FEATURES

High integration:

32-channel DAC in $12 \mathrm{~mm} \times 12 \mathrm{~mm}$ CSPBGA
Adjustable voltage output range
Guaranteed monotonic
Readback capability
DSP/microcontroller compatible serial interface
Output impedance:
0.5Ω (AD5532-1, AD5532-2)
500Ω (AD5532-3)
$1 \mathrm{k} \Omega$ (AD5532-5)
Output voltage span:
10 V (AD5532-1, AD5532-3, AD5532-5)
20 V (AD5532-2)
Infinite sample-and-hold capability to $\pm \mathbf{0 . 0 1 8 \%}$ accuracy
Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

Automatic test equipment
Optical networks
Level setting
Instrumentation
Industrial control systems

Data acquisition

Low cost I/O

GENERAL DESCRIPTION

The AD5532 ${ }^{1}$ is a 32 -channel, 14 -bit voltage-output DAC with an additional infinite sample-and-hold mode. The selected DAC register is written to via the 3-wire serial interface; Vout for this DAC is then updated to reflect the new contents of the DAC register. DAC selection is accomplished via Address Bits A0-A4. The output voltage range is determined by the offset voltage at the OFFS_IN pin and the gain of the output amplifier. It is restricted to a range from $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ because of the headroom of the output amplifier.

The device is operated with $A V_{C C}=5 \mathrm{~V} \pm 5 \%$; $\mathrm{DV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-4.75 \mathrm{~V}$ to -16.5 V ; and $\mathrm{V}_{\mathrm{DD}}=8 \mathrm{~V}$ to 16.5 V . The AD5532 requires a stable 3 V reference on REF_IN as well as an offset voltage on OFFS_IN.

PRODUCT HIGHLIGHTS

1. 32-channel, 14-bit DAC in one package, guaranteed monotonic.
2. Available in a 74-lead CSPBGA package with a body size of $12 \mathrm{~mm} \times 12 \mathrm{~mm}$.
3. Droopless/infinite sample-and-hold mode.

Figure 1. Functional Block Diagram

Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
TABLE OF CONTENTS

Specifications 3
ISHA Mode 5
Timing Characteristics 6
Parallel Interface. 6
Parallel Interface Timing Diagrams 6
Serial Interface 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions. 9
Terminology 11
Dac Mode 11
ISHA Mode. 11
Typical Performance Characteristics 12
Functional Description 14
REVISION HISTORY
6/10-Data Sheet Changed from Rev. C to Rev. D
Changes to Table 5 8
Changes to Ordering Guide 20
6/04-Data Sheet Changed from Rev. B to Rev. C Updated Format Universal
Changed LFBGA to CSPBGA Universal
Changes to Outline Dimensions 24
Changes to Ordering Guide 24
6/02-Data Sheet Changed from Rev. A to Rev. B
Term SHA changed to ISHA Global
Changes to Absolute Maximum Ratings 6
Changes to Ordering Guide 6
Changes to Functional Description 11
Changes to Table 8 11
Changes to ISHA Mode 11
Added Figure 27 and accompanying text 15
Changes to Power Supply Decoupling Section 15
Output Buffer Stage-Gain and Offset 14
Offset Voltage Channel 14
Reset Function 14
ISHA Mode 14
Analog Input (ISHA Mode) 14
$\overline{\text { TRACK }}$ Function (ISHA Mode) 15
Modes of Operation 15
Serial Interface 16
Parallel Interface (ISHA Mode Only) 17
Microprocessor Interfacing. 17
Application Circuits 18
Power Supply Decoupling 19
Outline Dimensions 20
Ordering Guide 20

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=8 \mathrm{~V}$ to $16.5 \mathrm{~V}, \mathrm{~V}$ ss $=-4.75 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{AV}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{DV}$ CC $=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{DAC} _\mathrm{GND}=0 \mathrm{~V}$; REF_IN $=3 \mathrm{~V}$; output range from $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$. All outputs unloaded. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 1.

Parameter ${ }^{2}$	A Version ${ }^{1}$		Unit	Conditions/Comments
	AD5532-1/-3/-5	AD5532-2 Only		
DAC DC PERFORMANCE Resolution Integral Nonlinearity (INL) Differential Nonlinearity (DNL) Offset Gain Full Scale Error	$\begin{aligned} & 14 \\ & \pm 0.39 \\ & \pm 1 \\ & 90 / 170 / 250 \\ & 3.52 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & 14 \\ & \pm 0.39 \\ & \pm 1 \\ & 180 / 350 / 500 \\ & 7 \\ & \pm 2 \end{aligned}$	Bits \% of FSR max LSB max mV min/typ/max typ \% of FSR max	$\pm 0.15 \% \text { typ }$ ± 0.5 LSB typ, monotonic See Figure 8
VOLTAGE REFERENCE REF_IN Nominal Input Voltage Input Voltage Range ${ }^{3}$ Input Current REF_OUT Output Voltage Output Impedance ${ }^{3}$ Reference Temperature Coefficient ${ }^{3}$	$\begin{aligned} & 3.0 \\ & 2.85 / 3.15 \\ & 1 \\ & 3 \\ & 280 \\ & 60 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.85 / 3.15 \\ & 1 \\ & \\ & 3 \\ & 280 \\ & 60 \end{aligned}$	V typ V min/max $\mu \mathrm{A}$ max V typ k Ω typ ppm $/{ }^{\circ} \mathrm{C}$ typ	$<1 \mathrm{nA}$ typ
ANALOG OUTPUTS (Vout 0-31) Output Temperature Coefficient ${ }^{3,4}$ DC Output Impedance ${ }^{3}$ AD5532-1 AD5532-3 AD5532-5 Output Range Resistive Load ${ }^{3,5}$ Capacitive Load ${ }^{3,5}$ AD5532-1 AD5532-3 AD5532-5 Short-Circuit Current ${ }^{3}$ DC Power-Supply Rejection Ratio ${ }^{3}$ DC Crosstalk ${ }^{3}$	$\begin{aligned} & 10 \\ & \\ & 0.5 \\ & 500 \\ & 1 \\ & V_{S S}+2 / V_{D D}-2 \\ & 5 \\ & \\ & 500 \\ & 15 \\ & 40 \\ & 7 \\ & -70 \\ & -70 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 0.5 \\ & \\ & \mathrm{~V}_{\mathrm{SS}}+2 / \mathrm{V}_{\mathrm{DD}}-2 \\ & 5 \\ & 500 \\ & \\ & 7 \\ & -70 \\ & -70 \\ & 1800 \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ typ Ω typ Ω typ $k \Omega$ typ \checkmark min/max $k \Omega$ min pF max nF max nF max mA typ dB typ dB typ $\mu \mathrm{V}$ max	$\begin{aligned} & V_{D D}=+15 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 5 \% \end{aligned}$
ANALOG OUTPUT (OFFS_OUT) Output Temperature Coefficient ${ }^{3,4}$ DC Output Impedance ${ }^{3}$ Output Range Output Current Capacitive Load	$\begin{aligned} & 10 \\ & 1.3 \\ & 50 \text { to REF_IN-12 } \\ & 10 \\ & 100 \end{aligned}$	$\begin{aligned} & 10 \\ & 1.3 \\ & 50 \text { to REF_IN-12 } \\ & 10 \\ & 100 \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ typ $\mathrm{k} \Omega$ typ mV typ $\mu \mathrm{A}$ max pF max	Source current
DIGITAL INPUTS ${ }^{3}$ Input Current Input Low Voltage Input High Voltage Input Hysteresis (SCLK and $\overline{\mathrm{CS}}$ Only)	± 10 0.8 0.4 2.4 2.0 200	$\begin{aligned} & \pm 10 \\ & 0.8 \\ & 0.4 \\ & 2.4 \\ & 2.0 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$ max V max V max V min V min mV typ	$\pm 5 \mu \mathrm{~A}$ typ $D V_{\text {cc }}=5 \mathrm{~V} \pm 5 \%$ $D V_{\text {cc }}=3 \mathrm{~V} \pm 10 \%$ $\mathrm{DV}_{\text {cc }}=5 \mathrm{~V} \pm 5 \%$ $D V_{c c}=3 \mathrm{~V} \pm 10 \%$

AD5532

Parameter ${ }^{2}$	A Version ${ }^{1}$		Unit	Conditions/Comments
	AD5532-1/-3/-5	AD5532-2 Only		
Input Capacitance	10	10	pF max	
DIGITAL OUTPUTS ($\overline{\overline{B U S Y}}$, Dout) ${ }^{3}$				
Output Low Voltage, DV ${ }_{c c}=5 \mathrm{~V}$	0.4	0.4	V max	Sinking $200 \mu \mathrm{~A}$.
Output High Voltage, DV ${ }_{c c}=5 \mathrm{~V}$	4.0	4.0	\checkmark min	Sourcing $200 \mu \mathrm{~A}$.
Output Low Voltage, DVcc $=3 \mathrm{~V}$	0.4	0.4	V max	Sinking $200 \mu \mathrm{~A}$.
Output High Voltage, DV ${ }_{c c}=3 \mathrm{~V}$	2.4	2.4	V min	Sourcing $200 \mu \mathrm{~A}$.
High Impedance Leakage Current	± 1	± 1	$\mu \mathrm{A}$ max	Dout only.
High Impedance Output Capacitance	15	15	pF typ	Doutonly.
POWER REQUIREMENTS				
Power-Supply Voltages				
$V_{\text {D }}$	8/16.5	8/16.5	\checkmark min/max	
$V_{s s}$	-4.75/-16.5	-4.75/-16.5	V min/max	
AV ${ }_{\text {cc }}$	4.75/5.25	4.75/5.25	\checkmark min/max	
DVcc	2.7/5.25	2.7/5.25	\checkmark min/max	
Power-Supply Currents ${ }^{6}$				
ldo	15	15	mA max	10 mA typ. All channels full scale.
Iss	15	15	mA max	10 mA typ. All channels full scale.
AICC	33	33	mA max	26 mA typ.
DICC	1.5	1.5	mA max	1 mA typ.
Power Dissipation ${ }^{6}$	280	280	mW typ	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$.
AC CHARACTERISTICS ${ }^{3}$				
Output Voltage Settling Time	22	30	$\mu \mathrm{s}$ max	$500 \mathrm{pF}, 5 \mathrm{k} \Omega$ load. Full-scale change.
OFFS_IN Settling Time	10	25	$\mu \mathrm{s}$ max	$500 \mathrm{pF}, 5 \mathrm{k} \Omega$ load; 0 V to 3 V step.
Digital-to-Analog Glitch Impulse	1	1	nV-s typ	1 LSB change around. Major carry.
Digital Crosstalk	5	5	nV-s typ	
Analog Crosstalk	1	1	nV-s typ	
Digital Feedthrough	0.2	0.2	nV-s typ	
Output Noise Spectral Density @ 1 kHz	400	400	$\mathrm{nV} /(\sqrt{\mathrm{Hz}})$ typ	

${ }^{1} \mathrm{~A}$ version: Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical at $+25^{\circ} \mathrm{C}$.
${ }^{2}$ See Terminology section.
${ }^{3}$ Guaranteed by design and characterization, not production tested.
${ }^{4}$ AD780 as reference for the AD5532.
${ }^{5}$ Ensure that you do not exceed T_{J} (max). See Absolute Maximum Ratings section.
${ }^{6}$ Output unloaded.

ISHA MODE

Table 2.

Parameter ${ }^{2}$	A Version ${ }^{1}$		Unit	Conditions/Comments
	AD5532-1/-3/-5	AD5532-2 Only		
ANALOG CHANNEL $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {out }}$ Nonlinearity ${ }^{3}$ Offset Error Gain	$\begin{aligned} & \pm 0.018 \\ & \pm 50 \\ & 3.46 / 3.52 / 3.6 \end{aligned}$	$\begin{aligned} & \pm 0.018 \\ & \pm 75 \\ & 6.96 / 7 / 7.02 \end{aligned}$	\% max mV max min/typ/max	$\pm 0.006 \%$ typ after offset and gain adjustment. $\pm 10 \mathrm{mV}$ typ. See Figure 9. See Figure 9
ANALOG INPUT (VIN) Input Voltage Range Input Lower Dead Band Input Upper Dead Band Input Current Input Capacitance ${ }^{4}$	$\begin{aligned} & 0 \text { to } 3 \\ & 70 \\ & 40 \\ & 1 \\ & \\ & 20 \\ & \hline \end{aligned}$	0 to 3 70 40 1 20	$m V$ max $m V$ max $\mu \mathrm{A}$ max pF typ	Nominal input range. 50 mV typ. Referred to V_{IN}. See Figure 9. 12 mV typ. Referred to V_{IN}. See Figure 9. 100 nA typ. V_{IN} acquired on 1 channel.
ANALOG INPUT (OFFS_IN) Input Current Input Voltage Range	$\begin{aligned} & 1 \\ & 0 / 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 / 4 \end{aligned}$	$\mu \mathrm{A}$ max Vmin/max	100 nA typ. Output range restricted from $\mathrm{V}_{S S}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$.
AC CHARACTERISTICS Output Settling Time ${ }^{4}$ Acquisition Time AC Crosstalk ${ }^{4}$	$\begin{aligned} & 3 \\ & 16 \\ & 5 \end{aligned}$	$\begin{array}{\|l} \hline 3 \\ 16 \\ 5 \end{array}$	$\mu \mathrm{s}$ max $\mu \mathrm{s}$ max nV-s typ	Output unloaded.

[^1]
TIMING CHARACTERISTICS

PARALLEL INTERFACE

Table 3.

Parameter ${ }^{1,2}$	Limit at $\mathrm{T}_{\text {min }}, \mathrm{T}_{\text {max }}(\mathrm{A}$ Version)	Unit	Conditions/Comments
t_{1}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ setup time
t_{2}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ hold time
t_{3}	50	ns min	$\overline{\mathrm{CS}}$ pulse width low
t_{4}	50	ns min	$\overline{\text { WR pulse width low }}$
t_{5}	20	ns min	A4-A0, CAL, OFFS_SEL to $\overline{W R}$ setup time
t_{6}	7	$n \mathrm{nmin}$	A4-A0, CAL, OFFS_SEL to $\overline{W R}$ hold time

${ }^{1}$ See Figure 2 and Figure 3, the parallel interface timing diagrams.
${ }^{2}$ Guaranteed by design and characterization, not production tested.

PARALLEL INTERFACE TIMING DIAGRAMS

Figure 2. Parallel Write (ISHA Mode Only)

Figure 3. Load Circuit for Dout Timing Specifications

SERIAL INTERFACE

Table 4.

Figure 4. 10-Bit Write (ISHA Mode and Both Readback Modes)

Figure 5. 24-Bit Write (DAC Mode)

Figure 6. 14-Bit Read (Both Readback Modes)

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 5.

Parameter ${ }^{1}$	Rating
$V_{\text {DD }}$ to AGND	-0.3 V to +17 V
$V_{\text {ss }}$ to AGND	+0.3 V to -17 V
AV ${ }_{\text {cc }}$ to AGND, DAC_GND	-0.3 V to +7 V
DV $\mathrm{cc}^{\text {to }}$ DGND	-0.3 V to +7 V
Digital Inputs to DGND	-0.3 V to DV $\mathrm{cc}+0.3 \mathrm{~V}$
Digital Outputs to DGND	-0.3 V to $\mathrm{DV}_{\text {cc }}+0.3 \mathrm{~V}$
REF_IN to AGND, DAC_ GND	-0.3 V to $\mathrm{AV}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Vinto AGND, DAC_GND	-0.3 V to $\mathrm{AV}_{\text {cc }}+0.3 \mathrm{~V}$
Vout 0-31 to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
OFFS_IN to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
OFFS_OUT to AGND	AGND - 0.3 V to $\mathrm{AV}_{\mathrm{cc}}+0.3 \mathrm{~V}$
AGND to DGND	-0.3 V to +0.3 V
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\text {, max }}$)	$150^{\circ} \mathrm{C}$
74-Lead CSPBGA Package, θ_{JA} Thermal Impedance	$41^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering	
Peak Temperature	
AD5532ABC-x	$220^{\circ} \mathrm{C}$
AD5532ABCZ-x	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec
Max Power Dissipation	$\left(150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}} \mathrm{mW}{ }^{2}$
Max Continuous Load Current at $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, per Channel Group	$15 \mathrm{~mA}^{3}$

[^3]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

For higher junction temperatures derate as follows:

$\mathbf{T J}\left({ }^{\circ} \mathbf{C}\right)$	Max Continuous Load Current per Group $(\mathbf{m A})$
70	15.5
90	9.025
100	6.925
110	5.175
125	3.425
135	2.55
150	1.5

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 7. 74-Lead CSPBGA Ball Configuration

Table 6. 74-Lead CSPBGA Ball Configuration

CSPBGA Number	Ball Name	CSPBGA Number	Ball Name	CSPBGA Number	Ball Name
A1	Not connected	C10	$\mathrm{AV}_{\mathrm{cc}} 1$	J10	VO9
A2	A4	C11	REF_OUT	J11	VO11
A3	A2	D1	VO20	K1	VO17
A4	A0	D2	DAC_GND2	K2	VO15
A5	$\overline{\mathrm{CS}} / \overline{\text { SYNC }}$	D10	$\mathrm{AV}_{\mathrm{cc}} 2$	K3	VO27
A6	DVCc	D11	OFFS_OUT	K4	$\mathrm{V}_{5 s} 3$
A7	SCLK	E1	VO26	K5	Vss 1
A8	OFFSET_SEL	E2	VO14	K6	Vss4
A9	$\overline{\text { BUSY }}$	E10	AGND1	K7	VDD 2
A10	$\overline{\text { TRACK } / \text { RESET }}$	E11	OFFS_IN	K8	VO2
A11	Not connected	F1	VO25	K9	VO10
B1	VO16	F2	VO21	K10	VO13
B2	Not connected	F10	AGND2	K11	VO12
B3	A3	F11	VO6	L1	Not connected
B4	A1	G1	VO24	L2	VO28
B5	$\overline{\mathrm{WR}}$	G2	VO8	L3	VO29
B6	DGND	G10	VO5	L4	VO30
B7	$\mathrm{DiN}_{\text {IN }}$	G11	VO3	L5	$V_{D D} 3$
B8	CAL	H1	VO23	L6	$V_{D D} 1$
B9	SER/ $\overline{\text { PAR }}$	H2	VIN	L7	$V_{D D} 4$
B10	DOUT	H10	VO4	L8	VO31
B11	REF_IN	H11	V07	L9	VO0
C1	VO18	J1	VO22	L10	VO1
C2	DAC_GND1	J2	VO19	L11	Not connected
C6	Not connected	J6	Vss2		

AD5532

Table 7. Pin Function Descriptions

Figure 8. DAC Transfer Function (OFFS_IN=0)
Figure 9. ISHA Transfer Function

TERMINOLOGY

DAC MODE

Integral Nonlinearity (INL)

This is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is expressed as a percentage of full-scale span.

Differential Nonlinearity (DNL)

This is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified DNL of ± 1 LSB maximum ensures monotonicity.

Offset

Offset is a measure of the output with all zeros loaded to the DAC and OFFS_IN $=0$. Because the DAC is lifted off the ground by approximately 50 mV , this output is typically

$$
V_{\text {OUT }}=\text { Gain } \times 50 \mathrm{mV}
$$

Full-Scale Error

This is a measure of the output error with all 1 s loaded to the DAC. It is expressed as a percentage of full-scale range. See Figure 8. It is calculated as

$$
\begin{aligned}
& \text { Full }- \text { Scale Error }=V_{\text {OUT }(\text { Full-Scale })}-(\text { IdealGain } \times \text { REFIN }) \\
& \text { where } \\
& \text { Ideal Gain }=3.52 \text { for AD5532 }-1 /-3 /-5 \\
& \text { IdealGain }=7 \text { for AD5532 }-2
\end{aligned}
$$

Output Settling Time

This is the time taken from when the last data bit is clocked into the DAC until the output has settled to within $\pm 0.39 \%$.

OFFS_IN Settling Time

The time taken from a 0 V to 3 V step change in input voltage on OFFS_IN until the output has settled to within $\pm 0.39 \%$.

Digital-to-Analog Glitch Impulse

This is the area of the glitch injected into the analog output when the code in the DAC register changes state. It is specified as the area of the glitch in nV-secs when the digital code is changed by 1 LSB at the major carry transition ($011 \ldots 11$ to $100 \ldots 00$ or $100 \ldots 00$ to $011 \ldots$ 11).

Digital Crosstalk

This is the glitch impulse transferred to the output of one DAC at midscale while a full-scale code change (all 1 s to all 0 s and vice versa) is written to another DAC. It is expressed in nV -secs.

Analog Crosstalk

This is the area of the glitch transferred to the output (Vout) of one DAC due to a full-scale change in the output (Vout) of another DAC. The area of the glitch is expressed in nV-secs.

Digital Feedthrough

This is a measure of the impulse injected into the analog outputs from the digital control inputs when the part is not being written to, i.e., $\overline{\mathrm{CS}} / \overline{\mathrm{SYNC}}$ is high. It is specified in nV-secs and is measured with a worst-case change on the digital input pins, for example, from all 0 s to all $1 s$ and vice versa.

Output Noise Spectral Density

This is a measure of internally generated random noise.
Random noise is characterized as a spectral density (voltage per root Hertz). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in $\mathrm{nV} /(\sqrt{\mathrm{Hz}})$.

Output Temperature Coefficient

This is a measure of the change in analog output with changes in temperature. It is expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

DC Power-Supply Rejection Ratio (PSRR)

DC power-supply rejection ratio is a measure of the change in analog output for a change in supply voltage ($V_{D D}$ and $V_{S s}$). It is expressed in dBs. VDD and $V_{\text {ss }}$ are varied $\pm 5 \%$.

DC Crosstalk

This is the DC change in the output level of one DAC at midscale in response to a full-scale code change (all 0 s to all 1 s and vice versa) and an output change of all other DACs. It is expressed in $\mu \mathrm{V}$.

ISHA MODE

$V_{\text {IN }}$ to $V_{\text {out }}$ Nonlinearity
The measure of the maximum deviation from a straight line passing through the endpoints of the $\mathrm{V}_{\text {IN }}$ versus Vout transfer function. It is expressed as a percentage of the full-scale span.

Offset Error

This is a measure of the output error when $\mathrm{V}_{\mathrm{IN}}=70 \mathrm{mV}$. Ideally, with $\mathrm{V}_{\text {IN }}=70 \mathrm{mV}$:

$$
V_{\text {OUT }}=(\text { Gain } \times 70)-\left((\text { Gain }-1) \times V_{\text {OFFS }_{-} \text {IN }}\right) \mathrm{mV}
$$

Offset error is a measure of the difference between Vout (actual) and Vout (ideal). It is expressed in mV and can be positive or negative. See Figure 9.

Gain Error

This is a measure of the span error of the analog channel. It is the deviation in slope of the transfer function expressed in mV . See Figure 9. It is calculated as

Gain Error =

Actual Full-Scale Output - Ideal Full-Scale Output - Offset Error
where:

$$
\text { Ideal Full-ScaleOutput }=\text { Gain } \times 2.96-\left((\text { Gain }-1) \times V_{\text {OFFS_IN }^{\prime}}\right)
$$

AC Crosstalk

This is the area of the glitch that occurs on the output of one channel while another channel is acquiring. It is expressed in nV-secs.

Output Settling Time

This is the time taken from when $\overline{\text { BUSY }}$ goes high to when the output has settled to $\pm 0.018 \%$.

Acquisition Time

This is the time taken for the $\mathrm{V}_{\text {IN }}$ input to be acquired. It is the length of time that BUSY stays low.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. Typical DNL Plot

Figure 11. INL Error an DNL Error vs. Temperature

Figure 12. Vout vs. Temperature

Figure 13. VoutSource and Sink Capability

Figure 14. Full-Scale Settling Time

Figure 15. Major Code Transition Glitch Impulse

Figure 16. Vin to Vout Accuracy after Offset and Gain Adjustment (ISHA Mode)

Figure 17. Acquisition Time and Output Settling Time (ISHA Mode)

Figure 18. ISHA-Mode Repeatability (64 k Acquisitions)

FUNCTIONAL DESCRIPTION

The AD5532 consists of 32 DACs and an ADC (for ISHA mode) in a single package. In DAC mode, a 14-bit digital word is loaded into one of the 32 DAC Registers via the serial interface. This is then converted (with gain and offset) into an analog output voltage (Vout0-Vour31).

To update a DAC's output voltage, the required DAC is addressed via the serial port. When the DAC address and code have been loaded, the selected DAC converts the code.

At power-on, all the DACs, including the offset channel, are loaded with zeros. Each of the 33 DACs is offset internally by 50 mV (typ) from GND, so the outputs Vout 0 to Vout 31 are 50 mV (typ) at power-on if the OFFS_IN pin is driven directly by the on-board offset channel (OFFS_OUT), i.e. if OFFS_IN is 50 mV , Vout $=\left(\right.$ Gain $\left.\times \mathrm{V}_{\text {DAC }}\right)-($ Gain -1$) \times$ Voffs_in $=50 \mathrm{mV}$.

OUTPUT BUFFER STAGE—GAIN AND OFFSET

The function of the output buffer stage is to translate the 50 $\mathrm{mV}-3 \mathrm{~V}$ output of the DAC to a wider range. This is done by gaining up the DAC output by $3.52 / 7$ and offsetting the voltage by the voltage on OFFS_IN pin.

$$
\begin{aligned}
& \text { AD5532-1/AD5532-3/AD5532-5: } \\
& \quad V_{\text {OUT }}=3.52 \times V_{D A C}-2.52 \times V_{\text {OFFS }_{-} I N}
\end{aligned}
$$

AD5532-2:

$$
V_{O U T}=7 \times V_{D A C}-6 \times V_{O_{\text {OFS }}} I N
$$

$V_{D A C}$ is the output of the DAC.
$V_{\text {OFFS_IN }}$ is the voltage at the OFFS_IN pin.
The following table shows how the output range on Vout relates to the offset voltage supplied by the user.

Table 8. Sample Output Voltage Ranges

$\mathbf{V}_{\text {OFFS_IN }}$ (V)	$\mathbf{V}_{\text {DAC }}$ (V)	$\mathbf{V}_{\text {out }}$ (AD5532-1/-3/-5)	$\mathbf{V}_{\text {out }}$ (AD5532-2)
0.5	0.05 to 3	-1.26 to +9.3	Headroom limited
1	0.05 to 3	-2.52 to +8.04	-6 to +15

Vout is limited only by the headroom of the output amplifiers. Vout must be within maximum ratings.

OFFSET VOLTAGE CHANNEL

The offset voltage can be externally supplied by the user at OFFS_IN or it can be supplied by an additional offset voltage channel on the device itself. The offset can be set up in two ways. In ISHA mode, the required offset voltage is set up on $V_{\text {IN }}$ and acquired by the offset channel. In DAC mode, the code corresponding to the offset value is loaded directly into the offset DAC. This offset channel's DAC output is directly connected to OFFS_OUT. By connecting OFFS_OUT to

OFFS_IN this offset voltage can be used as the offset voltage for the 32 output amplifiers. It is important to choose the offset so that Vout is within maximum ratings.

RESET FUNCTION

The reset function on the AD5532 can be used to reset all nodes on this device to their power-on reset condition. This is implemented by applying a low-going pulse of between 90 ns and 200 ns to the TRACK/RESETpin on the device. If the applied pulse is less than 90 ns , it is assumed to be a glitch and no operation takes place. If the applied pulse is wider than 200 ns , this pin adopts its track function on the selected channel, $\mathrm{V}_{\text {IN }}$ is switched to the output buffer, and an acquisition on the channel does not occur until a rising edge of $\overline{\text { TRACK }}$.

ISHA MODE

In ISHA mode, the input voltage $\mathrm{V}_{\text {IN }}$ is sampled and converted into a digital word. The noninverting input to the output buffer (gain and offset stage) is tied to $\mathrm{V}_{\text {IN }}$ during the acquisition period to avoid spurious outputs, while the DAC acquires the correct code. This is completed in $16 \mu \mathrm{~s}$ max. The updated DAC output then assumes control of the output voltage. The output voltage of the DAC is connected to the noninverting input of the output buffer. Because the channel output voltage is effectively the output of a DAC, there is no droop associated with it. As long as power is maintained to the device, the output voltage is constant until this channel is addressed again. Because the internal DACs are offset by 70 mV (max) from GND, the minimum $V_{\text {IN }}$ in ISHA mode is 70 mV . The maximum $\mathrm{V}_{\text {IN }}$ is 2.96 V due to the upper dead band of 40 mV (max).

ANALOG INPUT (ISHA MODE)

Figure 19 shows the equivalent analog input circuit. The Capacitor C 1 is typically 20 pF and can be attributed to pin capacitance and 32 off-channels. When a channel is selected, an extra 7.5 pF (typ) is switched in. This Capacitor C2 is charged to the previously acquired voltage on that particular channel so it must charge/discharge to the new level. The external source must be able to charge/discharge this additional capacitance within $1 \mu \mathrm{~s}-2 \mu \mathrm{~s}$ of channel selection so that $\mathrm{V}_{\text {IN }}$ can be acquired accurately. Thus, a low impedance source is suggested.

Large source impedances significantly affect the performance of the ADC. An input buffer amplifier may be required.

TRACK FUNCTION (ISHA MODE)

Typically in ISHA mode of operation TRACK is held high and the channel begins to acquire when it is addressed. However, if $\overline{\text { TRACK }}$ is low when the channel is addressed, $\mathrm{V}_{\text {IN }}$ is switched to the output buffer and an acquisition on the channel does not occur until a rising edge of TRACK. At this stage, the BUSY pin goes low until the acquisition is complete, at which point the DAC assumes control of the voltage to the output buffer and $\mathrm{V}_{\text {IN }}$ is free to change again without affecting this output value.

This is useful in an application where the user wants to ramp up $\mathrm{V}_{\text {IN }}$ until Vout reaches a particular level (see Figure 20). VIN does not need to be acquired continuously while it is ramping up. TRACK can be kept low and only when Vout has reached its desired voltage is $\overline{\text { TRACK }}$ brought high. At this stage, the acquisition of $V_{\text {IN }}$ begins.

In the example shown, a desired voltage is required on the output of the pin driver. This voltage is represented by one input to a comparator. The microcontroller/microprocessor ramps up the input voltage on VIN through a DAC. $\overline{\text { TRACK }}$ is kept low while the voltage on $V_{\text {IN }}$ ramps up so that $V_{\text {IN }}$ is not continually acquired. When the desired voltage is reached on the output of the pin driver, the comparator output switches. The $\mu \mathrm{C} / \mu \mathrm{P}$ then knows what code is required to be input to obtain the desired voltage at the DUT. The TRACK input is now brought high and the part begins to acquire $\mathrm{V}_{\text {IN }}$. At this stage $\overline{\text { BUSY }}$ goes low until $\mathrm{V}_{\text {IN }}$ has been acquired. The output buffer is then switched from $V_{\text {IN }}$ to the output of the DAC.

MODES OF OPERATION

The AD5532 can be used in four different modes of operation. These modes are set by two mode bits, the first two bits in the serial word.

Table 9. Modes of Operation

Mode Bit 1	Mode Bit 2	Operating Mode
0	0	ISHA mode
0	1	DAC mode
1	0	Acquire and Read Back
1	1	Read Back

1. ISHA Mode

In this mode, a channel is addressed and that channel acquires the voltage on $\mathrm{V}_{\text {IN }}$. This mode requires a 10-bit write (see Figure 21a) to address the relevant channel (Vour0-Vout31, offset channel or all channels). MSB is written first.

2. DAC Mode

In this standard mode, a selected DAC register is loaded serially. This requires a 24 -bit write (10 bits to address the relevant DAC plus an extra 14 bits of DAC data). MSB is written first. The user must allow $400 \mathrm{~ns}(\mathrm{~min})$ between successive writes in DAC mode.

3. Acquire and Readback Mode

This mode allows the user to acquire $\mathrm{V}_{\text {IN }}$ and read back the data in a particular DAC register. The relevant channel is addressed (10-bit write, MSB first) and $V_{\text {IN }}$ is acquired in $16 \mu s$ (max). Following the acquisition, after the next falling edge of $\overline{\text { SYNC }}$, the data in the relevant DAC register is clocked out onto the Dout line in a 14 -bit serial format. The full acquisition time must elapse before the DAC register data can be clocked out.

4. Readback Mode

Again, this is a Readback mode but no acquisition is performed. The relevant channel is addressed (10-bit write, MSB first) and on the next falling edge of $\overline{S Y N C}$, the data in the relevant DAC register is clocked out onto the $\mathrm{D}_{\text {out }}$ line in a 14 -bit serial format. The user must allow $400 \mathrm{~ns}(\mathrm{~min})$ between the last $\underline{\text { SCLK falling edge in the } 10 \text {-bit write and the falling edge of }}$ $\overline{\text { SYNC }}$ in the 14-bit read back. The serial write and read words can be seen in Figure 21.

This feature allows the user to read back the DAC register code of any of the channels. In DAC mode, this is useful in verification of write cycles. In ISHA mode, readback is useful if the system has been calibrated and the user wants to know what code in the DAC corresponds to a desired voltage on Vour. If this voltage is required again, the user can input the code directly to the DAC register without going through the acquisition sequence.

Rev. D|Page 15 of 20

AD5532

SERIAL INTERFACE

The serial interface allows easy interfacing to most microcontrollers and DSPs, such as the PIC16C, PIC17C, QSPI, SPI, DSP56000, TMS320, and ADSP-21xx, without the need for any glue logic. When interfacing to the 8051, the SCLK must be inverted. The Microprocessor Interfacing section explains how to interface to some popular DSPs and microcontrollers. Figure 4, Figure 5, and Figure 6 show the timing diagram for a serial read and write to the AD5532. The serial interface works with both a continuous and a noncontinuous serial clock. The first falling edge of $\overline{\text { SYNC }}$ resets a counter that counts the number of serial clocks to ensure the correct number of bits are shifted in and out of the serial shift registers. Any further edges on $\overline{\text { SYNC }}$ are ignored until the correct number of bits are shifted in or out. Once the correct number of bits for the selected mode has been shifted in or out, the SCLK is ignored. In order for another serial transfer to take place the counter must be reset by the falling edge of $\overline{\text { SYNC. }}$

In readback, the first rising SCLK edge after the falling edge of $\overline{\text { SYNC causes Dour to leave its high impedance state and data is }}$ clocked out onto the Dout line and also on subsequent SCLK rising edges. The Dout pin goes back into a high impedance state on the falling edge of the 14th SCLK. Data on the $\mathrm{D}_{\text {IN }}$ line is latched in on the first SCLK falling edge after the falling edge of the SYNC signal and on subsequent SCLK falling edges. During read-back $\mathrm{D}_{\text {IN }}$ is ignored. The serial interface does
not shift data in or out until it receives the falling edge of the $\overline{\text { SYNC }}$ signal.

Table 10

Pin	Description
SER/ $\overline{\text { PAR }}$	This pin is tied high to enable the serial interface and to disable the parallel interface. The serial interface is controlled by the four pins that follow.
$\overline{\text { SYNC, }}$ Din, SCLK	Standard 3-wire interface pins. The $\overline{\text { SYNC }}$ pin is shared with the $\overline{C S}$ function of the parallel interface.
Dout	Data Out pin for reading back the contents of the DAC registers. The data is clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.
Mode Bits	The four different modes of operation are described in the Modes of Operation section.
Cal Bit	In DAC mode, this is a test bit. When high, it loads all Os or all 1 s to the 32 DACs simultaneously. In ISHA mode, all 32 channels acquire V_{IN} at the same time when this bit is high. In ISHA mode, the acquisition time is then $45 \mu \mathrm{~s}$ (typ) and accuracy may be reduced. This bit is set low for normal use.
Offset Sel Bit	If this is set high, the offset channel is selected and Bits A4-A0 are ignored.
Test Bit	Must be set low for correct operation of the part.
A4-A0	Used to address any one of the 32 channels (A4 = MSB of address, $A 0=L S B$).
$\begin{aligned} & \text { DB13- } \\ & \text { DB0 } \end{aligned}$	Used to write a 14-bit word into the addressed DAC register. Only valid when in DAC mode.

b. 24-BIT INPUT SERIAL WRITE WORD (DAC MODE)

c. INPUT SERIAL INTERFACE (ACQUIRE AND READ-BACK MODE)

d. INPUT SERIAL INTERFACE (READ-BACK MODE)

Figure 21. Serial Interface Formats

PARALLEL INTERFACE (ISHA MODE ONLY)

The SER/ $\overline{\text { PAR }}$ bit must be tied low to enable the parallel interface and disable the serial interface. The parallel interface is controlled by nine pins, as described in Table 11.

Table 11.

Pin	Description
$\overline{\overline{C S}}$	Active low package select pin. This pin is shared with the $\overline{\text { SYNC function for the serial interface. }}$
A4-A0	Active low write pin. The values on the address pins are latched on a rising edge of $\overline{\text { WR. }}$
OFFSET_SEL	Five address pins (A4 = MSB of address, A0 = LSB). These are used to address the relevant channel (out of a possible 32). Offset select pin. This has the same function as the Offset_Sel bit in the serial interface. When it is high, the offset channel is addressed. The address on A4-A0 is ignored in this case. When this pin is high, all 32 channels acquire VIN simultaneously. The acquisition time is then CA $\mu \mathrm{s}$ (typ) and accuracy may be reduced.

MICROPROCESSOR INTERFACING

AD5532 to ADSP-21xx Interface

ADSP-21xx DSPs are easily interfaced to the AD5532 without the need for extra logic.

A data transfer is initiated by writing a word to the TX register after the SPORT has been enabled. In a write sequence, data is clocked out on each rising edge of the DSP serial clock and clocked into the AD5532 on the falling edge of its SCLK. In readback, 16 bits of data are clocked out of the AD5532 on each rising edge of SCLK and clocked into the DSP on the rising edge of SCLK. $\mathrm{D}_{\text {IN }}$ is ignored. The valid 14 bits of data is centered in the 16 -bit RX register in this configuration. The SPORT Control register should be set up as in Table 12.

Table 12.

TFSW $=$ RFSW $=1$	Alternate framing
INVRFS $=$ INVTFS $=1$	Active low frame signal
DTYPE $=00$	Right justify data
ISCLK $=1$	Internal serial clock
TFSR $=$ RFSR $=1$	Frame every word
IRFS $=0$	External framing signal
ITFS $=1$	Internal framing signal
SLEN $=1001$	10 -bit data-words (ISHA mode write)
SLEN $=0111$	3×8-bit data-words (DAC mode write)
SLEN $=1111$	16 -bit data-words (Readback mode)

Figure 22 shows the connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 22. AD5532 to ADSP-2101/ADSP-2103 Interface

AD5532 to MC68HC11

The serial peripheral interface (SPI) on the MC68HC11 is configured for master mode $($ MSTR $)=1$, clock polarity bit $(\mathrm{CPOL})=0$, and the clock phase bit $(\mathrm{CPHA})=1$. The SPI is configured by writing to the SPI control register (SPCR)-see the $68 \mathrm{HCl1}$ User Manual. SCK of the $68 \mathrm{HC11}$ drives the SCLK of the AD5532, the MOSI output drives the serial data line ($\mathrm{D}_{\text {IN }}$) of the AD5532, and the MISO input is driven from Dout. The SYNC signal is derived from a port line (PC7). When data is being transmitted to the AD5532, the $\overline{\mathrm{SYNC}}$ line is taken low (PC7). Data appearing on the MOSI output is valid on the falling edge of SCK. Serial data from the 68 HC 11 is transmitted in 8-bit bytes with only eight falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. To transmit 10 data bits in ISHA mode, it is important to left-justify the data in the SPDR register. PC7 must be pulled low to start a transfer. It is taken high and pulled low again before other read/write cycles can take place. Figure 23 shows a connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 23. AD5532 to MC68HC1 1 Interface

AD5532 to PIC16C6x/7x

The PIC16C6x/7x synchronous serial port (SSP) is configured as an SPI master with the Clock Polarity Bit $=0$. This is done by writing to the synchronous serial port control register (SSPCON). See the PIC16/17 Microcontroller User Manual. In this example, the I/O port RA1 is being used to pulse $\overline{\text { SYNC }}$ and enable the serial port of the AD5532. This microcontroller transfers only eight bits of data during each serial transfer operation; therefore, two or three consecutive read/write operations are needed depending on the mode. Figure 24 shows the connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 24. AD5532 to PIC16C6x/7x Interface

AD5532 to 8051

The AD5532 requires a clock synchronized to the serial data. The 8051 serial interface must therefore be operated in Mode 0 . In this mode, serial data enters and exits through RxD and a shift clock is output on TxD. Figure 25 shows how the 8051 is connected to the AD5532. Because the AD5532 shifts data out on the rising edge of the shift clock and latches data in on the falling edge, the shift clock must be inverted. The AD5532 requires its data with the MSB first. Because the 8051 outputs the LSB first, the transmit routine must take this into account.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 25. AD5532 to 8051 Interface

APPLICATION CIRCUITS

AD5532 in a Typical ATE System

The AD5532 is ideally suited for use in automatic test equipment. Several DACs are required to control pin drivers, comparators, active loads, and signal timing. Traditionally, sample-and-hold devices were used in this application.

The AD5532 has several advantages: no refreshing is required, there is no droop, pedestal error is eliminated, and there is no need for extra filtering to remove glitches. Overall a higher level of integration is achieved in a smaller area (see Figure 26).

Figure 26. AD5532 in an ATE System

Typical Application Circuit (DAC Mode)

The AD5532 can be used in many optical networking applications that require a large number of DACs to perform control and measurement functions. In the example shown in Figure 27, the outputs of the AD5532 are amplified and used to control actuators that determine the position of MEMS mirrors in an optical switch. The exact position of each mirror is measured using sensors. The sensor readings are muxed using four dual, 4-channel matrix switches (ADG739) and fed back to an 8-channel, 14-bit ADC (AD7856).

The control loop is driven by an ADSP-2191M, a 16 -bit fixedpoint DSP with 3 SPORT interfaces and 2 SPI ports. The DSP uses some of these serial ports to write data to the DAC, control the multiplexer, and read back data from the ADC.

Figure 27. Typical Optical Control and Measurement Application Circuit

Typical Application Circuit (ISHA Mode)

The AD5532 can be used to set up voltage levels on 32 channels as shown in the circuit that follows. An AD780 provides the 3 V reference for the AD5532 and for the AD5541 16-bit DAC. A simple 3-wire interface is used to write to the AD5541. Because the AD5541 has an output resistance of $6.25 \mathrm{k} \Omega(\mathrm{typ})$, the time taken to charge/discharge the capacitance at the $V_{\text {IN }}$ pin is significant. Hence an AD820 is used to buffer the DAC output. Note that it is important to minimize noise on $V_{\text {IN }}$ and REFIN when laying out the circuit.

POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5532 is mounted should be designed so that the analog and digital sections are separated and confined to certain areas of the board. If the AD5532 is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device. For supplies with multiple pins ($\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{AV} \mathrm{C}_{\mathrm{CC}}$) it is recommended to tie those pins together. The AD5532 should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on each supply located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), such as the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching.

The power supply lines of the AD5532 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals, such as clocks, should be shielded with digital ground to avoid radiating noise to other parts of the board and should never be run near the reference inputs. A ground line routed between the $\mathrm{D}_{\text {IN }}$ and SCLK lines helps reduce crosstalk between them (not required on a multilayer board as there is a separate ground plane, but separating the lines helps).

Note it is essential to minimize noise on $\mathrm{V}_{\text {IN }}$ and REFIN lines. Particularly for optimum ISHA performance, the $\mathrm{V}_{\text {IN }}$ line must be kept noise free. Depending on the noise performance of the board, a noise filtering capacitor may be required on the $\mathrm{V}_{\text {IN }}$ line. If this capacitor is necessary, then for optimum throughput it may be necessary to buffer the source which is driving Vin. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A micro-strip technique is by far the best, but not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground plane while signal traces are placed on the solder side.

As is the case for all thin packages, care must be taken to avoid flexing the package and to avoid a point load on the surface of the package during the assembly process.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Function	Output Impedance	Output Voltage Span	Package Description	Package Option
AD5532ABC-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-1REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	20 V	74-Ball CSP_BGA	BC-74
AD5532ABC-3	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	500Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-3REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	500Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	$1 \mathrm{k} \Omega$ typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-5REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	$1 \mathrm{k} \Omega$ typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABCZ-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABCZ-1REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABCZ-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	0.5Ω typ	20 V	74-Ball CSP_BGA	BC-74
AD5532ABCZ-3	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA	500Ω typ	10 V	74-Ball CSP_BGA	BC-74
AD5532ABC-5 EVAL-AD5532EBZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 DACs, 32-Channel ISHA Evaluation Board	$1 \mathrm{k} \Omega$ typ	10 V	74-Ball CSP_BGA	BC-74
EVAL-AD5532EBZ		Evaluation Board				

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2010 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1} \mathrm{~A}$ version: Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical at $+25^{\circ} \mathrm{C}$.
 ${ }^{2}$ See Terminology section.
 ${ }^{3}$ Input range 100 mV to 2.96 V .
 ${ }^{4}$ Guaranteed by design and characterization, not production tested.

[^2]: ${ }^{1}$ See Figure 4, Figure 5, and Figure 6.
 ${ }^{2}$ Guaranteed by design and characterization, not production tested.
 ${ }^{3} \mathrm{In}$ ISHA mode the maximum SCLK frequency is 20 MHz and the minimum pulse width is 20 ns .
 ${ }^{4}$ These numbers are measured with the load circuit of Figure 3.
 ${ }_{5} \overline{\text { SYNC }}$ should be taken low while SCLK is low for read back.

[^3]: ${ }^{1}$ Transient currents of up to 100 mA do not cause SCR latch-up.
 ${ }^{2}$ This limit includes load power.
 ${ }^{3}$ This maximum allowed continuous load current is spread over 8 channels and channels are grouped as follows:
 Group 1: Channels 3, 4, 5, 6, 7, 8, 9, 10
 Group 2: Channels $14,16,18,20.21,24,25,26$
 Group 3: Channels 15, 17, 19, 22, 23, 27, 28, 29
 Group 4: Channels $0,1,2,11,12,13,30,31$

