

General Description

The MAX4854H/MAX4854HL analog switches operate from a single +2V to +5.5V supply and can handle signals greater than the supply rail. These devices feature four low on-resistance (7 Ω) single-pole/single-throw (SPST) switches, with 27.5pF on-capacitance, making them ideal for data signals. If the input signal exceeds the supply rail, the switches become high impedance and prevent the signal from feeding through to the output.

The MAX4854H/MAX4854HL are available in the space-saving (3mm x 3mm), 16-pin, thin QFN package and operate over the extended (-40°C to +85°C) temperature range.

Applications

USB Switching

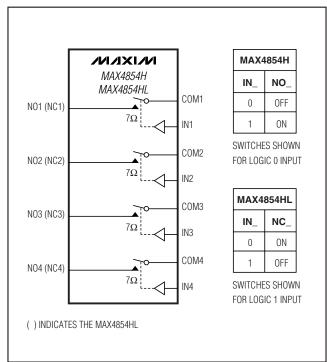
High-Bandwidth Data Switching

Cellular Phones

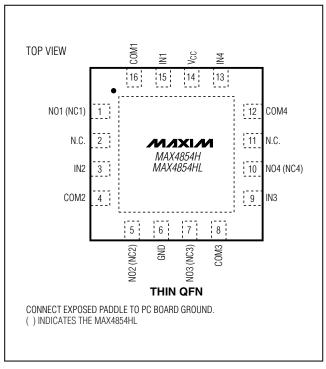
Notebook Computers

PDAs and Other Handheld Devices

Features


- ♦ USB 2.0 Full Speed (12MB) and USB 1.1 Signal **Switching**
- ♦ Overvoltage Protection if Signal Exceeds VCC
- ♦ 150MHz -3dB Bandwidth
- ♦ 27.5pF On-Capacitance
- ♦ +2V to +5.5V Supply Range
- ♦ 7Ω On-Resistance
- ♦ Low 10µA Supply Current
- ♦ 1.8V Logic Compatible
- ♦ Available in a Space-Saving (3mm x 3mm) 16-Pin TQFN Package

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4854HETE	-40°C to +85°C	16 TQFN-EP*	ACD
MAX4854HLETE	-40°C to +85°C	16 TQFN-EP*	ACX

^{*}EP = Exposed paddle.

Block Diagram/Truth Table

Pin Configuration

NIXIN

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , IN_, COM_, NO_, NC_ to GND (Note 1)0.3V to +6.0V
Closed Switch Continuous Current COM_, NO_, NC±50mA
Peak Current COM_, NO_, NC_
(pulsed at 1ms, 50% duty cycle)±100mA
Peak Current COM_, NO_, NC_
(pulsed at 1ms, 10% duty cycle)±120mA

Continuous Power Dissipation (T _A = +70°C))
16-Pin Thin QFN (derate 20.8mW/°C abo	ve +70°C)1667mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NO_/NC_ or COM_ exceeding GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit the forward-diode current to the maximum current rating.

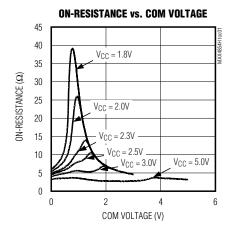
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

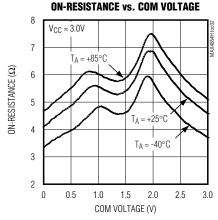
ELECTRICAL CHARACTERISTICS

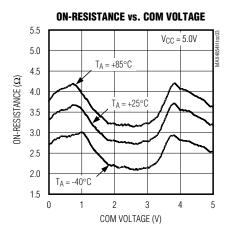
 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	Vcc			2.0		5.5	V
Supply Current	Icc	$V_{CC} = 5.5V$, $V_{IN} = 0V$ or V_{CC}			10	20	μΑ
ANALOG SWITCH							
Analog Signal Range	V _{NO_} , V _{COM_}			0		V _C C	٧
On-Resistance	Ron	V _{CC} = 3V, I _{COM} = 10mA, V _{NO} or V _{NC} = 0 to V _{CC}	T _A = +25°C		7	9	Ω
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			10	
On-Resistance Match	ADavi	V _{CC} = 3V, I _{COM} = 10mA, or V _{NO} _ or V _{NC} _ = 1.5V	T _A = +25°C		0.2	0.4	Ω
Between Channels (Notes 3, 4)	∆R _{ON}		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			0.5	
On-Resistance Flatness (Note 5)	R _{FLAT}	V _{CC} = 3V, I _{COM} = 10mA, V _{NO} or V _{NC} = 1V, 2V, 3V	T _A = +25°C		2.5	3.75	Ω
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			4	
NO_ or NC_ Off-Leakage Current	loff	V _{CC} = 5.5V, V _{NO} or V _{NC} = 1V or 4.5V, V _{COM} = 4.5V or 1V	$T_A = +25^{\circ}C$	-2		+2	nA
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-10		+10	
COM_ On-Leakage Current	ION	V_{CC} = 5.5V; V_{NO} or V_{NC} = 1V, 4.5V, or floating; V_{COM} = 1V, 4.5V, or floating	T _A = +25°C	-2		+2	nA
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-12.5		+12.5	
DYNAMIC CHARACTERIST	ICS						
Signal Over Rail to High-Z Switching Time		V_{NO} or V_{NC} = V_{CC} to (V_{CC} + (Figure 1)	0.5V), V _{CC} < 5V		0.5	1	μs
High-Z to Low-Z Switching Time		V_{NO} or V_{NC} = (V_{CC} + 0.5V) to V_{CC} , V_{CC} < 5V (Figure 1)			0.5	1	μs
Skew (Note 3)	tskew	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)			0.15	1	ns
Propagation Delay (Note 3)	t _{PD}	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)			0.9	2	ns
Turn-On Time	ton	$V_{CC}=3V$, V_{NO} or $V_{NC}=1.5V$, $R_L=300\Omega$, $C_L=50pF$ (Figure 1)	T _A = +25°C		40	60	ns
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			100	
Turn-Off Time	toff	$V_{CC} = 3V, V_{NO} \text{ or } V_{NC} = 1.5V, R_L = 300\Omega, C_L = 50pF$	T _A = +25°C		30	40	ns
		(Figure 1) $T_A = -40^{\circ}\text{C to } +88$				60	110

ELECTRICAL CHARACTERISTICS (continued)

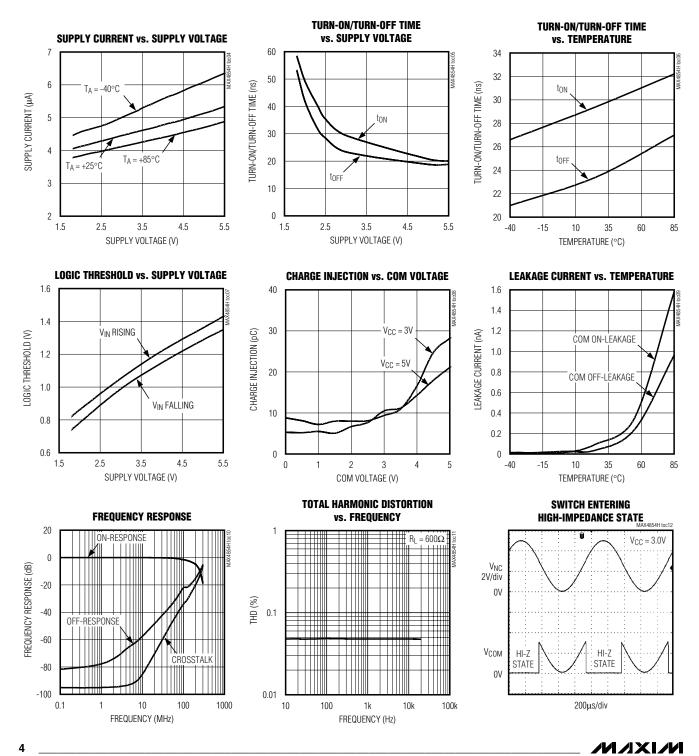

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 2)


PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	
Charge Injection	Q	$V_{COM} = 1.5V$, $R_S = 0\Omega$, $C_L = 1nF$ (Figure 3)	8		рС		
Off-Isolation (Note 6)	V _{ISO}	f = 100kHz, V_{COM} = 1 V_{RMS} , R_L = 50 Ω , C_L = 5pF (Figure 4)	-80		dB		
Crosstalk	V _C T	f = 1MHz, V_{COM} = 1 V_{RMS} , R_L = 50 Ω , C_L = 5pF (Figure 4)	-95		dB		
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 4)		150		MHz	
Total Harmonic Distortion	THD	$f = 20$ Hz to 20 kHz, $V_{COM} = 1$ V + 2 V _{P-P} , $R_L = 600\Omega$		0.04		%	
NO_ Off-Capacitance	Coff	f = 1MHz (Figure 5)		12		рF	
COM On-Capacitance	Con	f = 1MHz (Figure 5)		27.5		рF	
DIGITAL I/O (IN_)							
Input Logic High Voltage	VIH	V _{CC} = 2V to 3.6V	1.4			V	
Input-Logic High Voltage		V _{CC} = 3.6V to 5.5V	1.8				
Input-Logic Low Voltage	VIL	V _{CC} = 2V to 3.6V	0.5		0.5	V	
		$V_{CC} = 3.6V \text{ to } 5.5V$			0.8]	
Input Leakage Current	I _{IN}	V _{IN} _ = 0 or 5.5V	-0.5		+0.5	μΑ	


- Note 2: Specifications are 100% tested at T_A = +85°C only, and guaranteed by design and characterization over the specified temperature range.
- Note 3: Guaranteed by design and characterization; not production tested.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 6: Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), $V_{COM} = output$, $V_{NO} = input$ to off switch.

_Typical Operating Characteristics

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$



NIXIN

Typical Operating Characteristics (continued)

($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION	
1, 5, 7, 10	NO1, NO2, NO3, NO4	Normally Open Terminals for Analog Switch (MAX4854H)	
1, 5, 7, 10	NC1, NC2, NC3, NC4	Normally Closed Terminals for Analog Switch (MAX4854HL)	
2, 11	N.C.	No Connection. Internally not connected.	
3	IN2	Digital Control Input for Analog Switch 2. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN2 opens switch 2 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN2 connects COM2 to NO2.	
4	COM2	Common Terminal for Analog Switch 2	
6	GND	Ground	
8	COM3	Common Terminal for Analog Switch 3	
9	IN3	Digital Control Input for Analog Switch 3. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN3 opens switch 3 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN3 connects COM3 to NO3.	
12	COM4	Common Terminal for Analog Switch 4	
13	IN4	Digital Control Input for Analog Switch 4. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN4 opens switch 4 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN4 connects COM4 to NO4.	
14	Vcc	Supply Voltage. Bypass V _{CC} to GND with a 0.01µF capacitor as close to the pin as possible.	
15	IN1	Digital Control Input for Analog Switch 1. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN1 opens switch 1 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN1 connects COM1 to NO1.	
16	COM1	Common Terminal for Analog Switch 1	
_	EP	Exposed Paddle. Connect to PC board ground plane.	

Detailed Description

The MAX4854H/MAX4854HL quad SPST switches have low on-resistance, operate from a +2V to +5.5V supply, and are fully specified for nominal 3.0V applications. These devices feature overvoltage protection by putting the switch into high-impedance mode when the switch input exceeds V_{CC} .

These switches have low 27.5pF on-channel capacitance, which allows for 12Mbps switching of the data signals for USB 2.0 full speed/1.1 applications. The MAX4854H/MAX4854HL are designed to switch D+ and D- USB signals with a guaranteed skew of less than 1ns (see Figure 2) as measured from 50% of the input signal to 50% of the output signal.

Applications Information Digital Control Inputs

The logic inputs (IN_) accept up to +5.5V even if the supply voltages are below this level. For example, with a +3.3V VCC supply, IN_ can be driven low to GND and

high to +5.5V, allowing for mixing of logic levels in a system. Driving IN_ rail-to-rail minimizes power consumption. For a +2V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 1.8V (high).

Analog Signal Levels

The on-resistance of these switches changes very little for analog input signals across the entire supply voltage range (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_ and COM_ pins can be either inputs or outputs.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying analog signals, especially if the analog signal is not current limited.

Test Circuits/Timing Diagrams

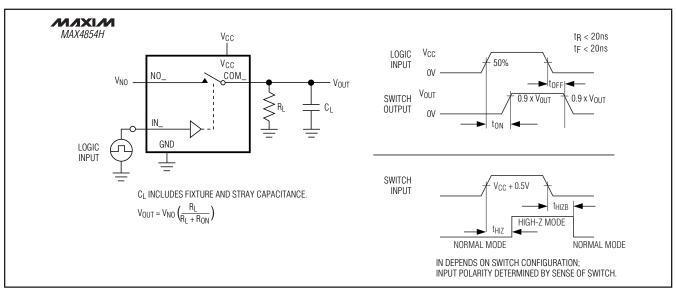


Figure 1. Switching Time

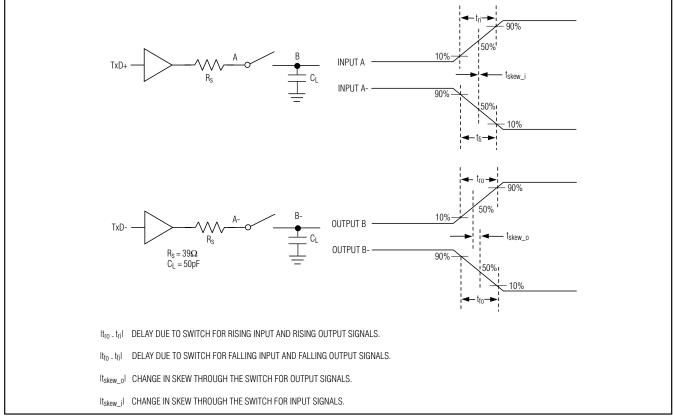


Figure 2. Output Signal Skew

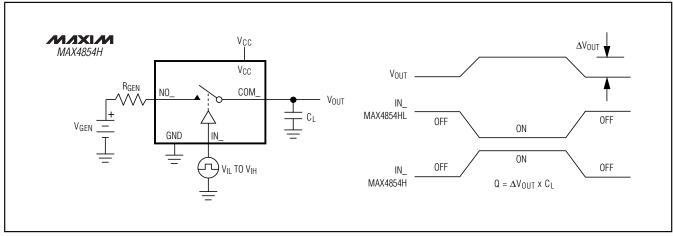


Figure 3. Charge Injection

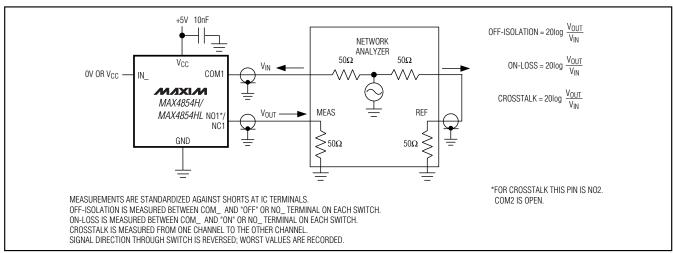


Figure 4. On-Loss, Off-Isolation, and Crosstalk

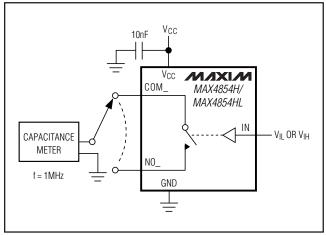
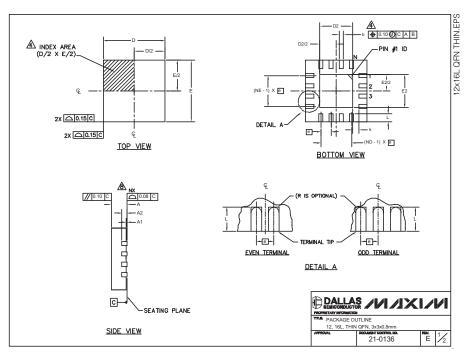
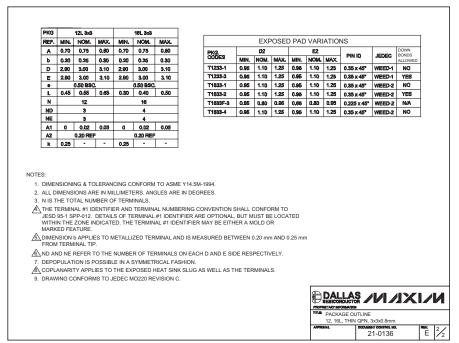


Figure 5. Channel Off-/On-Capacitance

Chip Information


TRANSISTOR COUNT: 735


PROCESS: CMOS

igure o. Onarmer on for oapacitance

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2005 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.