CMAXIAV 2.5 Ω, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

General Description

The MAX4686/MAX4687/MAX4688 low on-resistance (RON), low-voltage analog switches operate from a single +1.8 V to +5.5 V supply. The MAX4686/MAX4687 are single-pole/single-throw (SPST) analog switches, and the MAX4688 is a single-pole/double-throw (SPDT) analog switch. The MAX4686 is a normally open (NO) switch, and the MAX4687 is a normally closed (NC) switch. The MAX4688 has one normally open (NO) switch and one normally closed (NC) switch.
When powered from a 3V supply these devices feature 2.5Ω (max) RoN, with 0.4Ω (max) RON matching and 1Ω (max) flatness. The MAX4686/MAX4687/MAX4688 offer fast switching speeds (tON $=30 \mathrm{~ns}$ max, toff $=12 \mathrm{~ns}$ max). The MAX4688 offers break-before-make action.

The digital logic inputs are 1.8 V logic compatible from a +2.7 V to +3.3 V supply. The MAX4686/MAX4687/ MAX4688 are available in the chip-scale package (UCSP ${ }^{\text {TM }}$), significantly reducing the required PC board area. The chip occupies only a $1.50 \mathrm{~mm} \times 1.02 \mathrm{~mm}$ area. The 3×2 array of solder bumps are spaced with a 0.5 mm bump pitch.

Applications
MP3 Players
Cellular Phones
Power Routing
Battery-Operated Equipment
Relay Replacement
Audio and Video Signal Routing
Communications Circuits
PCMCIA Cards
Cellular Phones
Hard Drives

Features

- 6-Bump, 0.5mm Pitch, UCSP
- RoN
2.5Ω max (+3 V Supply)
10Ω max (+1.8 V Supply)
- 0.4Ω max Ron Match Between Channels
- 1Ω max Ron Flatness Over Signal Range
- Low Leakage Currents Over Temperature
0.5 nA (max) at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
- Fast Switching: toN $=30 \mathrm{~ns}$, tofF $=12 \mathrm{~ns}$
- Guaranteed Break-Before-Make (MAX4688)
- +1.8V to +5.5V Single-Supply Operation
- Rail-to-Rail ${ }^{\circledR}$ Signal Handling
- Low Crosstalk: -95dB (100kHz)
- High Off-Isolation: -90dB (100kHz)
- 1.8V Logic Compatible

Ordering Information

PART	TEMP RANGE	BUMP- PACKAGE	TOP MARK
MAX4686EBT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP-6	AAI
MAX4687EBT- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP-6	AAJ
MAX4688EBT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP-6	AAK

Pin Configurations/Functional Diagrams/Truth Table

TOP VIEW			V+			V+	(B1) $\nabla^{(A 1)}$	NO	SWITCHES SHOWN FOR LOGIC "0"		
V+	(B1) (A1)			(B1) (A1)							
GND	(B2) $-\cdots \cdots$ - (12)		IN	(B2)- - - 12		IN	(B2)- - (A2)	COM	MAX	MAX4	X4688
									IN	NO	NC
	(B3) (A3)	COM	GND	(B3) A3 $^{\text {a }}$	COM	GND	(B3) A3	NC	0	OFF	ON
									1	ON	OFF
MAXINI				MAXINI			MAXINI				
MAX4686				MAX4687			MAX4688				
SPST NO				SPST NC			SPDT				

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
UCSP is a trademark of Maxim Integrated Products, Inc.

2.5 , Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

ABSOLUTE MAXIMUM RATINGS

All Voltages Referenced to GND
V+, IN \qquad

COM, NO, NC (Note1) \qquad -0.3 V to (V++0.3V)
Continuous Current NO, NC, COM \qquad $\pm 100 \mathrm{~mA}$
Peak Current NO, NC, COM
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad $\pm 200 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
3×2 UCSP (derate $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $+70^{\circ} \mathrm{C}$) 808 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Bump Reflow Temperature .. $+235^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, and COM exceeding V+ are clamped by an internal diode. Limit forward-diode current to maximum current rating.
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is requied. Hand or wave soldering is not allowed.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{I H}=+1.4 \mathrm{~V}, \mathrm{~V}_{I L}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at 3 V and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}},$ $V_{N C}$		$T_{\text {MIN }}$ to TMAX	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+\text {, } \\ & \mathrm{I} \mathrm{COM}=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	2.5	Ω
			TMIN to TMAX			3.5	
On-Resistance Match Between Channels (MAX4688 only) (Note 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.3	0.4	Ω
			TMIN to TMAX			0.5	
On-Resistance Flatness (Note 6)	RFLAt(ON)	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+\text {, } \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.5	1	Ω
			$T_{\text {min to }}$ TMAX			1	
NO, NC Off-Leakage Current (Note 7)	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	+0.5	nA
			$T_{\text {MIN }}$ to TMAX	-1		1	
COM Off-Leakage Current (Note 7)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			TMIN to TMAX	-1		1	
COM On-Leakage Current (Note 7)	ICOM_(ON)	$\begin{aligned} & V_{+}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V} \text { or } 0.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \text {, or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to TMAX	-1		1	
DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 7)	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$+25^{\circ} \mathrm{C}$		20	30	ns
			TMIN to TMAX			35	

2.5 Ω, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at 3 V and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Turn-Off Time (Note 7)	toff	$\mathrm{V}_{\text {NO }}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$+25^{\circ} \mathrm{C}$		10	12	ns
			$T_{\text {min to }}$ TMAX			15	
Break-Before-Make (MAX4688 only) (Note 7)	tBBM	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 3	$+25^{\circ} \mathrm{C}$		8		ns
			TMIN to TMAX	2			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=1.0 n F, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		40		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 5	$+25^{\circ} \mathrm{C}$		200		MHz
Off-Isolation (Note 8)	VISO	$C L=5 p F, R L=50 \Omega, f=100 \mathrm{kHz},$ Figure 5	$+25^{\circ} \mathrm{C}$		-90		dB
Crosstalk (MAX4688 only) (Note 9)	$V_{\text {CR }}$	$C_{L}=5 p F, R_{L}=50 \Omega, f=100 \mathrm{kHz},$ Figure 5	$+25^{\circ} \mathrm{C}$		-95		dB
Total Harmonic Distortion	THD	$R \mathrm{~L}=600 \Omega, 2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	$+25^{\circ} \mathrm{C}$		0.06		\%
NO, NC OffCapacitance	CNO(OFF), $\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$+25^{\circ} \mathrm{C}$		12		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$+25^{\circ} \mathrm{C}$		12		pF
Switch On-Capacitance	C(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$+25^{\circ} \mathrm{C}$		35		pF
DIGITAL I/O							
Input Logic High	V_{IH}		TMin to TMAX	1.4			V
Input Logic Low	VIL		TMin to TMAX			0.5	V
Logic Input Leakage Current	$\mathrm{IIH}^{\text {I }}$ IL	V IN $=0$ or $\mathrm{V}+$	TMIn to TMAX	-1		1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+		TMin to TMAX	1.8		5.5	V
Supply Current	$1+$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0$ or V_{+}	TMIN to TMAX	-1		1	$\mu \mathrm{A}$

Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: UCSP parts are 100% tested at $+25^{\circ} \mathrm{C}$ only and guaranteed by correlation at the full hot-rated temperature.
Note 5: Δ RON = RON(MAX) - RON(MIN), between switches.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Guaranteed by design.
Note 8: Off Isolation = 20log $10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between switches.

2.5ת, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

_Typical Operating Characteristics
($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC THRESHOLD VOLTAGE
vs. SUPPLY VOLTAGE

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

ON-RESISTANCE vs. $\mathrm{VCOM}^{\left(\mathrm{V}_{+}=+3 \mathrm{~V}\right)}$

2.5 Ω, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

BUMP			NAME	FUNCTION
MAX4686	MAX4687	MAX4688		
B1	B1	B1	V+	Positive Supply Voltage Input
B2	B2	B2	IN	Digital Control Input
B3	B3	B3	GND	Ground
-	A1	A3	NC	Analog Switch, Normally Closed Terminal
A3	A3	A2	COM	Analog Switch, Common Terminal
A1	-	A1	NO	Analog Switch, Normally Open Terminal
A2	A2	-	I.C.	Internally Connected

Figure 1. Overvoltage Protection Using External Blocking Diodes

Logic Inputs

Where the MAX4686/MAX4687/MAX4688 have a +3.3 V supply, IN may be driven low to GND and driven high to 5.5 V . Driving IN rail-to-rail minimizes power consumption. Logic inputs accept up to +5.5 V regardless of supply voltage.

Analog Signal Levels
Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) are passed with very little change in Ron (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins are both inputs or outputs.

Power-Supply Sequencing
and Overvoltage Protection CAUTION: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to devices.

2.5 , Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. Adding a protection diode reduces the analog range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D1). RoN increases slightly at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed +6 V .Protection diode D1 also protects against some overvoltage situations. No damage will result on Figure 1's circuit if the supply voltage is below the absolute maximum rating and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin.

UCSP Package Consideration
For general UCSP package information and PC layout considerations, please refer to the Maxim Application Note (Wafer-Level Ultra-Chip-Board-Scale Package).
_ UCSP Reliability
The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. CSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a CSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.
Mechanical stress performance is a greater consideration for a CSP package. CSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim's qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maxim-ic.com.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval (MAX4688 only)

2.5 , Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Figure 4. Charge Injection

OFF-ISOLATION $=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
ON-LOSS $=2010 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATIONIS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 5. Off-Isolation/On-Channel Bandwidth, Crosstalk

__Chip Information
TRANSISTOR COUNT: 150

Figure 6. Channel Off/On-Capacitance

2.5ת, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

