C4	5	COM1	Analog Switch 1-Common Terminal
18	A4	6	NO1	Analog Switch 1-Normally Open Terminal
20	C5	7	COM0	Analog Switch 0-Common Terminal
22	D5	8	NOO	Analog Switch 0-Normally Open Terminal
24	C6	10	VPP	Positive High-Voltage Supply. Bypass Vpp to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	V_{NN}	Negative High-Voltage Supply. Bypass VNN to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
27	D6	11	RGND	Bleed Resistor Ground
28	D7	13	GND	Ground
29	D9	14	$V_{D D}$	Digital Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	DIN	Serial-Data Input
34	E7	17	CLK	Serial-Clock Input
35	E6	18	LE	Latch-Enable Input, Active Low
36	F7	19	CLR	Latch Clear Input
37	F6	20	DOUT	Serial-Data Output
39	E5	21	COM7	Analog Switch 7-Common Terminal
41	F5	22	NO7	Analog Switch 7-Normally Open Terminal
43	F4	23	COM6	Analog Switch 6-Common Terminal
45	H4	24	NO6	Analog Switch 6-Normally Open Terminal
47	F3	25	NO5	Analog Switch 5-Normally Open Terminal

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Figure 1. Serial Interface Timing*

Detailed Description

The MAX4800A/MAX4802A provide high-voltage switching on eight channels for ultrasound imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-charge-injection SPST switches, controlled by a 20 MHz serial interface. Data is clocked into an internal 8-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up.
The devices operate with a wide range of high-voltage supplies including: $\mathrm{VPP} / \mathrm{V}_{\mathrm{NN}}=+100 \mathrm{~V} /-100 \mathrm{~V}$, $+185 \mathrm{~V} /-15 \mathrm{~V}$, or $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate V_{DD} supply from +2.7 V to +6 V . Digital inputs DIN, CLK, LE, and CLR are +6 V tolerant, independent of the VDD supply voltage. The MAX4802A
provides integrated $35 \mathrm{k} \Omega$ bleed resistors on each switch terminal to discharge capacitive loads.
The devices are drop-in replacements for the Supertex HV2203 and HV2303, respectively.

Analog Switch
The devices allow a peak-to-peak analog-signal range from $V_{N N}+10 \mathrm{~V}$ to $\mathrm{V}_{P P}-10 \mathrm{~V}$. Analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq$ (VCOM_, $\left.\mathrm{V}_{\text {NO_ }}\right) \leq \mathrm{V}_{\text {PP }}$ during power-up and power-down.

High-Voltage Supplies
The devices allow a wide range of high-voltage supplies. The devices operate with $V_{N N}$ from -160 V to -15 V and Vpp from +40 V to ($\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$). When V_{NN} is connected to GND (single-supply applications), the devices operate with VPP up to +200 V .

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Figure 2. Latch-Enable Interface Timing

The VPP and VNN high-voltage supplies are not required to be symmetrical, but the voltage difference VPP - VNN must not exceed 200V.

Bleed Resistors (MAX4802A)
The MAX4802A features integrated $35 \mathrm{k} \Omega$ bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog-switch terminal is connected to RGND with a bleed resistor.

Serial Interface

The devices are controlled by a serial interface with an 8 -bit serial shift register and transparent latch. Each of the eight data bits controls a single analog switch (see Table 1). Data on DIN is clocked with the most significant bit (MSB) first into the shift register on the rising edge of CLK. Data is clocked out of the shift register onto DOUT on the rising edge of CLK. DOUT reflects the status of DIN, delayed by eight clock cycles (see Figures 1 and 2).

Latch Enable (LE)

Drive $\overline{\mathrm{LE}}$ logic-low to change the contents of the latch and update the state of the high-voltage switches (Figure 2). Drive LE logic-high to freeze the contents of the latch and prevent changes to the switch states. To reduce noise due to clock feedthrough, drive LE logichigh while data is clocked into the shift register. After the data shift register is loaded with valid data, pulse $\overline{\mathrm{LE}}$ logic-low to load the contents of the shift register into the latch.

Latch Clear (CLR)

The devices feature a latch clear input. Drive CLR logic-high to reset the contents of the latch to zero and open all switches. CLR does not affect the contents of the data shift register. Pulse LE logic-low to reload the contents of the shift register into the latch.

Power-On Reset

The devices feature a power-on reset circuit to ensure all switches are open at power-on. The internal 8 -bit serial shift register and latch are set to zero on power-up.

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Table 1. Serial Interface Programming

DATA BITS								CONTROL BITS		FUNCTION							
$\begin{gathered} \text { DO } \\ \text { (LSB) } \end{gathered}$	D1	D2	D3	D4	D5	D6	$\begin{gathered} \text { D7 } \\ \text { (MSB) } \end{gathered}$	$\overline{\mathrm{LE}}$	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
H								L	L	On							
	L							L	L		Off						
	H							L	L		On						
		L						L	L			Off					
		H						L	L			On					
			L					L	L				Off				
			H					L	L				On				
				L				L	L					Off			
				H				L	L					On			
					L			L	L						Off		
					H			L	L						On		
						L		L	L							Off	
						H		L	L							On	
							L	L	L								Off
							H	L	L								On
X	X	X	X	X	X	X	X	H	L	Hold Previous State							
X	X	X	X	X	X	X	X	X	H	Off							

Applications Information

Logic Levels

The devices' digital interface inputs CLK, DIN, LE, and CLR are tolerant of up to +6 V , independent of the V_{DD} supply voltage, allowing compatibility with higher voltage controllers.

Daisy Chaining Multiple Devices

Digital output DOUT is provided to allow the connection of multiple devices by daisy-chaining (Figure 3). Connect each DOUT to the DIN of the subsequent device in the chain. Connect CLK, $\overline{\mathrm{LE}}$, and CLR inputs of all devices, and drive $\overline{\mathrm{LE}}$ logic-low to update all devices simultaneously. Drive CLR high to open all the switches simultaneously. Additional shift registers may be included anywhere in series with the MAX4800A/ MAX4802A data chain.

Supply Sequencing and Bypassing

The devices do not require special sequencing of the VDD, VPP, and VNN supply voltages; however, analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq$ (VCOM, $\mathrm{V}_{\text {NO_ }}$) \leq VPP during power-up and powerdown. Bypass V_{DD}, V_{NN}, and V_{PP} to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the device as possible.

Chip Information
PROCESS: BCDMOS

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Figure 3. Interfacing Multiple Devices by Daisy-Chaining

Functional Diagrams

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Pin/Bump Configurations (continued)

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
26 CSBGA	$\mathrm{X} 07265+1$	$\underline{\mathbf{2 1}-0158}$	$\underline{\mathbf{9 0 - 0 1 8 4}}$
28 PLCC	$\mathrm{Q} 28+13$	$\underline{\mathbf{2 1 - 0 0 4 9}}$	$\underline{\mathbf{9 0 - 0 2 3 5}}$
48 LQFP	$\mathrm{C} 48+6$	$\underline{\mathbf{2 1 - 0 0 5 4}}$	$\underline{\mathbf{9 0 - 0 0 9 3}}$

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | Revision History |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $5 / 08$ | Initial release | PAGES
 CHANGED |
| 1 | $2 / 11$ | Changed the DC analog-signal frequency range to 50MHz in the Features section;
 changed the TQFP package to LQPP in the General Description, Ordering Information,
 Features, Pin/Bump Configurations, Pin/Bump Descriptions, and Package Information | $1,8,14$ |

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

