Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

General Description

The MAX4194 is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail ${ }^{\circledR}$ single-supply operation, outstanding precision specifications, and a high gain bandwidth. This amplifier is also offered in three fixed-gain versions: the MAX4195 ($\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}$), the MAX4196 ($\mathrm{G}=+10 \mathrm{~V} / \mathrm{V}$), and the MAX4197 ($\mathrm{G}=$ $+100 \mathrm{~V} / \mathrm{V}$). The fixed-gain instrumentation amplifiers feature a shutdown function that reduces the quiescent current to $8 \mu \mathrm{~A}$. A traditional three operational amplifier configuration is used to achieve maximum DC precision. The MAX4194-MAX4197 have rail-to-rail outputs and inputs that can swing to 200 mV below the negative rail and to within 1.1 V of the positive rail. All parts draw only $93 \mu \mathrm{~A}$ and operate from a single +2.7 V to +7.5 V supply or from dual $\pm 1.35 \mathrm{~V}$ to $\pm 3.75 \mathrm{~V}$ supplies. These amplifiers are offered in 8-pin SO packages and are specified for the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.
See the MAX4198/MAX4199 data sheet for single-supply, precision differential amplifiers.

Applications

Medical Equipment
Thermocouple Amplifier
4-20mA Loop Transmitters
Data-Acquisition Systems
Battery-Powered/Portable Equipment
Transducer Interface
Bridge Amplifier

Features

- +2.7V Single-Supply Operation
- Low Power Consumption $93 \mu \mathrm{~A}$ Supply Current 8 $\mu \mathrm{A}$ Shutdown Current
(MAX4195/MAX4196/MAX4197)
- High Common-Mode Rejection: 115dB (G = +10V/V)
- Input Common-Mode Range Extends 200mV Below GND
- Low $50 \mu \mathrm{~V}$ Input Offset Voltage ($\mathrm{G} \geq+100 \mathrm{~V} / \mathrm{V}$)
- Low $\pm 0.01 \%$ Gain Error (G = +1V/V)
- 250kHz -3dB Bandwidth (G = +1V/V, MAX4194)
- Rail-to-Rail Outputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4194ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4195ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4196ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4197ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Selector Guide

PART	SHUTDOWN	GAIN (V/V)	CMRR (dB)
MAX4194	No	Variable	$95(G=+1 V / \mathrm{V})$
MAX4195	Yes	+1	95
MAX4196	Yes	+10	115
MAX4197	Yes	+100	115

Pin Configurations

TOP VIEW

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE})... +8 V
All Other Pins ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}$)
Current into Any Pin.
\qquad
Output Short-Circuit Duration (to V_{CC} or V_{EE})............ Continuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad 471 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=0 \mathrm{~V}, R_{L}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{C C} / 2, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC	Inferred by PSR test	Single supply	2.7		7.5	V
			Dual supplies	± 1.35		± 3.75	
Quiescent Current	Icc	$\mathrm{V}_{\text {IN }+}=\mathrm{V}_{\text {IN- }}=\mathrm{V}_{\text {CC }} / 2, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}$			93	110	$\mu \mathrm{A}$
Shutdown Current	ISHDN	ISHDN $=$ VIL, MAX4195/MAX4196/MAX4197 only			8	12	$\mu \mathrm{A}$
Input Offset Voltage	Vos	$\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 100	± 450	$\mu \mathrm{V}$
		$\mathrm{G}=+10 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 75	± 225	
		$\mathrm{G}=+100 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 50	± 225	
		$\mathrm{G}=+1000 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 50		
		$\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{VCC}_{\text {/ }}$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$			± 100	± 690	
		$\mathrm{G}=+1 \mathrm{~V} / \mathrm{N}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$			± 75	± 345	
		$\mathrm{G}=+100 \mathrm{~V} / \mathrm{N}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$			± 50	± 345	
		$\mathrm{G}=+1000 \mathrm{~V} N, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$			± 50		
Input Offset Voltage Drift (Note 1)	TCvos	$\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}$			± 1.0	± 4.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$\mathrm{G} \geq+10 \mathrm{~V} / \mathrm{V}$			± 0.5	± 2.0	
Input Resistance	RIN	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$	Differential		1000		$\mathrm{M} \Omega$
			Common mode		1000		
Input Capacitance	Cin	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$	Differential		1		pF
			Common mode		4		
Input Voltage Range	VIN	Inferred from CMR test		$V_{E E}-0.2$		$V_{C C}-1.1$	V
DC Common-Mode Rejection	CMRDC	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}}-0.2 \mathrm{~V} \\ & \text { to } \mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \Delta \mathrm{RS}_{\mathrm{S}}=1 \mathrm{k} \Omega(\text { Note } 1) \end{aligned}$	$\mathrm{G}=+1 \mathrm{~V}$	66	78		dB
			$\mathrm{G}=+10 \mathrm{~V}$	80	94		
			$\mathrm{G}=+100 \mathrm{~V}$	86	99		
		$V_{C M}=V_{E E}-0.2 \mathrm{~V}$	$\mathrm{G}=+1 \mathrm{~V}$	60	78		
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}}$	$\mathrm{G}=+10 \mathrm{~V}$	74	94		
			$\mathrm{G}=+100 \mathrm{~V}$	77	99		

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC Common-Mode Rejection	CMRDC	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}}+0.2 \mathrm{~V} \\ & \text { to } \mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \Delta \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{G}=+1 \mathrm{~V}$	78	95		dB
			$\mathrm{G}=+10 \mathrm{~V}$	93	115		
			$\mathrm{G}=+100 \mathrm{~V} / \mathrm{V}$	95	115		
			$\mathrm{G}=+1000 \mathrm{~V} N$		115		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}}+0.2 \mathrm{~V} \\ & \text { to } \mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}, \\ & \Delta \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{G}=+1 \mathrm{~V}$	73	95		
			$\mathrm{G}=+10 \mathrm{~V}$	88	115		
			$\mathrm{G}=+100 \mathrm{~V} / \mathrm{V}$	90	115		
			$\mathrm{G}=+1000 \mathrm{~V} / \mathrm{N}$		115		
AC Common-Mode Rejection	CMRAC	$\begin{aligned} & V_{C M}=V_{E E}+0.2 V \\ & \text { to } V_{C C}-1.1 V, \\ & f=120 \mathrm{~Hz} \end{aligned}$	$\mathrm{G}=+1 \mathrm{~V}$		85		dB
			$\mathrm{G}=+10 \mathrm{~V}$		101		
			$\mathrm{G}=+100 \mathrm{~V}$	106			
Power-Supply Rejection	PSR	$\begin{aligned} & +2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+7.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=+1.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{OUT}}=+1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=+1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \\ & +1.5 \mathrm{~V} ; \mathrm{G}=+1 \mathrm{~V} / \mathrm{V},+10 \mathrm{~V} / \mathrm{V},+100 \mathrm{~V} / \mathrm{V} \end{aligned}$		90	120		dB
Input Bias Current	IB	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$			6	20	nA
Input Bias Current Drift	TCIB	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$			15		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Ios	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$			± 1.0	± 3.0	nA
Input Offset Current Drift	TCIos				15		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Noise Voltage	e_{n}	$\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}$	$\mathrm{f}=10 \mathrm{~Hz}$		85		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$f=100 \mathrm{~Hz}$		75		
			$\mathrm{f}=10 \mathrm{kHz}$		72		
			$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		1.4		$\mu \mathrm{V}_{\text {RMS }}$
		$\mathrm{G}=+10 \mathrm{~V} / \mathrm{V}$	$f=10 \mathrm{~Hz}$		35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$f=100 \mathrm{~Hz}$		32		
			$\mathrm{f}=10 \mathrm{kHz}$		31		
			$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		0.7		$\mu \mathrm{V}_{\text {RMS }}$
		$\mathrm{G}=+100 \mathrm{~V} / \mathrm{V}$	$f=10 \mathrm{~Hz}$		32		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$\mathrm{f}=100 \mathrm{~Hz}$		31		
			$\mathrm{f}=10 \mathrm{kHz}$		8.7		
			$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		0.6		$\mu \mathrm{V}_{\text {RMS }}$
Input Noise Current	in_{n}	$\mathrm{f}=10 \mathrm{~Hz}$			2.4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$f=100 \mathrm{~Hz}$			0.76		
		$f=10 \mathrm{kHz}$			0.1		
		$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			16		pARMS
Output Voltage Swing	VOH, $\mathrm{V}_{\text {OL }}$	$R \mathrm{~L}=25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	VCC - VOH		30	100	mV
			VOL		30	100	
		$R_{L}=5 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$		100	200	
			Vol		100	200	

Micropower, Single-Supply, Rail-to-Rail,
 Precision Instrumentation Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, R_{\mathrm{L}}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Time to Shutdown	tSHDN	$\begin{aligned} & G=+1 V / V, 0.1 \%, \\ & \text { VOUT }=+3 V \end{aligned}$	MAX4195/MAX4196/ MAX4197 only		0.5		ms
Enable Time From Shutdown	tenable	$\begin{aligned} & \mathrm{G}=+1 \mathrm{~V} / \mathrm{N}, 0.1 \%, \\ & \mathrm{~V}_{\text {OUT }}=+3.5 \mathrm{~V} \end{aligned}$	MAX4195/MAX4196/ MAX4197 only		0.5		ms
Power-Up Delay		$\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}, 0.1 \%$, $\mathrm{V}_{\text {OUT }}=+3.5 \mathrm{~V}$			1		ms
On/Off Settling Time	ton/OFF	$\begin{aligned} & \text { VSHDN }=\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \\ & \mathrm{G}=+100 \mathrm{~V} / \mathrm{V}, 0.1 \%, \mathrm{~V}_{\text {OUT }}=+3.5 \mathrm{~V} \end{aligned}$			0.5		ms

Note 1: Guaranteed by design.
Note 2: Maximum output current (sinking/sourcing) in which the gain changes by less than 0.1%.
Note 3: This specification represents the typical temperature coefficient of an on-chip thin film resistor. In practice, the temperature coefficient of the gain for the MAX4194 will be dominated by the temperature coefficient of the external gain-setting resistor.

Typical Operating Characteristics

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, R_{L}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX4194
LARGE-SIGNAL PULSE RESPONSE
(GAIN $=+1 \mathrm{~V} / \mathrm{V}$)

MAX4194
SMALL-SIGNAL PULSE RESPONSE
(GAIN = +1V/V)

$20 \mu \mathrm{~s} / \mathrm{div}$

MAX4194
LARGE-SIGNAL PULSE RESPONSE
(GAIN = +100V/V)

200 $\mu \mathrm{s} / \mathrm{div}$

MAX4194
SMALL-SIGNAL PULSE RESPONSE
(GAIN = +100V/V)

200 $\mu \mathrm{s} / \mathrm{div}$

COMMON-MODE REJECTION vs. FREQUENCY

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 V, V_{E E}=0, R_{L}=25 k \Omega\right.$ tied to $V_{C C} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX4195/MAX4196/MAX4197 SHUTDOWN CURRENT vs. TEMPERATURE

MAX4195/MAX4196
TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

INPUT BIAS CURRENT vs. TEMPERATURE

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=0, R_{L}=25 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT OFFSET CURRENT vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. TEMPERATURE

Pin Description

PIN			
MAX4194	MAX4195 MAX4196 MAX4197	NAME	
1,8	-		Connection for Gain-Setting Resistor
5	1	REF	Reference Voltage. Offsets output voltage.
2	2	IN-	Inverting Input
3	3	IN+	Noninverting Input
4	4	VEE	Negative Supply Voltage
-	5	FB	Feedback. Connects to OUT.
6	6	OUT	Amplifier Output
7	7	VCC	Positive Supply Voltage
-	8	SHDN	Shutdown Control

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Detailed Description

Input Stage

The MAX4194-MAX4197 family of low-power instrumentation amplifiers implements a three-amplifier topology (Figure 1). The input stage is composed of two operational amplifiers that together provide a fixed-gain differential and a unity common-mode gain. The output stage is a conventional differential amplifier that provides an overall common-mode rejection of 115 dB ($\mathrm{G}=$

Figure 1. MAX4194 Simplified Block Diagram

Figure 2. MAX4195/MAX4196/MAX4197 Simplified Block Diagram
$+10 \mathrm{~V} / \mathrm{V}$). The MAX4194's gain can be externally set between $+1 \mathrm{~V} / \mathrm{V}$ and $+10,000 \mathrm{~V} / \mathrm{V}$ (Table 1). The MAX4195/MAX4196/MAX4197 have on-chip gain-setting resistors (Figure 2), and their gains are fixed at $+1 \mathrm{~V} / \mathrm{V},+10 \mathrm{~V} / \mathrm{V}$, and $+100 \mathrm{~V} / \mathrm{V}$, respectively.

Input Voltage Range and Detailed Operation
The common-mode input range for all of these amplifiers is $V_{E E}-0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}-1.1 \mathrm{~V}$. Ideally, the instrumentation amplifier (Figure 3) responds only to a differential voltage applied to its inputs, $\mathrm{IN}+$ and IN -. If both inputs are at the same voltage, the output is $V_{\text {REF }}$. A differential voltage at $\mathrm{IN}+\left(\mathrm{V}_{\mathrm{I}} \mathrm{N}_{+}\right)$and $\mathrm{IN}-\left(\mathrm{V}_{\mathrm{IN}}\right.$) develops an identical voltage across the gain-setting resistor, causing a current (IG) to flow. This current also flows through the feedback resistors of the two input amplifiers A1 and A2, generating a differential voltage of:

$$
\text { VOUT2 - VOUT1 }=I_{G} \cdot\left(R_{1}+R_{G}+R_{1}\right)
$$

where VOUT1 and VOUT2 are the output voltages of A1 and $A 2, R_{G}$ is the gain-setting resistor (internal or external to the part), and R1 is the feedback resistor of the input amplifiers.
I G is determined by the following equation:

$$
I_{G}=\left(V_{I N+}-V_{I N}\right) / R_{G}
$$

The output voltage (VOUT) for the instrumentation amplifier is expressed in the following equation:

$$
\text { VOUT }=\left(V_{I N}+-V_{I N}\right) \cdot\left[(2 \cdot R 1) / R_{G}\right]+1
$$

The common-mode input range is a function of the amplifier's output voltage and the supply voltage. With a power supply of VCC, the largest output signal swing can be obtained with REF tied to $\mathrm{V}_{\mathrm{Cc}} / 2$. This results in an output voltage swing of $\pm \mathrm{V} \mathrm{CC} / 2$. An output voltage swing less than full-scale increases the common-mode input range.

Figure 3. Instrumentation Amplifier Configuration

Micropower, Single-Supply, Rail-to-Rail,
 Precision Instrumentation Amplifiers

Table 1. MAX4194 External Gain Resistor Selection

GAIN (V/V)	CLOSEST R $\mathbf{G} \mathbf{(1 \%)}$ $\mathbf{(\Omega)}$	CLOSEST R $\mathbf{(\Omega)} \mathbf{(5 \%)}$
+1	$\boldsymbol{\infty}^{*}$	$\boldsymbol{\infty}^{*}$
+2	49.9 k	51 k
+5	12.4 k	12 k
+10	5.62 k	5.6 k
+20	2.61 k	2.7 k
+50	1.02 k	1.0 k
+100	511	510
+200	249	240
+500	100	100
$+1,000$	49.9	51
$+2,000$	24.9	24
$+5,000$	10	10
$+10,000$	4.99	5.1

*Leave pins 1 and 8 open for $G=+1 \mathrm{~V} / \mathrm{V}$.

VCM vs. Vout Characterization

Figure 4 illustrates the MAX4194 typical common-mode input voltage range over output voltage swing at unitygain (pins 1 and 8 left floating), with a single-supply voltage of $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and a bias reference voltage of $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2=+2.5 \mathrm{~V}$. Points A and D show the full input voltage range of the input amplifiers (VEE -0.2 V to V cc -1.1 V) since, with +2.5 V output, there is zero input differential swing. The other points (B, C, E, and F) are determined by the input voltage range of the input amps minus the differential input amplitude necessary to produce the associated Vout. For the higher gain configurations, the VCM range will increase at the endpoints (B, C, E, and F) since a smaller differential voltage is necessary for the given output voltage.

Rail-to-Rail Output Stage
The MAX4194-MAX4197's output stage incorporates a common-source structure that maximizes the dynamic range of the instrumentation amplifier.
The output can drive up to a $25 \mathrm{k} \Omega$ (tied to $\mathrm{V}_{\mathrm{cc} /} / 2$) resistive load and still typically swing within 30 mV of the rails. With an output load of $5 \mathrm{k} \Omega$ tied to $\mathrm{V} \mathrm{Cc} / 2$, the output voltage swings within 100 mV of the rails.

Shutdown Mode
The MAX4195-MAX4197 feature a low-power shutdown mode. When the shutdown pin (SHDN) is pulled low, the internal amplifiers are switched off and the supply current drops to $8 \mu \mathrm{~A}$ typically (Figures 5 a , 5 b , and 5 c).

This disables the instrumentation amplifier and puts its output in a high-impedance state. Pulling SHDN high enables the instrumentation amplifier.

Applications Information

Setting the Gain (MAX4194)
The MAX4194's gain is set by connecting a single, external gain resistor between the two RG pins (pin 1 and pin 8), and can be described as:

$$
G=1+50 \mathrm{k} \Omega / R_{G}
$$

where G is the instrumentation amplifier's gain and R_{G} is the gain-setting resistor.
The $50 \mathrm{k} \Omega$ resistor of the gain equation is the sum of the two resistors internally connected to the feedback loops of the $\mathrm{IN}+$ and IN - amplifiers. These embedded feedback resistors are laser trimmed, and their accuracy and temperature coefficients are included in the gain and drift specification for the MAX4194.

Figure 4. Common-Mode Input Voltage vs. Output Voltage

Figure 5a. MAX4195 Shutdown Mode

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Figure 5b. MAX4196 Shutdown Mode

Figure 5c. MAX4197 Shutdown Mode
The accuracy and temperature drift of the R_{G} resistors also influence the IC's precision and gain drift, and can be derived from the equation above. With low Rg values, which are required for high-gain operation, parasitic resistances may significantly increase the gain error.

Capacitive-Load Stability
The MAX4194-MAX4197 are stable for capacitive loads up to 300pF (Figure 6a). Applications that require greater capacitive-load driving capability can use an isolation resistor (Figure 6b) between the output and the capacitive load to reduce ringing on the output signal. However, this alternative reduces gain accuracy because RISO (Figure 6c) forms a potential divider with the load resistor.

Figure 6a. Using a Resistor to Isolate a Capacitive Load from the Instrumentation Amplifier ($G=+1 \mathrm{~V} / \mathrm{V}$)

50us/div

Figure 6b. Small-Signal Pulse Response with Excessive Capacitive Load ($R_{L}=25 \mathrm{k} \Omega, C_{L}=1000 \mathrm{pF}$)

Figure 6c. Small-Signal Pulse Response with Excessive Capacitive Load and Isolating Resistor ($R_{I S O}=75 \Omega, R_{L}=$ $25 \mathrm{k} \Omega, C_{L}=1000 \mathrm{pF}$)

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Power-Supply Bypassing and Layout
Good layout technique optimizes performance by decreasing the amount of stray capacitance at the instrumentation amplifier's gain-setting pins. Excess capacitance will produce peaking in the amplifier's frequency response. To decrease stray capacitance, minimize trace lengths by placing external components as close to the instrumentation amplifier as possible. For best performance, bypass each power supply to ground with a separate $0.1 \mu \mathrm{~F}$ capacitor.

Transducer Applications

The MAX4194-MAX4197 instrumentation amplifiers can be used in various signal-conditioning circuits for thermocouples, PT100s, strain gauges (displacement sensors), piezoresistive transducers (PRTs), flow sensors and bioelectrical applications. Figure 7 shows a simplified example of how to attach four strain gauges (two
identical two-element strain gauges) to the inputs of the MAX4194. The bridge contains four resistors, two of which increase and two of which decrease by the same ratio.

With a fully balanced bridge, points $A(I N+)$ and $B(I N-)$ see half the excitation voltage (VBRIDGE). The low impedance (120Ω to 350Ω) of the strain gauges, however, could cause significant voltage drop contributions by the wires leading to the bridge, which would cause excitation variations. Output voltage VOUT can be calculated as follows:

$$
V_{O U T}=V_{A B} \cdot G
$$

where $G=\left(1+50 \mathrm{k} \Omega / \mathrm{RG}_{\mathrm{G}}\right)$ is the gain of the instrumentation amplifier.

Since $V_{A B}$ is directly proportional to the excitation, gain errors may occur.

Figure 7. Strain Gauge Connection to the MAX4194

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

