SPANSION ${ }^{T M}$ Flash Memory

Data Sheet

September 2003

This document specifies SPANSION ${ }^{\top M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{T M}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\text {TM }}$ memory solutions.

FUjilisu

FLASH MEMORY

CMOS

8M ($1 \mathrm{M} \times 8$) BIT

MBM29F080A-55/-70/-90

- GENERAL DESCRIPTION

The MBM29F080A is a 8 M-bit, 5.0 V-Only Flash memory organized as 1 M bytes of 8 bits each. The 1 M bytes of data is divided into 16 sectors of 64 K bytes for flexible erase capability. The 8 bit of data will appear on DQ0 to DQ7. The MBM29F080A is offered in a 48-pin TSOP(I), 40-pin TSOP, and 44-pin SOP packages. This device is designed to be programmed in-system with the standard system 5.0 V Vcc supply. A 12.0 V Vpp is not required for program or erase operations. The device can also be reprogrammed in standard EPROM programmers.

The standard MBM29F080A offers access times between 55 ns and 90 ns allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable ($\overline{\mathrm{CE}}$), write enable ($\overline{\mathrm{WE}}$), and output enable ($\overline{\mathrm{OE}}$) controls.

The MBM29F080A is command set compatible with JEDEC standard E2PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 12.0 V Flash or EPROM devices.

The MBM29F080A is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Each sector can be programmed and verified in less than 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.
(Continued)
PRODUCT LINE UP

Part No.		MBM29F080A		
Ordering Part No.	Vcc $=5.0 \mathrm{~V} \pm 5 \%$	-55	-	-
	$\mathrm{V} c \mathrm{c}=5.0 \mathrm{~V} \pm 10 \%$	-	-70	-90
Max Address Access Time (ns)	55	70	90	
Max $\overline{\mathrm{CE}}$ Access Time (ns)	55	70	90	
Max $\overline{\text { OE Access Time (ns) }}$	30	30	40	

MBM29F080A-55/-70/-90

(Continued)

This device also features a sector erase architecture. The sector erase mode allows for sectors of memory to be erased and reprogrammed without affecting other sectors. A sector is typically erased and verified within 1 second (if already completely preprogrammed). The MBM29F080A is erased when shipped from the factory.

The MBM29F080A device also features hardware sector group protection. This feature will disable both program and erase operations in any combination of eight sector groups of memory. A sector group consists of four adjacent sectors grouped in the following pattern: sectors 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, and 14-15.
Fujitsu has implemented an Erase Suspend feature that enables the user to put erase on hold for any period of time to read data from or program data to a non-busy sector. Thus, true background erase can be achieved.
The device features single 5.0 V power supply operation for both read and program functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations during power transitions. The end of program or erase is detected by Data Polling of DQ_{7}, or by the Toggle Bit I feature on DQ_{6} or $\mathrm{RY} / \overline{\mathrm{BY}}$ output pin. Once the end of a program or erase cycle has been completed, the device automatically resets to the read mode.

The MBM29F080A also has a hardware RESET pin. When this pin is driven low, execution of any Embedded Program or Embedded Erase operations will be terminated. The internal state machine will then be reset into the read mode. The RESET pin may be tied to the system reset circuity. Therefore, if a system reset occurs during the Embedded Program or Embedded Erase operation, the device will be automatically reset to a read mode. This will enable the system microprocessor to read the boot-up firmware from the Flash memory.

Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29F080A memory electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The bytes are programmed one byte at a time using the EPROM programming mechanism of hot electron injection.

■ FEATURES

- Single 5.0 V read, write, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Pinout and software compatible with single-power supply Flash
Superior inadvertent write protection

- 48-pin TSOP(I) (Package Suffix: PFTN-Normal Bend Type, PFTR-Reverse Bend Type)

40-pin TSOP(I) (Package Suffix: PTN-Normal Bend Type, PTR-Reversed Bend Type)
44-pin SOP (Package Suffix: PF)

- Minimum 100,000 write/erase cycles
- High performance

55 ns maximum access time

- Sector erase architecture

Uniform sectors of 64 K bytes each
Any combination of sectors can be erased. Also supports full chip erase.

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically programs and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/ $\overline{\mathrm{BY}}$)

Hardware method for detection of program or erase cycle completion

- Low Vcc write inhibit $\leq 3.2 \mathrm{~V}$

(Continued)

- Hardware RESET pin

Resets internal state machine to the read mode

- Erase Suspend/Resume

Supports reading or programming data to a sector not being erased

- Sector group protection

Hardware method that disables any combination of sector groups from write or erase operation (a sector group consists of 2 adjacent sectors of 64 K bytes each)

- Temporary sector groups unprotection

Temporary sector unprotection via the RESET pin

- PACKAGES

(FPT-48P-M19)

MBM29F080A-55/-70/-90

PIN ASSIGNMENTS

	TSOP(I)	
	(Marking Side) MBM29F080A Normal Bend	
	FPT-48P-M19	
	(Marking Side) MBM29F080A Reverse Bend	
	FPT-48P-M20	

(Continued)
(Continued)

	TSOP(1)					
$\mathrm{A}_{19} 1 \bigcirc$		40	\square N.C.			
$\mathrm{A}_{18}{ }^{18}$	Marking Side	39	\square N.C.		(Top View)	
$\mathrm{A}_{17} \square^{\square}$		38	$\square \overline{\mathrm{WE}}$			
${ }^{A_{16} \square} 4$		37	$\square \overline{O E}$	N.C.	$1 \bigcirc 44$	V co
$\mathrm{A}_{15}{ }^{\text {a }}$		36	$\square \mathrm{RY} / \overline{\mathrm{BY}}$			
$\mathrm{A}_{14} \square^{-1}$		35	$\square \mathrm{DQ}_{7}$	RESET	243	$\overline{\mathrm{CE}}$
${ }^{\mathrm{A}_{13} \mathrm{~A}_{12}{ }^{\text {a }} \text { - }}$		34	$\square \mathrm{DQ}_{6}$			
${ }^{\mathrm{A}_{12}} \square^{8}$		33	$\square \mathrm{DQ}_{5}$	A_{11}	$3 \quad 42$	A12
CE $\mathrm{V}^{\text {CC }}$ 9		32	$\square \mathrm{DQ}_{4}$	A_{10}	41	A_{13}
Vcc N.C. 10 11	MBM29F080A	31	$\square \mathrm{Vcc}$			
N.C. ${ }_{\text {N }} \begin{gathered}11 \\ \text { RESET } \\ 12\end{gathered}$	Normal Bend	30	$\square \mathrm{V}$ ss	A9	40	A14
RES A11 \square 12		28	- $\mathrm{V}_{\text {ss }}$	A_{8}	639	A_{15}
$\mathrm{A}_{10} \square 14$		27	$\square \mathrm{DQ}_{2}$	A_{7}	738	A16
A9 $\square 15$		26	$\square \mathrm{DQ}_{1}$	A,	38	A16
$\mathrm{A}_{8}-16$		25	$\square \mathrm{DQ}_{0}$	A_{6}	$8 \quad 37$	A_{17}
$\mathrm{A}_{7}-17$ $\mathrm{~A}_{6}-18$		24	$\square{ }^{\text {A }}$	A_{5}	36	A18
		23	$\mathrm{A}^{\text {a }}$			
$\mathrm{A}_{4} \square 20$		21	$\square \mathrm{A}_{3}$	A 4	$10 \quad 35$	A19
				N.C.	1134	N.C.
	FPT-40P-M06			N.C.	1233	N.C.
				A	$13 \quad 32$	N.C.
$\mathrm{A}_{4}-20$		21	A_{3}			
$\mathrm{A}_{5}{ }_{5} 19$		22	A_{2}	A_{2}	$14 \quad 31$	N.C.
$\mathrm{A}_{6} \square 18$ $\mathrm{~A}_{7} \square 17$	Marking Side	23	$\square^{\text {A }}$	A_{1}	15 30	WE
${ }^{\mathrm{A}_{8}{ }_{8} \square 16}$		24	${ }^{\text {A }}$		$16 \quad 29$	
$\mathrm{Ag}^{1} 15$		26	$\square^{\text {DQ }}$			
$\mathrm{A}_{10} 14$		27	$\square \mathrm{DQ}_{2}$	DQo	$17 \quad 28$	RY/ $\overline{B Y}$
		28	$\square \mathrm{DQ}_{3}$	DQ_{1}	$18 \quad 27$	DQ7
RESET 12		29	$\square \mathrm{Vss}$	DQ	$18 \quad 27$	
N.C. ${ }^{11}$		30	$\square \mathrm{Vss}$	DQ2	$19 \quad 26$	DQ6
$\mathrm{Vcc}^{\mathrm{CE}}{ }^{10}$	MBM29F080A	31	$\square \mathrm{Vcc}$		2025	
${ }^{\text {CE }} \mathrm{A}_{12} \square 98$	Reverse Bend	32	DQ_{4}		$20-25$	
$\mathrm{A}_{12} \square 8$ $\mathrm{~A}_{13} \square 7$		33		Vss	$21 \quad 24$	DQ4
$\mathrm{A}_{14}-6$		35	$\square \mathrm{DQ}_{7}$	Vss	22 23	V co
$\mathrm{A}_{15} \square 5$		36	$\square \mathrm{RY} / \overline{\mathrm{BY}}$			
$\mathrm{A}_{16} \square 4$		37	$\overline{\text { OE }}$		FPT-44P-M16	
$\mathrm{A}_{17} \square^{3}$		38	$\square \mathrm{WE}$		FPT-44P-M16	
$\mathrm{Al8}^{\mathrm{A}_{19} \square_{1} 2}$		39	N.C.			
$\mathrm{A}_{19} \square 1 \bigcirc$		40	N.C.			

Pin Name	
A_{19} to A_{0}	Address Inputs
DQ_{0} to DQ_{7}	Data Inputs/Outputs
CE	Chip Enable
OE	Output Enable
WE	Write Enable
RY/BY	Ready/Busy Output
RESET	Hardware Reset Pin/Sector Protection Unlock
N.C.	No Internal Connection
Vss	Device Ground
Vcc	Device Power Supply $(5.0 \mathrm{~V} \pm 10 \%)$

MBM29F080A.55/-70.90

LOGIC SYMBOL

BLOCK DIAGRAM

FLEXIBLE SECTOR-ERASE ARCHITECTURE

MBM29F080A User Bus Operations Table

Operation	$\overline{C E}$	$\overline{O E}$	WE	A	A_{1}	A6	A9	DQ_{0} to DQ_{7}	RESET
Auto-Select Manufacturer Code *1	L	L	H	L	L	L	VID	Code	H
Auto-Select Device Code *1	L	L	H	H	L	L	VID	Code	H
Read *3	L	L	H	A0	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	High-Z	H
Output Disable	L	H	H	X	X	X	X	High-Z	H
Write (Program/Erase)	L	H	L	A_{0}	A_{1}	A_{6}	A9	Din	H
Enable Sector Group Protection *2	L	VIo	ப	X	X	X	VID	X	H
Verify Sector Group Protection *2	L	L	H	L	H	L	VID	Code	H
Temporary Sector Group Unprotection	X	X	X	X	X	X	X	X	VID
Reset (Hardware)	X	X	X	X	X	X	X	High-Z	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{LL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{H}}, \quad \mathrm{C}=$ Pulse Input. See DC Characteristics for voltage levels.
*1 : Manufacturer and device codes may also be accessed via a command register write sequence. Refer to "MBM29F080A Command Definitions Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE".
*2 : Refer to the section on Sector Group Protection.
${ }^{*} 3: \overline{\mathrm{WE}}$ can be V_{L} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
MBM29F080A Sector Protection Verify Autoselect Codes Table

Type	\mathbf{A}_{17} to \mathbf{A}_{19}		\mathbf{A}_{6}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	Code (HEX)	$\mathbf{D Q}_{7}$	$\mathbf{D Q}_{6}$	$\mathbf{D Q}_{\mathbf{5}}$	$\mathbf{D Q}_{4}$	$\mathbf{D Q}_{3}$	$\mathbf{D Q}_{\mathbf{2}}$	$\mathbf{D Q}_{\mathbf{1}}$	$\mathbf{D Q}_{\mathbf{0}}$	
Manufacture's Code	X	X	X	V_{IL}	V_{IL}	V_{IL}	04 h	0	0	0	0	0	1	0	0
Device Code	X	X	X	V_{IL}	V_{IL}	V_{IH}	D 5 h	1	0	1	0	1	1	0	1
Sector Group Protection	Sector Group Addresses	V_{IL}	V_{HH}	V_{IL}	$01 \mathrm{~h}^{*}$	0	0	0	0	0	0	0	1		

*: Outputs 01h at protected sector addresses and outputs 00h at unprotected sector addresses.

Sector Address Table

	A19	A18	A17	A_{16}	Address Range
SA0	0	0	0	0	000000h to 00FFFFh
SA1	0	0	0	1	010000h to 01FFFFh
SA2	0	0	1	0	020000h to 02FFFFh
SA3	0	0	1	1	030000h to 03FFFFh
SA4	0	1	0	0	040000h to 04FFFFh
SA5	0	1	0	1	050000h to 05FFFFh
SA6	0	1	1	0	060000h to 06FFFFh
SA7	0	1	1	1	070000h to 07FFFFh
SA8	1	0	0	0	080000h to 08FFFFh
SA9	1	0	0	1	090000h to 09FFFFh
SA10	1	0	1	0	0A0000h to 0AFFFFh
SA11	1	0	1	1	0B0000h to 0BFFFFh
SA12	1	1	0	0	0C0000h to 0CFFFFh
SA13	1	1	0	1	0D0000h to 0DFFFFh
SA14	1	1	1	0	0E0000h to 0EFFFFh
SA15	1	1	1	1	0F0000h to 0FFFFFh

Sector Group Addresses Table

	A 19	\mathbf{A}_{18}	\mathbf{A}_{17}	Sectors
SGA0	0	0	0	SA0 to SA1
SGA1	0	0	1	SA2 to SA3
SGA2	0	1	0	SA4 to SA5
SGA3	0	1	1	SA6 to SA7
SGA4	1	0	0	SA8 to SA9
SGA5	1	0	1	SA10 to SA11
SGA6	1	1	0	SA12 to SA13
SGA7	1	1	SA14 to SA15	

MBM29F080A Command Definitions Table

Command Sequence	$\begin{gathered} \text { Bus } \\ \text { Write } \\ \text { Cycles } \end{gathered}$	First Write	Bus Cycle	Secon Write	Bus ycle	Third Write	Bus Cycle	Four Read C	Bus Vrite e	Fifth Write	Bus Cycle	Sixt	Bus Cycle
		Addr.	Data										
Read/Reset**	1	XXXh	F0h	-	-	-	-	-	-	-	-	-	-
Reset/Read*1	3	555h	AAh	2AAh	55h	555h	F0h	RA*2	RD*2	-	-	-	-
Manufacture Code	3	555h	AAh	2AAh	55h	555h	90h	00h*2	04h*2	-	-	-	-
Device Code	3	555h	AAh	2AAh	55h	555h	90h	01h*2	05h*2	-	-	-	-
Byte Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h
Sector Erase Suspend		Erase can be suspended during sector erase with Addr ("H" or "L"), Data (B0h)											
Sector Erase Resume		Erase can be resumed after suspend with Addr ("H" or "L"), Data (30h)											

Notes : • Address bits A_{11} to $A_{19}=X=$ " H " or "L" for all address commands except or Program Address (PA) and Sector Address (SA).

- Bus operations are defined in "MBM29F080A User Bus Operations Table" in "■FLEXIBLE SECTORERASE ARCHITECTURE".
- RA = Address of the memory location to be read.

PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the $\overline{\mathrm{WE}}$ pulse.
$S A=$ Address of the sector to be erased. The combination of A_{19}, A_{18}, A_{17}, and A_{16} will uniquely select any sector.

- RD = Data read from location RA during read operation.
$P D=$ Data to be programmed at location PA. Data is latched on the rising edge of $\overline{W E}$.
- Read and Byte program functions to non-erasing sectors are allowed in the Erase Suspend mode.
- The system should generate the following address pattens: 555h or 2AAh to addresses A_{0} to A_{10}.
- The command combinations not described in "MBM29F080A Command Definitions Table" in "DFLEXIBLE SECTOR-ERASE ARCHITECTURE" are illegal.
*1: Either of the two reset commands will reset the device.
*2: The fourth bus cycle is only for read.

MBM29F080A-55/-70/-90

- Thirty two 64 K byte sectors
- 8 sector groups each of which consists of 2 adjacent sectors in the following pattern; sectors 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, and 14-15
- Individual-sector or multiple-sector erase capability
- Sector group protection is user-definable

FUNCTIONAL DESCRIPTION

Read Mode

The MBM29F080A has two control functions which must be satisfied in order to obtain data at the outputs. $\overline{C E}$ is the power control and should be used for a device selection. $\overline{\mathrm{OE}}$ is the output control and should be used to gate data to the output pins if a device is selected.

Address access time (tacc) is equal to the delay from stable addresses to valid output data. The chip enable access time (tcE) is the delay from stable addresses and stable $\overline{\mathrm{CE}}$ to valid data at the output pins. The output enable access time is the delay from the falling edge of $\overline{\mathrm{OE}}$ to valid data at the output pins (assuming the addresses have been stable for at least tacc-toe time).

Standby Mode

There are two ways to implement the standby mode on the MBM29F080A device, one using both the $\overline{\mathrm{CE}}$ and RESET pins; the other via the RESET pin only.
When using both pins, a CMOS standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{RESET}}$ inputs both held at $\mathrm{V}_{\text {cc }} \pm 0.3 \mathrm{~V}$. Under this condition the current consumed is less than $5 \mu \mathrm{~A}$. A TTL standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\text { RESET }}$ pins held at V_{I}. Under this condition the current is reduced to approximately 1 mA . During Embedded Algorithm operation, V_{cc} Active current ($\mathrm{I} c \mathrm{c} 2$) is required even $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$. The device can be read with standard access time (tcE) from either of these standby modes.
When using the $\overline{\text { RESET }}$ pin only, a CMOS standby mode is achieved with $\overline{\text { RESET }}$ input held at $\mathrm{V}_{\text {ss }} \pm 0.3 \mathrm{~V}$ ($\overline{\mathrm{CE}}=$ " H " or " L "). Under this condition the current consumed is less than $5 \mu \mathrm{~A}$. A TTL standby mode is achieved with $\overline{R E S E T}$ pin held at $\mathrm{V}_{\mathbb{L}}(\overline{\mathrm{CE}}=$ " H " or "L"). Under this condition the current required is reduced to approximately 1 mA . Once the RESET pin is taken high, the device requires 500 ns of wake up time before outputs are valid for read access.
In the standby mode the outputs are in the high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\mathrm{H}}\right)$, output from the device is disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The autoselect mode allows the reading out of a binary code from the device and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the device.

To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{ID}}(11.5 \mathrm{~V}$ to 12.5 V) on address pin A . Two identifier bytes may then be sequenced from the device outputs by toggling address A_{0} from $\mathrm{V}_{\text {IL }}$ to V_{IH}. All addresses are don't cares except $\mathrm{A}_{0}, \mathrm{~A}_{1}$, and A_{6}. (See "MBM29F080A Sector Protection Verify Autoselect Codes Table" in " \quad FLEXIBLE SECTOR-ERASE ARCHITECTURE".)

The manufacturer and device codes may also be read via the command register, for instances when the MBM29F080A is erased or programmed in a system without access to high voltage on the As pin. The command sequence is illustrated in "MBM29F080A Command Definitions Table" in "■FEXIBLE SECTOR-ERASE ARCHITECTURE". (Refer to Autoselect Command section.)
Byte $0\left(A_{0}=V_{L L}\right)$ represents the manufacturer's code (Fujitsu $\left.=04 \mathrm{~h}\right)$ and byte $1\left(\mathrm{~A}_{0}=\mathrm{V}_{\boldsymbol{H}}\right)$ represents the device identifier code for MBM29F080A = D5h. These two bytes are given in the "MBM29F080A Sector Protection Verify Autoselect Codes Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE". All identifiers for manufactures and device will exhibit odd parity with DQ7 defined as the parity bit. In order to read the proper device codes when executing the Autoselect, A1 must be VIL. (See "MBM29F080A Sector Protection Verify Autoselect Codes Table" in "DFLEXIBLE SECTOR-ERASE ARCHITECTURE".)

MBM29F080A-55/-70/-90

The Autoselect mode also facilitates the determination of sector group protection in the system. By performing a read operation at the address location XX02h with the higher order address bits A_{17}, A_{18} and A_{19} set to the desired sector group address, the device will return 01 h for a protected sector group and 00 h for a non-protected sector group.

Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.

The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing $\overline{\mathrm{WE}}$ to V_{LL}, while $\overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}. Addresses are latched on the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens later; while data is latched on the rising edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens first. Standard microprocessor write timings are used.

Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

Sector Group Protection

The MBM29F080A features hardware sector group protection. This feature will disable both program and erase operations in any combination of eight sector groups of memory. Each sector group consists of four adjacent sectors grouped in the following pattern: sectors $0-1,2-3,4-5,6-7,8-9,10-11,12-13$, and 14-15 (see "Sector Group Address Table" in "国FLEXIBLE SECTOR-ERASE ARCHITECTURE"). The sector group protection feature is enabled using programming equipment at the user's site. The device is shipped with all sector groups unprotected.

To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{I} \text { o on }}$ address pin A_{9} and control pin $\overline{\mathrm{OE}}$, (suggest $\left.\mathrm{V}_{\mathrm{ID}}=11.5 \mathrm{~V}\right), \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. The sector addresses ($\mathrm{A}_{19}, \mathrm{~A}_{18}$, and A_{17}) should be set to the sector to be protected. "Sector Address Table" and "Sector Group Address Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE" define the sector address for each of the thirty two (16) individual sectors, and the sector group address for each of the eight (8) individual group sectors. Programming of the protection circuitry begins on the falling edge of the $\overline{\mathrm{WE}}$ pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the $\overline{\text { WE }}$ pulse. See "Temporary Sector Group Unprotection Timing Diagram" in "四IMING DIAGRAM" and "Temporary Sector Group Unprotection Algorithm" in "DFLOW CHART" for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force V_{10} on address pin A_{9} with $\overline{C E}$ and $\overline{O E}$ at V_{IL} and $\overline{\mathrm{WE}}$ at $\mathrm{V}_{1 \text {. }}$. Scanning the sector addresses ($\mathrm{A}_{19}, \mathrm{~A}_{18}$, and A_{17}) while ($\left.\mathrm{A}_{6}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)=(0$, 1,0) will produce a logical " 1 " code at device output DQ_{0} for a protected sector. Otherwise the device will produce 00 h for unprotected sector. In this mode, the lower order addresses, except for $\mathrm{A}_{0}, \mathrm{~A}_{1}$, and A_{6} are DON'T CARES. Address locations with $\mathrm{A}_{1}=\mathrm{V}_{\mathrm{L}}$ are reserved for Autoselect manufacturer and device codes.

It is also possible to determine if a sector group is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02h, where the higher order addresses ($\mathrm{A}_{19}, \mathrm{~A}_{18}$, and A_{17}) are the desired sector group address will produce a logical " 1 " at DQ_{0} for a protected sector group. See "MBM29F080A Sector Protection Verify Autoselect Codes Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE" for Autoselect codes.

Temporary Sector Group Unprotection

This feature allows temporary unprotection of previously protected sector groups of the MBM29F080A device in order to change data. The Sector Group Unprotection mode is activated by setting the RESET pin to high voltage (12 V). During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once the 12 V is taken away from the $\overline{\text { RESET }}$ pin, all the previously protected sector
groups will be protected again. Refer to "Temporary Sector Group Unprotection Timing Diagram" in "■TIMING DIAGRAM" and "Temporary Sector Group Unprotection Algorithm" in "[FLOW CHART".

Command Definitions

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the device to the read mode. "MBM29F080A Command Definitions Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE" defines the valid register command sequences. Note that the Erase Suspend (BOh) and Erase Resume (30h) commands are valid only while the Sector Erase operation is in progress. Moreover, both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

Read/Reset Command

The read or reset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The device remains enabled for reads until the command register contents are altered.
The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the device resides in the target system. PROM programmers typically access the signature codes by raising A_{9} to a high voltage. However, multiplexing high voltage onto the address lines is not generally desirable system design practice.
The device contains an autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the autoselect command sequence into the command register. Following the command write, a read cycle from address XX00h retrieves the manufacture code of 04 h . A read cycle from address XX01 h returns the device code D5h. (See "MBM29F080A Sector Protection Verify Autoselect Codes Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE").

All manufacturer and device codes will exhibit odd parity with the DQ7 defined as the parity bit.
Sector state (protection or unprotection) will be informed by address XX02h.
Scanning the sector group addresses (A_{17}, A_{18}, A_{19}) while $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " at device output DQ_{0} for a protected sector group.
To terminate the operation, it is necessary to write the read/reset command sequence into the register and also to write the Autoselect command during the operation, execute it after writing Read/Reset command sequence.

Byte Programming

The device is programmed on a byte-by-byte basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of $\overline{C E}$ or $\overline{W E}$, whichever happens later and the data is latched on the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first. The rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

MBM29F080A-55/-70/-90

This automatic programming operation is completed when the data on DQ_{7} is equivalent to data written to this bit at which time the device returns to the read mode and addresses are no longer latched. (See "Hardware Sequence Flags Table" in "⿴FLEXIBLE SECTOR-ERASE ARCHITECTURE".) Therefore, the device requires that a valid address to the device be supplied by the system at this particular instance of time. $\overline{\text { Data }}$ Polling must be performed at the memory location which is being programmed.

Any commands written to the chip during this period will be ignored. If a hardware reset occurs during the programming operation, it is impossible to guarantee the data are being written.

Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from reset/read mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.
"Embedded Program ${ }^{\text {TM }}$ Algorithm" in "IFLOW CHART" illustrates the Embedded Programming ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.
Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the device will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on DQ_{7} is " 1 " (see Write Operation Status section) at which time the device returns to read the mode.
"Embedded Erase ${ }^{\text {TM }}$ Algorithm" in "国FLOW CHART" illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of $\overline{W E}$, while the command (Data $=30 \mathrm{~h}$) is latched on the rising edge of WE. After time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last sector erase command, the sector erase operation will begin.

Multiple sectors may be erased concurrently by writing the six bus cycle operations on "MBM29F080A Command Definitions Table" in "FFLEXIBLE SECTOR-ERASE ARCHITECTURE". This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 50μ s otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last WE will initiate the execution of the Sector Erase command(s). If another falling edge of the WE occurs within the $50 \mu \mathrm{~s}$ time-out window the timer is reset. (Monitor DQ_{3} to determine if the sector erase timer window is still open, see section DQ_{3}, Sector Erase Timer.) Any command other than Sector Erase or Erase Suspend during this time-out period will reset the device to the read mode, ignoring the previous command string. Resetting the device once execution has begun will corrupt the data in that sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for DQ3, Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 15).

Sector erase does not require the user to program the device prior to erase. The device automatically programs all memory locations in the sector(s) to be erased prior to electrical erase. When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.
The automatic sector erase begins after the 50μ s time out from the rising edge of the $\overline{W E}$ pulse for the last sector erase command pulse and terminates when the data on DQ_{7} is " 1 " (see Write Operation Status section) at which time the device returns to the read mode. Data polling must be performed at an address within any of the sectors being erased.
"Embedded Erase ${ }^{\text {TM }}$ Algorithm" in "IFLOW CHART" illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Erase Suspend

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during a Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writing the Erase Suspend command during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.

Any other command written during the Erase Suspend mode will be ignored except the Erase Resume command. Writing the Erase Resume command resumes the erase operation. The addresses are DON'T CARES when writing the Erase Suspend or Erase Resume command.

When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of $15 \mu \mathrm{~s}$ to suspend the erase operation. When the device has entered the erase-suspended mode, the RY/ $\overline{\mathrm{BY}}$ output pin and the DQ7 bit will be at logic " 1 ", and DQ_{6} will stop toggling. The user must use the address of the erasing sector for reading DQ_{6} and DQ_{7} to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.
When the erase operation has been suspended, the device defaults to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ_{2} to toggle. (See the section on DQ2.)
After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Byte Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Byte Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erasesuspended sector while the device is in the erase-suspend-program mode will cause DQ_{2} to toggle. The end of the erase-suspended program operation is detected by the RY/BY output pin, $\overline{\text { Data }}$ polling of DQ7, or by the Toggle Bit I (DQ_{6}) which is the same as the regular Byte Program operation. Note that DQ_{7} must be read from the Byte Program address while DQ_{6} can be read from any address.
To resume the operation of Sector Erase, the Resume command (30h) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

Write Operation Status

Status			DQ 7	DQ6	DQ5	DQ_{3}	DQ2
In Progress	Embedded Program Algorithm		$\overline{\mathrm{DQ}}_{7}$	Toggle	0	0	1
	Embedded Erase Algorithm		0	Toggle	0	1	Toggle
	Erase Suspended Mode	Erase Suspend Read (Erase Suspended Sector)	1	1	0	0	Toggle*1
		Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	Data
		Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}}{ }_{7}$	Toggle ${ }^{* 2}$	0	0	$1^{* 3}$
Exceeded Time Limits	Embedded Program Algorithm		$\overline{\mathrm{DQ}}_{7}$	Toggle	1	0	1
	Embedded Erase Algorithm		0	Toggle	1	1	N/A
	Erase Suspended Mode	Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}}_{7}$	Toggle	1	0	N/A

*1 : Performing successive read operations from the erase-suspended sector will cause DQ2 to toggle.
*2 : Performing successive read operations from any address will cause DQ ${ }_{6}$ to toggle.
*3 : Reading the byte address being programmed while in the erase-suspend program mode will indicate logic " 1 " at the DQ2 bit. However, successive reads from the erase-suspended sector will cause DQ_{2} to toggle.

DQ7

Data Polling

The MBM29F080A device features $\overline{\text { Data }}$ Polling as a method to indicate to the host that the embedded algorithms are in progress or completed. During the Embedded Program Algorithm, an attempt to read the device will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase ${ }^{\text {TM }}$ Algorithm, an attempt to read the device will produce a " 0 " at the DQ7 output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ7 output. The flowchart for Data Polling (DQ7) is shown in "Data Polling Algorithm" in "国FLOW CHART".

Data polling will also flag the entry into Erase Suspend. DQ7 will switch "0" to "1" at the start of the Erase Suspend mode. Please note that the address of an erasing sector must be applied in order to observe DQ_{7} in the Erase Suspend Mode.
During Program in Erase Suspend, Data polling will perform the same as in regular program execution outside of the suspend mode.
For chip erase, the $\overline{\overline{D a t a}}$ Polling is valid after the rising edge of the sixth $\overline{W E}$ pulse in the six write pulse sequence. For sector erase, the $\overline{\text { Data }}$ Polling is valid after the last rising edge of the sector erase $\overline{W E}$ pulse. Data Polling must be performed at sector address within any of the sectors being erased and not a sector that is within a protected sector group. Otherwise, the status may not be valid.
Just prior to the completion of Embedded Algorithm operation DQ ${ }_{7}$ may change asynchronously while the output enable ($\overline{\mathrm{OE}}$) is asserted low. This means that the device is driving status information on DQ7 at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operations and DQ_{7} has a valid data, the data outputs on DQ_{0} to DQ_{6} may be still invalid. The valid data on DQ_{0} to DQ_{7} will be read on the successive read attempts.

The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm, Erase Suspend, erase-suspend-program mode, or sector erase time-out. (See "Hardware Sequence Flags Table" in "■FLEXIBLE SECTOR-ERASE ARCHITECTURE".)

See "AC Waveforms for Data Polling during Embedded Algorithm Operations" in "■TIMING DIAGRAM" for the $\overline{\text { Data }}$ Polling timing specifications and diagrams.

DQ6

Toggle Bit I

The MBM29F080A also features the "Toggle Bit l" as a method to indicate to the host system that the embedded algorithms are in progress or completed.
During an Embedded Program or Erase Algorithm cycle, successive attempts to read ($\overline{\mathrm{OE}}$ toggling) data from the device at any address will result in DQ6 toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ_{6} will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit I is valid after the rising edge of the fourth $\overline{\mathrm{WE}}$ pulse in the four write pulse sequence. For chip erase, and sector erase the Toggle Bit I is valid after the rising edge of the sixth $\overline{W E}$ pulse in the six write pulse sequence. For Sector Erase, the Toggle Bit I is valid after the last rising edge of the sector erase $\overline{W E}$ pulse. The Toggle Bit I is active during the sector erase time out.

In programming, if the sector being written to is protected, the Toggle Bit I will toggle for about $2 \mu \mathrm{~s}$ and then stop toggling without the data having changed. In erase, the device will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the Toggle Bit I for about $100 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.
Either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ toggling will cause the DQ_{6} to toggle. In addition, an Erase Suspend/Resume command will cause DQ_{6} to toggle.

See "AC Waveforms for Toggle Bit I during Embedded Algorithm Operations" in "■TIMING DIAGRAM" for the Toggle Bit I timing specifications and diagrams.

DQ5

Exceeded Timing Limits

DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling DQ7, DQ_{6} is the only operating function of the device under this condition. The $\overline{\mathrm{CE}}$ circuit will partially power down the device under these conditions (to approximately 2 $\mathrm{mA})$. The $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ pins will control the output disable functions as described in "MBM29F080A User Bus Operations Table" in "⿴FLEXIBLE SECTOR-ERASE ARCHITECTURE".

The DQs failure condition may also appear if a user tries to program a 1 to a location that is previously programmed to 0 . In this case the device locks out and never completes the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ_{7} bit and DQ_{6} never stops toggling. Once the device has exceeded timing limits, the DQ5 bit will indicate a "1." Please note that this is not a device failure condition since the device was incorrectly used. If this occurs, reset the device.
D_{3}

Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ_{3} will remain low until the time-out is complete. Data Polling and Toggle Bit I are valid after the initial sector erase command sequence.

MBM29F080A-55/-70/-90

Abstract

If Data Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ_{3} may be used to determine if the sector erase timer window is still open. If DQ_{3} is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands (other than Erase Suspend) to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit I. If DQ_{3} is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ_{3} prior to and following each subsequent sector erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.

Refer to "Hardware Sequence Flags Table" in "⿴FLEXIBLE SECTOR-ERASE ARCHITECTURE".

DQ2

Toggle Bit II

This toggle bit II, along with DQ_{6}, can be used to determine whether the device is in the Embedded Erase ${ }^{\mathrm{TM}}$ Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause DQ_{2} to toggle during the Embedded Erase ${ }^{\text {TM }}$ Algorithm. If the device is in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ_{2} to toggle. When the device is in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at the DQ2 bit.

Mode	$\mathbf{D Q}_{7}$	$\mathbf{D Q}_{6}$	$\mathbf{D Q}_{\mathbf{2}}$
Program	$\overline{\mathrm{DQ}}_{7}$	toggles	1
Erase	0	toggles	toggles
Erase Suspend Read ${ }^{* 1}$ (Erase-Suspended Sector)	1	1	toggles
Erase Suspend Program	$\overline{\mathrm{DQ}}_{7}{ }^{* 2}$	toggles	$1^{{ }^{* 2}}$

*1 : These status flags apply when outputs are read from a sector that has been erase-suspended.
*2 : These status flags apply when outputs are read from the byte address of the non-erase suspended sector.
DQ_{6} is different from DQ_{2} in that DQ_{6} toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of DQ7, is summarized as follows:

For example, DQ_{2} and DQ_{6} can be used together to determine the erase-suspend-read mode (DQ_{2} toggles while DQ6 does not). See also "Hardware Sequence Flags Table" in "IFLEXIBLE SECTOR-ERASE ARCHITECTURE" and "DQ2 vs. DQ6" in "■TIMING DIAGRAM".

Furthermore, DQ_{2} can also be used to determine which sector is being erased. When the device is in the erase mode, DQ_{2} toggles if this bit is read from the erasing sector.

RY/ $\overline{\mathbf{B Y}}$

Ready/Busy

The MBM29F080A provides a RY/BY open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the device is busy with either a program or erase operation. If the output is high, the device is ready to accept any read/write or erase operation. When the RY/ $\overline{\mathrm{BY}}$ pin is low, the device will not accept any additional program or erase commands with the exception of the Erase Suspend command. If the MBM29F080A is placed in an Erase Suspend mode, the RY/ $\overline{\mathrm{BY}}$ output will be high, by means of connecting with a pull-up resistor to V cc.

During programming, the RY/ $\overline{\mathrm{BY}}$ pin is driven low after the rising edge of the fourth $\overline{\mathrm{WE}}$ pulse. During an erase operation, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the sixth $\overline{\mathrm{WE}}$ pulse. The RY/ $\overline{\mathrm{BY}}$ pin will indicate a busy condition during $\overline{\mathrm{RESET}}$ pulse. Refer to "RY/ $\overline{\mathrm{BY}}$ Timing Diagram during Program/Erase Operations" in "■TIMING DIAGRAM" for a detailed timing diagram. The RY/ $\overline{B Y}$ pin is pulled high in standby mode.
Since this is an open-drain output, several RY/ $\overline{B Y}$ pins can be tied together in parallel with a pull-up resistor to Vcc.

RESET

Hardware Reset

The MBM29F080A device may be reset by driving the RESET pin to VIL. The RESET pin must be kept low (VIL) for at least 500 ns . Any operation in progress will be terminated and the internal state machine will be reset to the read mode $20 \mu \mathrm{~s}$ after the RESET pin is driven low. If a hardware reset occurs during a program operation, the data at that particular location will be indeterminate.
When the $\overline{\operatorname{RESET}}$ pin is low and the internal reset is complete, the device goes to standby mode and cannot be accessed. Also, note that all the data output pins are tri-stated for the duration of the $\overline{\operatorname{RESET}}$ pulse. Once the RESET pin is taken high, the device requires tre of wake up time until outputs are valid for read access.
The $\overline{\text { RESET }}$ pin may be tied to the system reset input. Therefore, if a system reset occurs during the Embedded Program or Erase Algorithm, the device will be automatically reset to read mode and this will enable the system's microprocessor to read the boot-up firmware from the Flash memory.

Data Protection

The MBM29F080A is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the device automatically resets the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completions of specific multi-bus cycle command sequences.
The device also incorporates several features to prevent inadvertent write cycles resulting from Vcc power-up and power-down transitions or system noise.

Low Vcc Write Inhibit

To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than 3.2 V (typically 3.7 V). If V сс < V เко, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the V cc level is greater than $\mathrm{V}_{\text {Lko. }}$. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when V_{cc} is above 3.2 V .

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, or $\overline{\mathrm{WE}}$ will not initiate a write cycle.

Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$ or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$. To initiate a write cycle $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be a logical zero while $\overline{\mathrm{OE}}$ is a logical one.

Power-Up Write Inhibit

Power-up of the device with $\overline{\mathrm{WE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathbb{H}}$ will not accept commands on the rising edge of $\overline{\mathrm{WE}}$. The internal state machine is automatically reset to the read mode on power-up.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	TA	-40	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET ${ }^{\star_{1}, \star_{2}}$	Vin, Vout	-2.0	+7.0	V
Power Supply Voltage *1, *3	Vcc	-2.0	+7.0	V
$\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ *2	VIN	-2.0	+13.5	V

*1 : Voltage is defined on the basis of $\mathrm{Vss}=\mathrm{GND}=0 \mathrm{~V}$.
*2 : Minimum DC voltage on input or I/O pins is -0.5 V . During voltage transitions, input or I/O pins may underhoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins is $\mathrm{Vcc}+0.5 \mathrm{~V}$. During voltage transitions, input or I/O pins may overshoot to $\mathrm{V} \mathrm{cc}+2.0 \mathrm{~V}$ for periods up to 20 ns .
*3: Minimum DC input voltage on $\mathrm{A}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ pins are -0.5 V . During voltage transitions, $\mathrm{A}, \overline{\mathrm{OE}}$, and RESET pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Voltage difference between input and power supply ($\mathrm{V}_{\mathrm{N}}-\mathrm{V}_{\mathrm{cc}}$) does not exceed +9.0 V . Maximum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET are +13.0 V which may overshoot to +14.0 V for periods up to 20 ns .
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value		Unit	
		Min	Max			
Ambient Temperature	MBM29F080A-55		T_{A}	-20	+70	${ }^{\circ} \mathrm{C}$
	MBM29F080A-70/-90	-40		+85	${ }^{\circ} \mathrm{C}$	
Vcc Supply Voltages *	MBM29F080A-55	Vcc	+4.75	+5.25	V	
	MBM29F080A-70/-90		+4.50	+5.50	V	

*: Voltage is defined on the basis of $\mathrm{Vss}=\mathrm{GND}=0 \mathrm{~V}$.
Note : Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ MAXIMUM OVERSHOOT / MAXIMUM UNDERSHOOT

1. Maximum Undershoot Waveform

2. Maximum Overshoot Waveform 1

3. Maximum Overshoot Waveform 2

Note : This waveform is applied for $\mathrm{A}, \overline{\mathrm{OE}}$ and $\overline{\mathrm{RESET}}$.

MBM29F080A-55/-70/-90

■ DC CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Max	Unit
Input Leakage Current	ILI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$	-	± 1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	$\begin{aligned} & \text { Vout }=V_{\text {ss }} \text { to } V_{c c}, \\ & V_{c c}=V_{c c} M a x \end{aligned}$	-	± 1.0	$\mu \mathrm{A}$
Aя, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current	Іıт	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{V} \mathrm{Vc} \operatorname{Max} \\ & \mathrm{~A}_{9}, \overline{\mathrm{OE}}, \mathrm{RESET}=12.5 \mathrm{~V} \end{aligned}$	-	50	$\mu \mathrm{A}$
Vcc Active Current *1	$\mathrm{lcC1}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	-	40	mA
Vcc Active Current *2	Icca	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	-	45	mA
Vcc Current (Standby)	Icc3	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{Vc}} \mathrm{Max}^{\mathrm{RESET}}=\mathrm{V}_{\mathrm{H}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}, \end{aligned}$	-	1	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V} \mathrm{Vc} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V} \end{aligned}$	-	5	$\mu \mathrm{A}$
Vcc Current (Standby, Reset)	Icc4	$\begin{aligned} & V_{c c}=V_{c c} \operatorname{Max}, \\ & \text { RESET }=V_{I L}, \end{aligned}$	-	1	mA
		$\begin{aligned} & \mathrm{Vcc}=\mathrm{Vcc} \mathrm{Max} \\ & \mathrm{RESET}=\mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$	-	5	$\mu \mathrm{A}$
Input Low Level	VIL	-	-0.5	0.8	V
Input High Level	V_{H}	-	2.0	$\mathrm{V}_{\text {cc }}+0.5$	V
Voltage for Autoselect and Sector Protection (A9, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$) *3, *4	VID	-	11.5	12.5	V
Output Low Voltage Level	VoL	$\mathrm{loL}=12.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$	-	0.45	V
Output High Voltage Level	Vor1	$\mathrm{IoH}=-2.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$	2.4	-	V
	Vон2	$\mathrm{loH}=-100 \mu \mathrm{~A}$	Vcc-0.4	-	V
Low Vcc Lock-Out Voltage	Vıко	-	3.2	4.2	V

*1 : The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz). The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$, with $\overline{\mathrm{OE}}$ at V_{I}.
*2 : Icc active while Embedded Algorithm (program or erase) is in progress.
*3 : Applicable to sector protection function.
*4 : ($\left.\mathrm{V}_{\text {ID }}-\mathrm{V}_{\text {cc }}\right)$ do not exceed 9 V .

- AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter	Symbol		Test Setup	-55 *1		-70 *2		-90 *2		Unit
	JEDEC	Standard		Min	Max	Min	Max	Min	Max	
Read Cycle Time	tavav	trc	-	55	-	70	-	90	-	ns
Address to Output Delay	tavqv	$t_{\text {Acc }}$	$\begin{aligned} & \overline{\overline{\mathrm{CE}}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	55	-	70	-	90	ns
Chip Enable to Output Delay	telqv	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	55	-	70	-	90	ns
Output Enable to Output Delay	tglav	toe	-	-	30	-	30	-	40	ns
Chip Enable to Output HIGH-Z	tehqz	tof	-	-	20	-	20	-	20	ns
Output Enable to Output HIGH-Z	tghoz	toF	-	-	20	-	20	-	20	ns
Output Hold Time From Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	tor	-	0	-	0	-	0	-	ns
$\overline{\text { RESET Pin Low to Read Mode }}$	-	tready	-	-	20	-	20	-	20	$\mu \mathrm{s}$

*1: Test Conditions:
Output Load: 1 TTL gate and 30 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V or 3.0 V
Timing measurement reference level Input: 1.5 V
Output: 1.5 V
*2 : Test Conditions:
Output Load: 1 TTL gate and 100 pF Input rise and fall times: 5 ns
Input pulse levels: 0.45 V or 2.4 V
Timing measurement reference level Input: 0.8 V and 2.0 V
Output: 0.8 V and 2.0 V

Notes: • MBM29F080A-55: $\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$ including jig capacitance

- MBM29F080A-70/-90: $\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance

Test Conditions

MBM29F080A-55/-70/-90

- Write/Erase/Program Operations

Description		Symbol		MBM29F080A									Unit	
		JEDEC	Standard	-55			-70			-90				
		Min		Typ	Max	Min	Typ	Max	Min	Typ	Max			
Write Cycle Time			tavav	twc	55	-	-	70	-	-	90	-	-	ns
Address Setup Time		tavwL	tas	0	-	-	0	-	-	0	-	-	ns	
Address Hold Time		twlax	taH	40	-	-	45	-	-	45	-	-	ns	
Data Setup Time		tovw	tos	25	-	-	30	-	-	45	-	-	ns	
Data Hold Time		twhox	toh	0	-	-	0	-	-	0	-	-	ns	
Output Enable Setup Time		-	toes	0	-	-	0	-	-	0	-	-	ns	
Output Enable Hold Time	Read	-	tоен	0	-	-	0	-	-	0	-	-	ns	
	Toggle Bit I and Data Polling			10	-	-	10	-	-	10	-	-	ns	
Read Recover Time Before Write		tahwL	tarwL	0	-	-	0	-	-	0	-	-	ns	
Read Recover Time Before Write		tahel	tGHEL	0	-	-	0	-	-	0	-	-	ns	
$\overline{\text { CE Setup Time }}$		telwh	tcs	0	-	-	0	-	-	0	-	-	ns	
$\overline{\text { WE S Setup Time }}$		twlel	tws	0	-	-	0	-	-	0	-	-	ns	
$\overline{\text { CE Hold Time }}$		twher	tch	0	-	-	0	-	-	0	-	-	ns	
$\overline{\text { WE }}$ Hold Time		tehwh	twn	0	-	-	0	-	-	0	-	-	ns	
Write Pulse Width		twLwh	twp	30	-	-	35	-	-	45	-	-	ns	
Write Pulse Width		teLeh	tcp	30	-	-	35	-	-	45	-	-	ns	
Write Pulse Width High		twhwL	twpH	20	-	-	20	-	-	20	-	-	ns	
Write Pulse Width High		tehel	tcP\%	20	-	-	20	-	-	20	-	-	ns	
Byte Programming Operation		twhwh	twhwH1	-	8	-	-	8	-	-	8	-	$\mu \mathrm{s}$	
Sector Erase Operation *1		twHwH2	twhwHz	-	1	-	-	1	-	-	1	-	s	
		-		-	8	-	-	8	-	-	8	s		
V cc Setup Time			-	tvcs	50	-	-	50	-	-	50	-	-	$\mu \mathrm{s}$
Rise Time to VID		-	tvior	500	-	-	500	-	-	500	-	-	ns	
Voltage Transition Time *2		-	tvLht	4	-	-	4	-	-	4	-	-	$\mu \mathrm{s}$	
Write Pulse Width *2		-	twpp	100	-	-	100	-	-	100	-	-	$\mu \mathrm{s}$	
$\overline{\text { OE Setup Time to } \overline{\text { WE }} \text { Active *2 }}$		-	toesp	4	-	-	4	-	-	4	-	-	$\mu \mathrm{S}$	
$\overline{\text { CE Setup Time to } \overline{\mathrm{WE}} \text { Active *2 }}$		-	tcsp	4	-	-	4	-	-	4	-	-	$\mu \mathrm{s}$	
Recover Time from RY/ $\overline{\mathrm{BY}}$		-	trb	0	-	-	0	-	-	0	-	-	ns	

(Continued)

MBM29F080A-55-70-90

(Continued)

Description	Symbol		MBM29F080A									Unit
	JEDEC	Standard	-55			-70			-90			
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
RESET Pulse Width	-	trp	500	-	-	500	-	-	500	-	-	ns
RESET Hold Time Before Read	-	trH	50	-	-	50	-	-	50	-	-	ns
Program/Erase Valid to RY/ $\overline{\mathrm{BY}}$ Delay	-	tBusy	-	-	55	-	-	70	-	-	90	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	30	-	-	30	-	-	40	ns

*1: This does not include the preprogramming time.
*2 : This timing is for Sector Protection operation.

■ ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments
	Min	Typ	Max		s
Sector Erase Time	-	1	Excludes 00h programming prior to erasure		
Byte Programming Time	-	8	150	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	8.4	20	s	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycle	

TSOP(1) PIN CAPACITANCE

Parameter	Symbol	Test Setup	Typ	Max	Unit
Input Capacitance	$\mathrm{Clin}^{\text {d }}$	$\mathrm{V}_{\mathrm{IN}}=0$	8	10	pF
Output Capacitance	Cout	Vout $=0$	8	10	pF
Control Pin Capacitance	$\mathrm{Cl}_{1 \times 2}$	$\mathrm{V}_{\mathbb{N}}=0$	9	10	pF

Note : Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SOP PIN CAPACITANCE

Parameter	Symbol	Test Setup	Typ	Max	Unit
Input Capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathrm{N}}=0$	8	10.5	pF
Output Capacitance	Cout	$\mathrm{V}_{\text {out }}=0$	8	10	pF
Control Pin Capacitance	$\mathrm{C}_{\mathbb{N} 2}$	$\mathrm{~V}_{\mathrm{IN}}=0$	9.5	11	pF

Notes: • Sampled, not 100\% tested.

- Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

MBM29F080A-55/-70/-90

TIMING DIAGRAM

- Key to Switching Waveforms

WAVEFORM	INPUTS Must Be Steady	OUTPUTS Steady		
	May Change from H to L	Will Be Changing from H to L		
May				
Change				
from L to H			\quad	Will Be
:---				
Changing				
from L to H				
"H" or "L"				
Any Change				
Permitted	\quad	Changing,		
:---				
State				
Unknown				

(1) AC Waveforms for Read Operations

(2) AC Waveforms for Read Operations

(3) AC Waveforms for Alternate $\overline{\text { WE Controlled Program Operations }}$

MBM29F080A-55/-70/-90

(4) AC Waveforms for Alternate $\overline{\text { CE Controlled Program Operations }}$

Notes : •PA is address of the memory location to be programmed.

- PD is data to be programmed at byte address.
- DQ_{7} is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates last two bus cycles of four bus cycle sequence.
(5) AC Waveforms Chip/Sector Erase Operations

*: SA is the sector address for Sector Erase. Addresses $=555 \mathrm{~h}$ for Chip Erase.
(6) AC Waveforms for Data Polling during Embedded Algorithm Operations

MBM29F080A-55/-70/-90

(7) AC Waveforms for Toggle Bit I during Embedded Algorithm Operations

*: DQ6 stops toggling (The device has completed the Embedded operation.)
(8) $\mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram During Program/Erase Operations

(9) $\overline{\text { RESET, RY/ }} \overline{\overline{B Y}}$ Timing Diagram

MBM29F080A-55/-70.90

(10) AC Waveforms for Sector Group Protection Timing Diagram

MBM29F080A-55/-70/-90

(11) Temporary Sector Group Unprotection Timing Diagram

(12) DQ_{2} vs. DQ_{6}

FLOW CHART

(1) Embedded Program ${ }^{\text {TM }}$ Algorithm

EMBEDDED ALGORITHMS

Program Command Sequence (Address/Command):

MBM29F080A-55/-70-90

(2) Embedded Erase ${ }^{\text {TM }}$ Algorithm

Note : To insure the command has been accepted, the system software should check the status of DQ_{3} prior to and following each subsequent sector erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.
(3) Data Polling Algorithm

$\mathrm{VA}=$ Address for programming
= Any of the sector addresses within the sector being erased during sector erase or multiple erases operation.
= Any of the sector group addresses within the sector not being protected during sector erase or multiple sector erases operation.

Note : DQ_{7} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{7} may change simultaneously with DQ_{5}.

MBM29F080A-55/-70-90

(4) Toggle Bit I Algorithm

*1 : Read toggle bit twice to determine whether it is toggling.
*2 : DQ6 is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{6} may stop toggling at the same time as DQ5 changing to " 1 ".
(5) Sector Group Protection Algorithm

MBM29F080A-55/-70/-90

(6) Temporary Sector Group Unprotection Algorithm

*1 : All Protected sector groups unprotected.
*2 : All previously protected sector groups are protected once again.

ORDERING INFORMATION

| MBM29F080A | |
| :--- | :--- | :--- | :--- |

PACKAGE TYPE

PFTN $=48$-Pin Thin Small Outline Package (TSOP(1) Standard Pinout)
PFTR $=48$-Pin Thin Small Outline Package (TSOP(1) Reverse Pinout)
PTN $=40-$ Pin Thin Small Outline Package (TSOP(1) Standard Pinout)
PTR $=40-$ Pin Thin Small Outline Package (TSOP(1) Reverse Pinout)
PF $=44-$ Pin Small Outline Package (SOP Standard Pinout)
SPEED OPTION
See Product Selector Guide

DEVICE NUMBER/DESCRIPTION
MBM29F080A
8 Mega-bit (1 M $\times 8$-Bit) CMOS Flash Memory
5.0 V-only Read, Write, and Erase 64 K Byte (16 Sectors)

Part No.	Package	Access Time	Remarks
MBM29F080A-55PTN	40-pin plastic TSOP(1)	55	
MBM29F080A-70PTN	(FPT-40P-M06)	70	
MBM29F080A-90PTN	(Normal Bend)	90	
MBM29F080A-55PTR	40-pin plastic TSOP(1)	55	
MBM29F080A-70PTR	(FPT-40P-M07)	70	
MBM29F080A-90PTR	(Reverse Bend)	90	
MBM29F080A-55PFTN	48-pin plastic TSOP(1)	55	
MBM29F080A-70PFTN	(FPT-48P-M19)	70	
MBM29F080A-90PFTN	(Normal Bend)	90	
MBM29F080A-55PFTR	48-pin plastic TSOP(1)	55	
MBM29F080A-70PFTR	(FPT-48P-M20)	70	
MBM29F080A-90PFTR	(Reverse Bend)	90	
MBM29F080A-55PF	44-pin plastic SOP	55	
MBM29F080A-70PF	(FPT-44P-M16)	70	90
MBM29F080A-90PF			

PACKAGE DIMENSIONS

40-pin plastic TSOP (1)
(FPT-40P-M06)

Note 1) *: Resin protrusion. (Each side : +0.15 (.006) Max) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJTSU LIMITED F400075-C.3-4
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

40-pin plastic TSOP (1)
(FPT-40P-M07)

Note 1) *: Resin protrusion. (Each side : +0.15 (.006) Max) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMITED F40008S-C--3-4
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

48-pin plastic TSOP (1) (FPT-48P-M19)

Note 1) *: Values do not include resin protrusion.
Resin protrusion and gate protrusion are +0.15 (.006) Max (each side) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUUTSU LIMITED F48029S-C-6.7
Dimensions in mm (inches)
Note: The values in parentheses are reference values.
Note 1) * : Values do not include resin protrusion.
Resin protrusion and gate protrusion are +0.15 (.006) Max (each side) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

(Continued)

MBM29F080A-55/-70/-90

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

