Low power dual operational amplifier

Features

- Internally frequency compensated

■ Large DC voltage gain: 100 dB
■ Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)

- Very low supply current/op ($500 \mu \mathrm{~A}$)

■ Low input bias current: 20 nA (temperature compensated)
■ Low input offset current: 2 nA

- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
■ Large output voltage swing 0 V to $\left(\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \mathrm{~V}\right)$
■ ESD internal protection: 2 kV

Description

This circuit consists of two independent, high gain, internally frequency compensated operational amplifiers, designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.

In linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

1 Schematic diagram

Figure 1. Schematic diagram (1/2 LM2904W)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	+32	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$V_{\text {in }}$	Input voltage	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
	Output short-circuit duration ${ }^{(3)}$	Infinite	s
$\mathrm{l}_{\text {in }}$	Input current ${ }^{(4)}$	50	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient ${ }^{(5)}$ $\begin{aligned} & \text { SO-8 } \\ & \text { TSSOP8 } \end{aligned}$ DIP8	$\begin{gathered} 125 \\ 120 \\ 85 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thic }}$	```Thermal resistance junction to case \({ }^{(5)}\) SO-8 TSSOP8 DIP8```	$\begin{aligned} & 40 \\ & 37 \\ & 41 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	HBM: human body model ${ }^{(6)}$ MM: machine model ${ }^{(7)}$ CDM: charged device model ${ }^{(8)}$	$\begin{gathered} 2000 \\ 200 \\ 1500 \\ \hline \end{gathered}$	V

1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Short-circuits from the output to V_{CC} can cause excessive heating if $\mathrm{V}_{\mathrm{CC}}{ }^{+}>15 \mathrm{~V}$. The maximum output current is approximately 40 mA , independent of the magnitude of V_{Cc}. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers.
4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V.
5. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.
6. Human body model: 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
7. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $<5 \Omega$), done for all couples of pin combinations with other pins floating.
8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	3 to 30	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range $\mathrm{T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }}$	$\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5$ $\mathrm{~V}_{\mathrm{CC}}-2$	V
$\mathrm{~T}_{\text {oper }}$	Operating free-air temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 3. $\quad \mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=\mathrm{Ground}, \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	Input offset voltage ${ }^{(1)}$ $T_{\min } \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		2	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	mV
DV ${ }_{\text {io }}$	Input offset voltage drift		7	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {io }}$	Input offset current $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		2	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	nA
$D l_{\text {io }}$	Input offset current drift		10	300	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {ib }}$	Input bias current ${ }^{(2)}$ $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		20	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	nA
A_{vd}	Large signal voltage gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{+}=+15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{0}=1.4 \mathrm{~V} \text { to } 11.4 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		V/mV
SVR	Supply voltage rejection ratio $\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	100		dB
I_{CC}	Supply current, all Amp, no load $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }, \mathrm{V}_{\mathrm{CC}}=+30 \mathrm{~V} \end{aligned}$		0.7	$\begin{gathered} 1.2 \\ 2 \end{gathered}$	mA
CMR	Common-mode rejection ratio $\begin{aligned} & \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	85		dB
$\mathrm{I}_{\text {source }}$	Output short-circuit current $\mathrm{V}_{\mathrm{CC}}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{id}}=+1 \mathrm{~V}$	20	40	60	mA
$\mathrm{I}_{\text {sink }}$	Output sink current $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}^{+}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=+0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{+}=+15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
V_{OH}	High level output voltage $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{+}=+30 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \quad \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \end{aligned}$		V
V_{OL}	Low level output voltage $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \quad \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		5	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	mV
SR	Slew rate $\mathrm{V}_{\mathrm{CC}}{ }^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.5$ to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain $\mathrm{T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }}$	$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$	0.6		V/ $\mu \mathrm{s}$

Table 3. $\quad \mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=\mathrm{Ground}, \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
GBP	Gain bandwidth product $f=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}{ }^{+}=30 \mathrm{~V}, \mathrm{~V}_{\text {in }}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	0.7	1.1		MHz
THD	Total harmonic distortion $\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}^{+}=30 \mathrm{~V}$	0.02		$\%$	
e_{n}	Equivalent input noise voltage $\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\mathrm{CC}}^{+}=30 \mathrm{~V}$	55		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel separation $1 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$	120		dB	

1. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, 5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}{ }^{+}<30 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{ic}}<\mathrm{V}_{\mathrm{CC}^{+}}-1.5 \mathrm{~V}$
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.
3. Due to the proximity of external components, ensure that stray capacitance does not cause coupling between these external parts. Typically, this can be detected because this type of capacitance increases at higher frequencies.

Figure 2. Open loop frequency response

Figure 3. Large signal frequency response

Figure 4. Voltage follower pulse response

Figure 5. Output characteristics

Figure 6. Voltage follower pulse response

Figure 7. Output characteristics

Figure 8. Input current versus temperature

Figure 10. Input voltage range

Figure 12. Voltage gain

Figure 9. Current limiting

Figure 11. Supply current

Figure 13. Input current versus supply voltage

Figure 14. Gain bandwidth product

Figure 16. Common mode rejection ratio

Figure 17. Phase margin vs capacitive load

Typical single-supply applications

Figure 18. AC coupled inverting amplifier

Figure 19. AC coupled non-inverting amplifier

Figure 20. Non-inverting DC gain

Figure 21. DC summing amplifier

Figure 22. High input Z, DC differential amplifier

Figure 23. Using symmetrical amplifiers to reduce input current

Figure 24. Low drift peak detector

Figure 25. Active bandpass filter

4 Macromodel

4.1 Important note concerning this macromodel

Please consider the following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (V_{CC}, temperature, for example) or even worse, outside of the device operating conditions ($\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{icm}}$, for example), is not reliable in any way.

4.2 Macromodel code

```
** Standard Linear Ics Macromodels, 1993.
** ESD diodes added to the initial macromodel (2007).
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM2904W 1 2 3 4 5
***************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
D1A 1 4 MDTH 400E-12
D1B 5 1 MDTH 400E-12
D2A 2 4 MDTH 400E-12
D2B 5 2 MDTH 400E-12
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
```

DINR 1518 MDTH 400E-12
VIP $4182.000000 \mathrm{E}+00$
FCP 45 VOFP $3.400000 \mathrm{E}+01$
FCN 54 VOFN $3.400000 \mathrm{E}+01$
FIBP 25 VOFN 2.000000E-03
FIBN 51 VOFP 2.000000E-03

* AMPLIFYING STAGE

FIP 519 VOFP $3.600000 \mathrm{E}+02$
FIN 519 VOFN $3.600000 \mathrm{E}+02$
RG1 $1953.652997 \mathrm{E}+06$
RG2 194 3.652997E+06
CC $1956.000000 \mathrm{E}-09$
DOPM 1922 MDTH 400E-12
DONM 2119 MDTH 400E-12
HOPM 2228 VOUT 7.500000E+03
VIPM $2841.500000 \mathrm{E}+02$
HONM 2127 VOUT 7.500000E+03
VINM $5271.500000 \mathrm{E}+02$
EOUT 26231951
VOUT 2350
ROUT 26320
COUT $351.000000 \mathrm{E}-12$
DOP 1925 MDTH 400E-12
VOP $4252.242230 \mathrm{E}+00$
DON 2419 MDTH 400E-12
VON $2457.922301 \mathrm{E}-01$
.ENDS

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

5.1 SO-8 package information

Figure 26. SO-8 package mechanical drawing

Table 4. SO-8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
c	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
e		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1°		$8{ }^{\circ}$	$1{ }^{\circ}$		
ccc			0.10			0.004

5.2 DIP8 package information

Figure 27. DIP8 package mechanical drawing

Table 5. DIP8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
c	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
e		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

5.3 TSSOP8 package information

Figure 28. TSSOP8 package mechanical drawing

Table 6. TSSOP8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	
aaa			0.10			0.004

6 Ordering information

Table 7. Order codes

Order code	Temperature range	Package	Packing	Marking
LM2904WN	$-40^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	DIP8	Tube	LM2904W
LM2904WD LM2904WDT		SO-8	Tube or tape \& reel	2904W
LM2904WPT		TSSOP8	Tape \& reel	2904W
LM2904WYD ${ }^{(1)}$ LM2904WYDT ${ }^{(1)}$		(Automotive grade level)	Tube or tape \& reel	2904WY
LM2904WYPT ${ }^{(2)}$		TSSOP8 (Automotive grade level)	Tape \& reel	K04WY

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 \& Q 002 or equivalent.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 \& Q 002 or equivalent are on-going.

7 Revision history

Table 8. Document revision history

Date	Revision	Changes
1-Sep-2003	1	Initial release.
1-Jul-2005	2	PPAP references inserted in the datasheet see Section 6: Ordering information on page 18. ESD protection inserted in Table 1: Absolute maximum ratings (AMR) on page 3.
1-Oct-2005	3	Correction of error in AVD min. value see Table 3 on page 5.
1-Dec-2005	4	LM2904WYPT PPAP reference added in Section 6: Ordering information on page 18. Information added in Table 1: Absolute maximum ratings (AMR) on page 3.
2-May-2006	5	Minimum value of slew rate at 25 ${ }^{\circ} \mathrm{C}$ and in temperature added in Table 3 on page 5.
20-Jul-2007	6	Power dissipation value corrected in Table 1: Absolute maximum ratings (AMR). ESD tolerance for HBM model improved to 2kV in Table 3 on page 5. Equivalent input noise voltage parameter added in Table 3. Electrical characteristics curves updated. Added Figure 17: Phase margin vs capacitive load on page 9. Section 5: Package information updated. Section 4: Macromodel added.
18-Dec-2007	7	Reformatted electrical characteristics table, Table 3. Deleted Vopp parameter in Table 3. Corrected footnotes for automotive grade order codes in Table 7.
21-Feb-2008	8	Corrected SO-8 package mechanical data. Dimension E in drawing was marked H in table. Corrected revision history.
24-2011	9	Corrected x-axis in Figure 5.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

