

General Description

The MAX4444/MAX4445 differential line receivers offer unparalleled high-speed, low-distortion performance. Using a three op amp instrumentation amplifier architecture, these ICs have symmetrical differential inputs and a single-ended output. They operate from $\pm 5V$ supplies and are capable of driving a 100Ω load to $\pm 3.7V$. The MAX444 has an internally set closed-loop gain of $\pm 2V/V$, while the MAX4445 is compensated for gains of $\pm 2V/V$ or greater, set by an external resistor. A low-power enable mode reduces current consumption to 3.5mA.

Using current-feedback techniques, the MAX4444/ MAX4445 achieve a 550MHz bandwidth while maintaining up to a 5000V/µs slew rate. Excellent differential gain/phase and noise specifications make these amplifiers ideal for a wide variety of video and RF signal-processing applications. An evaluation kit is available to speed design.

Applications

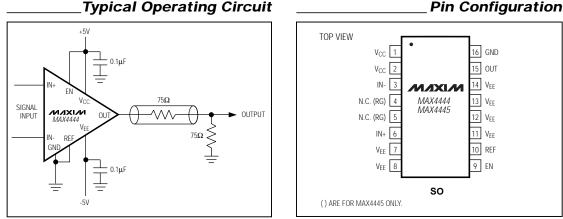
Differential-to-Single-Ended Conversion

Twisted-Pair to Coaxial Converter

High-Speed Instrumentation Amplifier

Data Acquisition

Medical Instrumentation


High-Speed Differential Line Receiver

F	e	а	t	u	r	e	S	

- 5000V/µs Slew Rate (MAX4444)
- + +2V/V Internally Fixed Gain (MAX4444)
- ★ External Gain Selection (MAX4445, A_{VCL} ≥ +2V/V)
- ♦ 550MHz -3dB Bandwidth
- In a state of the state of
- Low Differential Gain/Phase: 0.07%/0.05°
- ♦ Low Noise: 25nV/√Hz at fin = 100kHz
- Low-Power Disable Mode Reduces Quiescent Current to 3.5mA

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4444ESE	-40°C to +85°C	16 Narrow SO
MAX4445ESE	-40°C to +85°C	16 Narrow SO

M/X/M

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to V _{EE} +12V
Voltage on IN+, IN-, EN, OUT+,
OUT-, RG, REF(V _{EE} - 0.3V) to (V _{CC} + 0.3V)
Current Into IN+, IN-, RG, EN20mA
Output Short-Circuit DurationIndefinite to GND

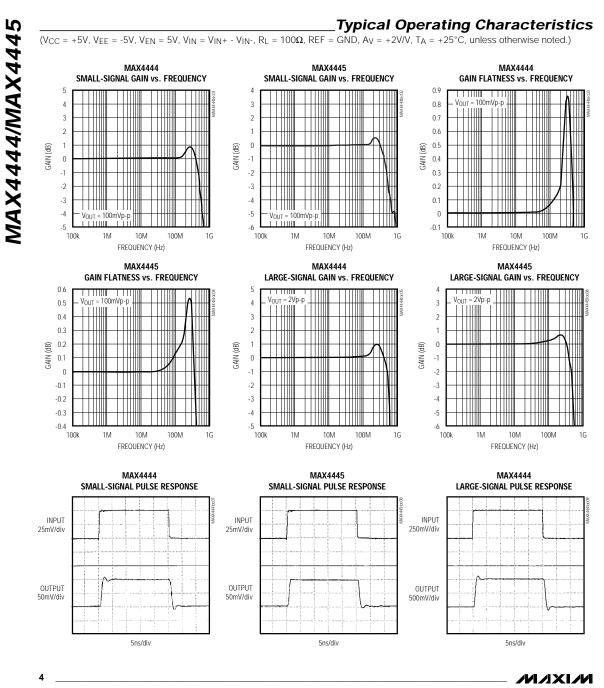
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

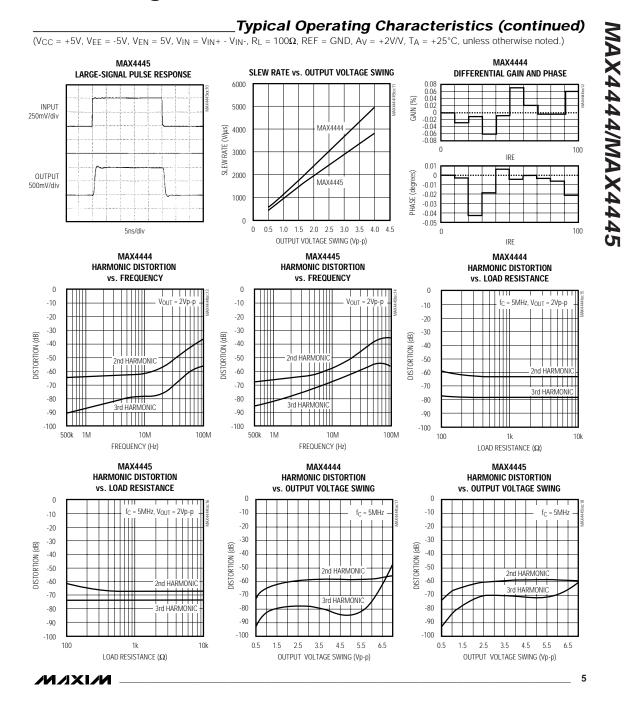
DC ELECTRICAL CHARACTERISTICS

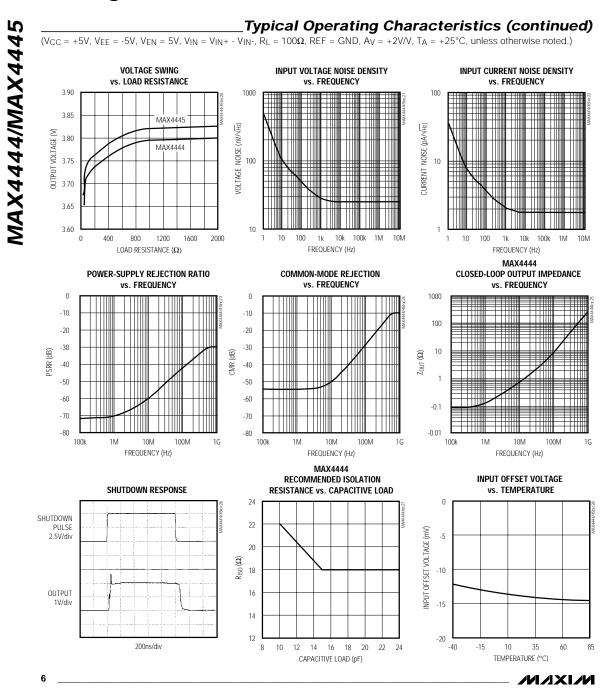
(VCC = +5V, V_{EE} = -5V, V_{EN} = \ge 2V, V_{CM} = 0 , R_L = ∞ , REF = GND, Avc_L = +2V/V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

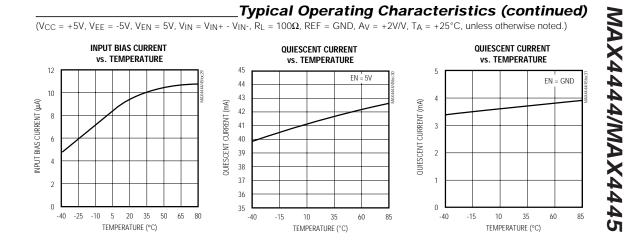
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range		Guaranteed by PSRR test		±4.5		±5.5	V
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRF	Rtest	-2.9		2.9	V
Differential Input Voltage Range	V _{DIFF}	Guaranteed by output	t swing test	-1.7		1.7	V
Input Offset Voltage	Vos				15	65	mV
Input Offset-Voltage Temperature Coefficient	TCvos				12		µV/°C
Input Bias Current	Ι _Β				10	55	μA
Input Offset Current	los				0.25	45	μA
Differential Input Resistance	RIN	$-2.9V \le V_{\rm IN} \le +2.9V$		82		kΩ	
Diferential input Resistance	NIN	$-2.9V \le V_{CM} \le +2.9V$			170		K32
Gain	Av	$-3V \le V_{OUT} \le +3V$	MAX4444		2	V/V	
		001	MAX4445	(*	1 + 600/R	0,	
Gain Error		$-3V \le V_{OUT} \le +3V$,	MAX4444		0.5	2	%
		$R_L = 100\Omega$ MAX4445			2.6	8	
Gain-Error Drift		$R_L = 100\Omega$			0.003		%/°C
Output Voltage Swing	Vout	$R_L = 100\Omega$		±3.4	±3.7		V
Super volage swing	1001	$R_{L} = 50\Omega \qquad \pm 3.3 \qquad \pm 3.6$			v		
Output Current Drive	IOUT	$R_L = 30\Omega$		90	120		mA
Power-Supply Rejection Ratio	PSRR	$V_{S} = \pm 4.5 V \text{ to } \pm 5.5 V$		53	70		dB
Common-Mode Rejection Ratio	CMRR	$-2.9V \le V_{CM} \le +2.9V$		40	55		dB
Disable Output Resistance	ROUT(OFF)	$V_{EN} = 0$, -3.5V $\leq V_{OUT} \leq +3.5V$, MAX4444			1.8		kΩ
EN Logic Low Threshold	VIL					0.8	V
EN Logic High Threshold	VIH			2			V
EN Logic Input Low Current	lil	$V_{EN} = 0$			2.2	10	μA
EN Logic Input High Current	liH	$V_{EN} = 5V$		2.6	10	μA	
0.1	IQ ·	$V_{IN} = 0, V_{EN} = 5V$			41	55	
Quiescent Current		VIN = 0, VFN = 0			3.5	5.5	mA

2


///XI//I


AC ELECTRICAL CHARACTERISTICS


PARAMETER	SYMBOL	CONDITION		MIN	TYP	MAX	UNITS		
Small-Signal -3dB Bandwidth	BWSS	V _{OUT} = 100mVp-p			550		MHz		
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p			500		MHz		
0.1dB Gain Flatness		$V_{OUT} = 100 \text{mVp-p}$			80		MHz		
		Vere AVeter	MAX4444		5000		V/µs		
		V _{OUT} = 4V step	MAX4445		3800				
Classe Data (Nata 1)	CD.	V _{OUT} = 2V step	MAX4444		2400				
Slew Rate (Note 1)	SR		MAX4445		2000				
		Vout = 1V step			1200		1		
		V _{OUT} = 0.5V step			600		-		
Rise Time (Note 1)	t _{RISE}				650		ps		
		Vout = 4V step			825		· · ·		
		Vout = 2V step			700				
Fall Time (Note 1)	^t FALL	V _{OUT} = 1V step			700		ps		
		V _{OUT} = 0.5V step		700		1			
Settling Time		Settle to 0.1% , Vout = 2V step			12		ns		
SFDR		V _{OUT} = 2Vp-p	$f_{\rm C} = 100 \text{kHz}$		-65		– – dBc		
			f _C = 5MHz		-60				
			$f_{\rm C} = 20 {\rm MHz}$		-55				
			$f_{\rm C} = 100 {\rm MHz}$		-35				
		V _{OUT} = 2Vp-p	$f_{\rm C} = 100 \text{kHz}$		-65		dPc		
and Harmonic Distortion			$f_{\rm C} = 5 \rm MHz$		-62				
2nd-Harmonic Distortion			$f_{\rm C} = 20 {\rm MHz}$		-50		dBc		
			$f_{C} = 100MHz$		-35		1		
			$f_{\rm C} = 100 \text{kHz}$		-90		1		
3rd-Harmonic Distortion		V _{OUT} = 2Vp-p	$f_{\rm C} = 5 \rm MHz$		-72		dBc		
31d-Harmonic Distortion		v001 = zvp-p	$f_{\rm C} = 20 {\rm MHz}$		-62				
			$f_{C} = 100MHz$		-55				
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$			0.05		degree		
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$			0.07		%		
Input Noise Voltage Density	e _N	f = 100kHz (Note 2)			25		nV/√Hz		
Input Noise Current Density	i _N	f = 100kHz			1.8		pA/√H		
Output Impedance	Zout	f = 10MHz			0.7		Ω		
Enable Time	t _{SHDN} (ON)	$V_{IN} = 1V$, V_{OUT} settle to within 10%			80		ns		
Disable Time	tshdn(off)	$V_{IN} = 1V$, V_{OUT} settle to within 10%			200		ns		
Power-Up Time	ton	$V_{IN} = 1V$, V_{OUT} settle to within 10%			0.5		μs		
Power-Down Time	toff	$V_{IN} = 1V$, V_{OUT} settle to within 10%			0.3		μs		


Note 1: Input step voltage has <100ps rise (fall) time. Measured at the output from 10% to 90% (90% to 10%) level. Note 2: Includes the current noise contribution through the on-die feedback resistor.

3

Pin Description

F	PIN		FUNCTION			
MAX4444	MAX4445	NAME	FUNCTION			
1, 2	1, 2	V _{CC}	Positive Power-Supply Input. Bypass with a 0.1µF capacitor to GND.			
3	3	IN-	Inverting Amplifier Input			
4, 5	_	N.C.	No Connection. Not internally connected. Connect to GND for best AC perfor- mance.			
_	4, 5	RG	Resistor Gain Input. Connect a resistor between these pins to set closed-loop gain (Figure 1).			
6	6	IN+	Noninverting Amplifier Input			
7, 8, 11–14	7, 8, 11–14	VEE	Negative Supply Input. Bypass with a 0.1µF capacitor.			
9	9	EN	Active-High Enable Input. Connect to V_{CC} for normal operation. Connect to GND for disable mode.			
10	10	REF	Reference Input. Connect to midpoint of the two power supplies.			
15	15	OUT	Amplifier Output			
16	16	GND	Ground			

WIXIW

7

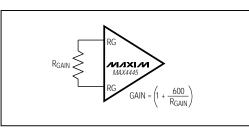


Figure 1. Setting the Amplifier Gain

Detailed Description

Ultra-High-Speed, Low-Distortion, Differentialto-Single-Ended Line Receivers with Enable

The MAX444/MAX445 differential-to-single-ended line receivers offer high-speed and low-distortion performance, and are ideally suited for video and RF signal-processing applications. These receivers offer a small-signal bandwidth of 550MHz and have a high slew rate of up to 5000V/µs. Their 120mA output capability allows them to be directly coupled to data acquisition systems.

Applications Information Grounding Bypassing

Use the following high-frequency design techniques when designing the PC board for the MAX4444/ MAX4445.

- Use a multilayer board with one layer dedicated as the ground plane.
- Do not use wire wrap or breadboards due to high inductance.
- Avoid IC sockets due to high parasitic capacitance and inductance.
- Bypass supplies with a 0.1µF capacitor. Use surface-mount capacitors to minimize lead inductance.
- Keep signal lines as short and straight as possible. Do not make 90° turns. Use rounded corners. Do not cross signal paths if possible.
- · Ensure that the ground plane is free from voids.

Low-Power Enable Mode

The MAX444/MAX4445 are disabled when EN goes low. This reduces supply current to only 3.5mA. As the output becomes higher impedance, the effective impedance at the output for the MAX4444 is 1.8k Ω . The effective output impedance for the MAX4445 is 1.8k Ω plus RGAIN.

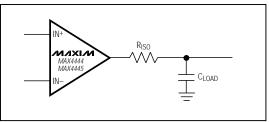


Figure 2. Using an Isolation Resistor for High Capacitive Loads

Setting Gain (MAX4445)

The MAX4445 is stable with a minimum gain configuration of +2V/V. RGAIN, connected between the RG pins, sets the gain of this device as shown in Figure 1. Calculate the expected gain as follows:

Gain = (1 + 600 / RGAIN)

Driving Capacitive Loads

The MAX4444/MAX4445 are designed to drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as the phase margin of the device reduces. Adding a small series isolation resistor at the output helps reduce the ringing but slightly increases gain error (Figure 2). For recommended values, see *Typical Operating Characteristics*.

Coaxial Line Driver

The MAX4444/MAX4445 are well suited to drive coaxial cables. Their high output current capability can easily drive the 75 Ω characteristic impedance of common coaxial cables. Adjust the gain of the MAX4445 to compensate for cable losses to maintain the required levels at the input of the next stage.

Chip Information

TRANSISTOR COUNT: 254 SUBSTRATE CONNECTED TO VEE

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

- Printed USA
- is a registered trademark of Maxim Integrated Products.

8