

Current Transducer LTS 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

$I_{PN} = 8 - 12 - 25 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		25	At
I _P	Primary current, measuring range		0 ± 80	At
V _{OUT}	Analog output voltage	$I_{P} = 0$	2.5 1)	V
		± I _{PN}	2.5 ± 0.625	V
N_s	Number of secondary turns (± 0.1 %)		2000	
$R_{\scriptscriptstyle L}$	Load resistance		≥ 2	kΩ
$R_{\text{\tiny IM}}$	Internal measuring resistance (± 0.5 %)		50	Ω
TCR _{IM}	Thermal drift of R		< 50	ppm/K
$\mathbf{V}_{_{\mathrm{C}}}$	Supply voltage (± 5 %)		5	V
I _c	Current consumption @ $V_c = 5 \text{ V}$	Тур	20 + I _s	mΑ
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz,	1 mn	2.5	kV
V _b	R.m.s. rated voltage		525 ²⁾	V

Accuracy - Dynamic performance data

X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$		± 0.2	2	%
	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$)	± 0.	7	%
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity		< 0.	1	%
			Тур	Max	
TCV	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$	- 10°C + 85°C	50	100	ppm/K
TC e	Thermal drift of the gain	- 10°C + 85°C		50 ³⁾	ppm/K
V _{OM}	Residual voltage @ I _p = 0,after an	overload of 3 x I _{PN}		± 0.5	mV
0	·	5 x I _{PN}		± 2.0	mV
		10 x I _{PN}		± 2.0	mV
t _{ra}	Reaction time @ 10 % of I _{P max}		< 50)	ns
t,	Response time @ 90 % of I _{P max}		< 20	00	ns
di/dt	di/dt accurately followed		> 10	00	A/µs
f	Frequency bandwidth (0 0.5 dE	3)	DC.	100	kHz
	(- 0.5 1 dE	3)	DC.	. 200	kHz

General data

T _A	Ambient operating temperature Ambient storage temperature	- 10 + 85 - 25 + 100	°C
m	Mass Standards	10 EN 50178	g

Notes: 1) Absolute value @ $T_A = 25$ °C, 2.4875 < $V_{OUT} < 2.5125$

- 2) Pollution class 2, category III
- 3) Only due to TCR IM

Features

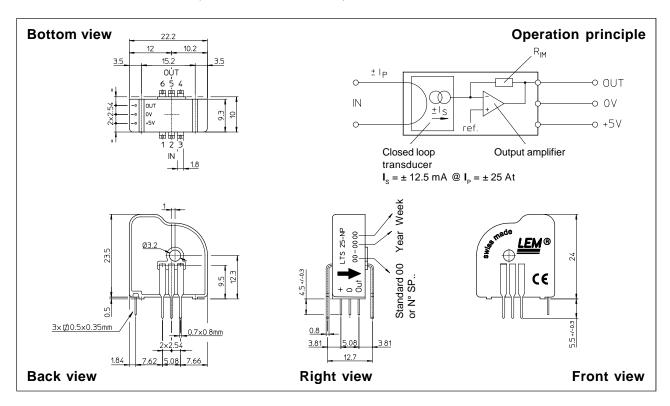
- Closed loop (compensated) multirange current transducer using the Hall effect
- · Unipolar voltage supply
- Insulated plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Copyright protected.

981222/4

LEM Components www.lem.com

Dimensions LTS 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 25	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O O O O O
2	± 12	2.5 ± 0.600	0.81	0.05	6 5 4 OUT O O O O O O O O O O O O O O O O O O O
3	±8	2.5 ± 0.600	1.62	0.12	6 5 4 OUT O O O O O O O O O O O O O O O O O O O

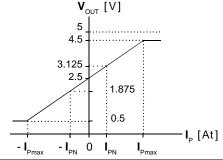
Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary 6 pins 0.7 x 0.8 mm

Recommended PCB hole 1.3 mm

• Fastening & connection of secondary 3 pins 0.5 x 0.35 mm


Recommended PCB hole 0.8 mm

• Additional primary through-hole ∅ 3.2 mm

Remark

 V_{OUT} is positive when I_p flows from terminals 1, 2, 3 to terminals 6, 5, 4

Output Voltage - Primary Current

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.