

Document Title

512K x 8 Hight Speed SRAM with 3.3V

Revision History

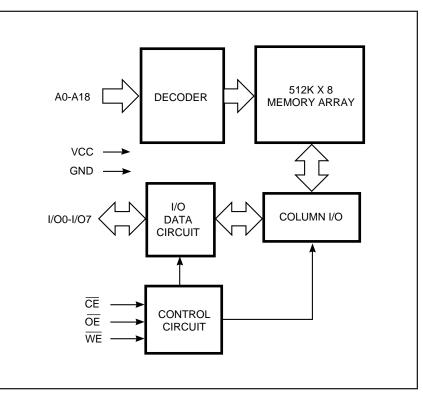
Revision No	History	Draft Date	Remark
0A	Initial Draft	September 11,20	001

The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices.

512K x 8 HIGH-SPEED CMOS STATIC RAM

FEATURES

- High-speed access times: — 8, 10, 12 and 15 ns
- High-preformance, lower-power CMOS process
- Multiple center power and ground pins for greater noise immunity
- Easy memory expansion with CE and OE options
- CE power-down
- Fully static operation: no clock or refresh reguired
- TTL compatible inputs and outputs
- Single 3.3V ± 10% power supply
- Packages available:
- 36-pin 400mil SOJ
- 44-pin TSOP-2


DESCRIPTION

The ICSI IC61LV5128 is a very high-speed, low power, 524,288-word by 8-bit COMS static RAM. The IC61LV5128 is fabricated using ICSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher preformance and low power consumotion devices.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down to 250 μ W (typical) with CMOS input levels.

The IC61LV5128 operates from a single 3.3V power supply and all inputs are TTL-compatible.

The IC61LV5128 is available in 36-pin, 400mil SOJ and 44-pin TSOP-2 package.

FUNCTIONAL BLOCK DIAGRAM

ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution, Inc.

PIN CONFIGURATION 36-Pin SOJ

A0 [1	36 NC
A1 [2	35 A18
A2 [3	34 A17
A3 [4	33 A16
A4 [5	32 A15
CE [6	31 OE
I/O0 [7	30 I/O7
I/O1 [8	29 I/O6
Vcc [9	28 GND
GND [10	27 Vcc
/O2 [11	26 I/O5
/O3 [12	25 I/O4
	13	24 A14
A5 [14	23 A13
A6 [15	22 A12
A7 [16	21 A11
A8 [17	20 A10
A9 [18	19 NC

PIN CONFIGURATION 44-Pin TSOP-2

	44 🗖 NC
NC 🗖 2	43 🗖 NC
A0 🗖 3	42 🗖 NC
A1 🗖 4	41 🗖 A18
A2 🗖 5	40 🗖 A17
A3 🛄 6	39 🗖 A16
$\underline{A4} \Box 7$	38 🔲 A15
I/O0 9	36 1/07
GND [] 12 1/02 [] 13	
I/O2 □ 13 I/O3 □ 14	32 I/O5 31 I/O4
	30 A14
A5 🔲 16	29 A13
A6 17	28 🗖 A12
A7 18	27 🗖 A11
A8 🗖 19	26 🗖 A10
A9 🗖 20	25 🗖 NC
NC 🗖 21	24 🗖 NC
NC 🗖 22	23 🗖 NC

PIN DESCRIPTIONS

A0-A18	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/00-I/07	Input/Output
Vcc	Power
GND	Ground
NC	No Connection

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	Vcc Current
Not Selected (Power-down)	Х	Н	Х	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	lcc
Read	Н	L	L	Dout	lcc
Write	L	L	Х	Din	lcc

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to Vcc + 0.5 V
TBIAS	Temperature Under Bias	–55 to +125 °C
Tstg	Storage Temperature	–65 to +150 °C
Pd	Power Dissipation	1.0 W

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	3.3V ± 10%
Industrial	–40°C to +85°C	3.3V ± 10%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -4.0 mA		2.4	—	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 8.0 mA		_	0.4	V
Vін	Input HIGH Voltage			2.0	Vcc + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
lu	Input Leakage	$GND \le V_{IN} \le V_{CC}$	Com. Ind.	–1 <i>–</i> 5	1 5	μA
Ilo	Output Leakage	$GND \le Vout \le Vcc$, Outputs Disabled	Com. Ind.	–1 –5	1 5	μA

Notes:

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

2. The Vcc operating range for 8 ns is 3.3V +10%, -5%.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-8	ns	-10	ns	-12	ns	-15	ns	
Symbol	Parameter	TestConditions		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
lcc	Vcc Dynamic Operating Supply Current	Vcc = Max., IOUT = 0 mA, f = fMAX	Com. Ind.	_	300 310	_	280 290	_	260 270	_	240 250	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:Vcc} \begin{array}{l} Vcc = Max., \\ \hline V i \mathbb{N} = V i \mathbb{H} \text{ or } V i \mathbb{L} \\ \hline \overline{CE} \geq V i \mathbb{H} \text{ , } f = 0 \end{array}$	Com. Ind.	_	55 65	_	55 65	_	55 65	_	55 65	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:constraint} \begin{split} & \frac{Vcc = Max.,}{CE \geq Vcc - 0.2V,} \\ & ViN \geq Vcc - 0.2V, or \\ & ViN \leq 0.2V, f = 0 \end{split}$	Com. Ind.	_	10 15	_	10 15	_	10 15	_	10 15	mA

Note:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, Vcc = 3.3V.

		-8	}	-1()	-12	2	-1;	5	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	8	_	10	—	12	_	15	_	ns
taa	Address Access Time	_	8	_	10		12	_	15	ns
tона	Output Hold Time	3	_	3	_	3	_	3	_	ns
t ACE	CE Access Time	_	8	_	10		12	_	15	ns
t doe	OE Access Time	_	4	_	5		6	_	7	ns
thzoe ⁽²⁾	OE to High-Z Output	0	4	_	5		6	0	6	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0	_	0	_	0	_	0	_	ns
thzce ⁽²	CE to High-Z Output	0	4	0	5	0	6	0	6	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	—	3	_	3	_	3	_	ns

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

Notes:

1. The Vcc operating range for 8 ns is 3.3V + 10%, -5%.

AC TEST LOADS

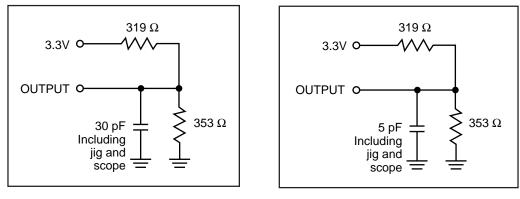
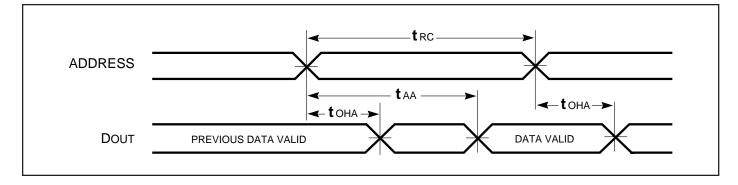
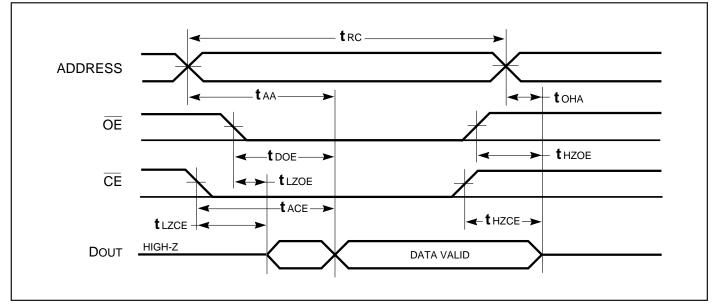


Figure 1.



Integrated Circuit Solution, Inc. AHSR021-0A 09/11/2001



AC WAVEFORMS

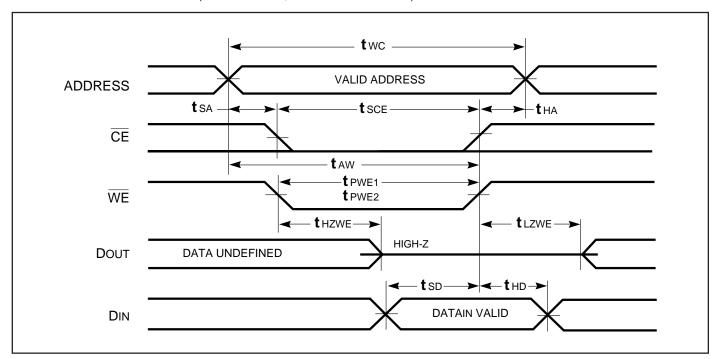
READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2^(1,3)

Notes:

- 1. WE is HIGH for a Read Cycle. 2. The device is continuously selected. \overline{OE} , \overline{CE} = VIL.
- 3. Address is valid prior to or coincident with \overline{CE} LOW transitions.

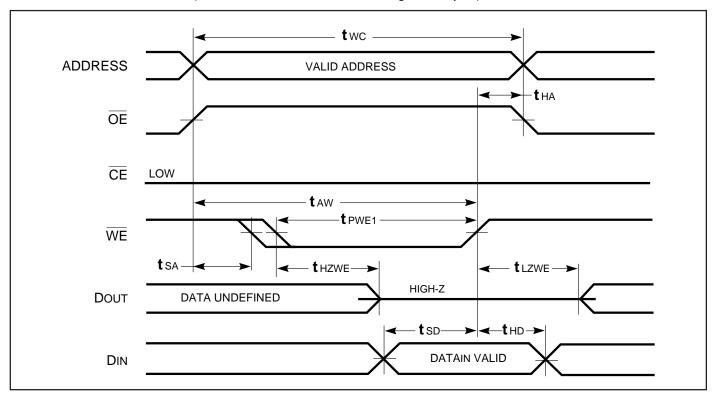
WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)


	-8 -10		0	-12		-15					
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	8	_	10	_	12	_	15	_	ns	
t SCE	CE to Write End	7	_	8	_	9	_	10	_	ns	_
taw	Address Setup Time to Write End	7	_	8	_	9	_	10	_	ns	
t HA	Address Hold from Write End	0	_	0	_	0	_	0	_	ns	
t SA	Address Setup Time	0	_	0	_	0	_	0	_	ns	
t PWE	WE Pulse Width	7	_	8	_	9	_	10	_	ns	
tsd	Data Setup to Write End	4.5	_	5	_	6	_	7	_	ns	
tнd	Data Hold from Write End	0	_	0	_	0	_	0	_	ns	
tHZWE ⁽²⁾	WE LOW to High-Z Output	_	4	_	5	_	6	_	7	ns	
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	3	_	3	_	3	_	3	_	ns	

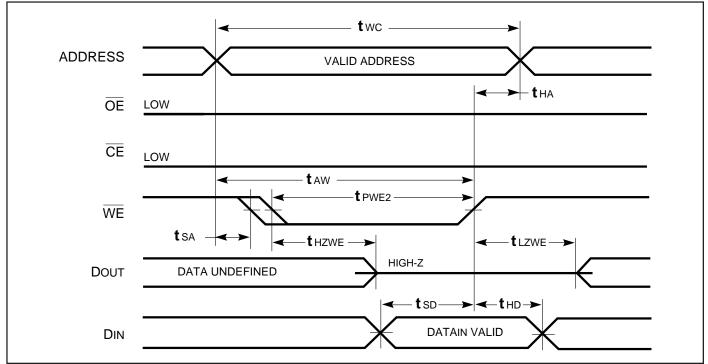
Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.


3. The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

AC WAVEFORMS WRITE CYCLE NO. 1 ^(1,2)(CE Controlled, OE is HIGH or LOW)


Integrated Circuit Solution, Inc. AHSR021-0A 09/11/2001

WRITE CYCLE NO. 2 ^(1,2) (WE Controlled, OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled, OE is LOW During Write Cycle)

Notes:

8

 The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

2. I/O will assume the High-Z state if \overline{OE} > VIH.

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed(ns)	OrderPartNo.	Package			
8	IC61LV5128-8T IC61LV5128-8K	400mil T SOP-2 400mil SOJ			
10	IC61LV5128-10T IC61LV5128-10K	400mil T SOP-2 400mil SOJ			
12	IC61LV5128-12T IC61LV5128-12K	400mil T SOP-2 400mil SOJ			
15	IC61LV5128-15T IC61LV5128-15K	400mil T SOP-2 400mil SOJ			

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed(ns)	OrderPartNo.	Package			
8	IC61LV5128-8TI IC61LV5128-8KI	400milT SOP-2 400mil SOJ			
10	IC61LV5128-10TI IC61LV5128-10KI	400milT SOP-2 400mil SOJ			
12	IC61LV5128-12TI IC61LV5128-12KI	400milT SOP-2 400mil SOJ			
15	IC61LV5128-15TI IC61LV5128-15KI	400milT SOP-2 400mil SOJ			

Integrated Circuit Solution, Inc.

HEADQUARTER: NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU, TAIWAN, R.O.C. TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE: 7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C. TEL: 886-2-26962140 FAX: 886-2-26962252

http://www.icsi.com.tw

Integrated Circuit Solution, Inc. AHSR021-0A 09/11/2001