MBM29LV200TC-70/-90/
 MBM29LV200BC-70/-90

Data Sheet (Retired Product)

This product has been retired and is not recommended for new designs. Availability of this document is retained for reference and historical purposes only.

Continuity of Specifications

There is no change to this data sheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal data sheet improvement and are noted in the document revision summary.

For More Information

Please contact your local sales office for additional information about Spansion memory solutions.

This page left intentionally blank.

SPANSION ${ }^{T M}$ Flash Memory

Data Sheet

September 2003

This document specifies SPANSION ${ }^{\top M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{T M}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\text {TM }}$ memory solutions.

FLASH MEMORY

CMOS

2 M $(256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16)$ BIT

MBM29LV200TC-70/-90/MBM29LV200BC-70-90

■ GENERAL DESCRIPTION

The MBM29LV200TC/BC are a 8M-bit, 3.0 V-only Flash memory organized as 256 K bytes of 8 bits each or 128 K words of 16 bits each. The MBM29LV200TC/BC are offered in 48-pin TSOP(1) and 44-pin SOP packages. These devices are designed to be programmed in-system with the standard system $3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ supply. $12.0 \mathrm{~V} \mathrm{~V}_{\mathrm{PP}}$ and 5.0 V Vcc are not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers.

The standard MBM29LV200TC/BC offer access times 70 ns and 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the devices have separate chip enable ($\overline{\mathrm{CE}}$), write enable ($\overline{\mathrm{WE}}$), and output enable ($\overline{\mathrm{OE}}$) controls.
(Continued)
■ PRODUCT LINE UP

Part No.		MBM29LV200TC/MBM29LV200BC	
Ordering Part No.	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}{ }_{-0.3 \mathrm{~V}}^{+0.3 \mathrm{~V}}$	-70	-
	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}{ }_{-0.3 \mathrm{~V}}^{+0.6}$	-	-90
Max Address Access Time (ns)	70	90	
Max CE Access Time (ns)	70	90	
Max $\overline{\mathrm{OE}}$ Access Time (ns)	30	35	

PACKAGES

MBM29LV200TC/200BC-70/90

(Continued)

The MBM29LV200TC/BC are pin and command set compatible with JEDEC standard E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the devices is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.
The MBM29LV200TC/BC are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the devices automatically time the erase pulse widths and verify proper cell margin.
A sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)
The devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LV200TC/BC are erased when shipped from the factory.

The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ_{7}, by the Toggle Bit feature on DQ_{6}, or the $\mathrm{RY} / \overline{\mathrm{BY}}$ output pin. Once the end of a program or erase cycle has been completed, the devices internally reset to the read mode.
Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29LV200TC/BC memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

MBM29LV200TC/200BC-70/90

■ FEATURES

- Single 3.0 V read, program, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Uses same software commands as E²PROMs

- Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP(1) (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type)
44-pin SOP (Package suffix: PF)

- Minimum 100,000 program/erase cycles
- High performance

70 ns maximum access time

- Sector erase architecture

One 8 K word, two 4 K words, one 16 K word, and three 32 K words sectors in word mode
One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes sectors in byte mode
Any combination of sectors can be concurrently erased. Also supports full chip erase

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Embedded Erase ${ }^{\text {TM* }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM* }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Sector protection

Hardware method disables any combination of sectors from program or erase operations

- Sector Protection set function by Extended sector Protect command
- Temporary sector unprotection

Temporary sector unprotection via the RESET pin

[^0]
MBM29LV200TC/200BC--7090

PIN ASSIGNMENTS

(FPT-48P-M19)

MBM29LV200TC/200BC-70/90

- PIN DESCRIPTION

Pin name	
A_{16} to $\mathrm{A}_{0}, \mathrm{~A}_{-1}$	Address Inputs
DQ_{15} to DQ_{0}	Data Inputs/Outputs
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{WE}}$	Write Enable
RY/ $\overline{\mathrm{BY}}$	Ready/Busy Output
$\overline{\mathrm{RESET}}$	Hardware Reset Pin/Temporary Sector Unprotection
BYTE	Selects 8-bit or 16-bit mode
N.C.	No Internal Connection
$\mathrm{Vss}_{\mathrm{ss}}$	Device Ground
Vcc	Device Power Supply

BLOCK DIAGRAM

LOGIC SYMBOL

MBM29LV200TC/200BC-70/90

DEVICE BUS OPERATION

MBM29LV200TC/200BC User Bus Operations Table ($\overline{\text { BYTE }}=\mathrm{V}_{\mathrm{H}}$)

Operation	$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { WE }}$	A	A_{1}	A6	A9	DQ_{15} to DQ ${ }_{0}$	$\overline{\text { RESET }}$
Auto-Select Manufacturer Code *1	L	L	H	L	L	L	VID	Code	H
Auto-Select Device Code *1	L	L	H	H	L	L	VID	Code	H
Read *3	L	L	H	A	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	High-Z	H
Output Disable	L	H	H	X	X	X	X	High-Z	H
Write (Program/Erase)	L	H	L	A0	A_{1}	A_{6}	A_{9}	Din	H
Enable Sector Protection *2,*4	L	VID	\checkmark	L	H	L	VID	X	H
Verify Sector Protection *2,*4	L	L	H	L	H	L	VID	Code	H
Temporary Sector Unprotection	X	X	X	X	X	X	X	X	VID
Reset (Hardware) / Standby	X	X	X	X	X	X	X	High-Z	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{H}}, \mathrm{X}=\mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{IH}}, ~ Ъ$ = Pulse input. See "■ DC CHARACTERISTICS" for voltage levels.
*1 : Manufacturer and device codes may also be accessed via a command register write sequence. See "MBM29LV200TC/200BC Standard Command Definitions Table".
*2 : Refer to the section on Sector Protection.
*3 : $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*4 : Vcc = $3.3 \mathrm{~V} \pm 10 \%$

MBM29LV200TC/200BC User Bus Operations Table ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\text {IL }}$)

Operation	CE	OE	WE	$\begin{array}{\|c\|} \hline \mathbf{D Q}_{15 /} \\ \mathbf{A}_{-1} \end{array}$	A 0	A_{1}	A6	A9	$\begin{gathered} \mathrm{DQ}_{7} \text { to } \\ \mathrm{DO}_{0} \end{gathered}$	RESET
Auto-Select Manufacturer Code *1	L	L	H	L	L	L	L	VID	Code	H
Auto-Select Device Code *1	L	L	H	L	H	L	L	VID	Code	H
Read *3	L	L	H	A-1	A0	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	X	High-Z	H
Output Disable	L	H	H	X	X	X	X	X	High-Z	H
Write (Program/Erase)	L	H	L	A-1	A0	A_{1}	A_{6}	A_{9}	Din	H
Enable Sector Protection *2, *4	L	VID	乙	L	L	H	L	VID	X	H
Verify Sector Protection *2, *4	L	L	H	L	L	H	L	VID	Code	H
Temporary Sector Unprotection *5	X	X	X	X	X	X	X	X	X	VID
Reset (Hardware) / Standby	X	X	X	X	X	X	X	X	High-Z	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}, ~ Ъ=$ Pulse input. See "■ DC CHARACTERISTICS" for voltage levels.
*1 : Manufacturer and device codes may also be accessed via a command register write sequence. See "MBM29LV200TC/200BC Standard Command Definitions Table".
*2 : Refer to the section on Sector Protection.
*3 : $\overline{\mathrm{WE}}$ can be V_{LL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations.
*4 : Vcc = $3.3 \mathrm{~V} \pm 10 \%$
*5 : It is also used for the extended sector protection.

MBM29LV200TC/200BC-70/90

MBM29LV200TC/200BC Standard Command Definitions Table

Command Sequence		BusWriteCycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		
		Addr.	Data												
Read/Reset	$\begin{array}{\|l\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$		1	XXXh	FOh	-	-	-	-	-	-	-	-	-	-
Read/Reset	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	3	555h	AAh	$\frac{2 \mathrm{AAh}}{555 \mathrm{~h}}$	55h	$\begin{aligned} & \text { 555h } \\ & \hline \text { AAAh } \end{aligned}$	FOh	RA	RD	-	-	-	-	
Autoselect	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	3	555h AAAh	AAh		55h		90h	-	-	-	-	-	-	
Program	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	4		AAh		55h		AOh	PA	PD	-	-	-	-	
Chip Erase	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	6		AAh		55h		80h	$555 \mathrm{~h}$ AAAh	AAh	$\begin{aligned} & \hline \text { 2AAh } \\ & \hline 555 \mathrm{~h} \end{aligned}$	55h	$\begin{aligned} & \text { 555h } \\ & \hline \text { AAAh } \end{aligned}$	10h	
Sector Erase	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	6	555h AAAh	AAh	2AAh	55h	555h	80h	555h AAAh	AAh	$\begin{aligned} & \hline \text { 2AAh } \\ & \hline 5555 \mathrm{~h} \end{aligned}$	55h	SA	30h	
Sector Erase Suspend			Erase can be suspended during sector erase with Addr. ("H" or "L"). Data (BOh)												
Sector Erase Resume			Erase can be resumed after suspend with Addr. ("H" or "L"). Data (30h)												

Notes: • Address bits $=\mathrm{X}=$ " H " or "L" for all address commands except or Program Address (PA) and Sector Address (SA)

- Bus operations are defined in "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\text { BYTE }}=\mathrm{V}_{\mathrm{H}}$)" and "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{IL}}$)".
- RA = Address of the memory location to be read PA = Address of the memory location to be programmed

Addresses are latched on the falling edge of the $\overline{\mathrm{WE}}$ pulse.
$S A=$ Address of the sector to be erased. The combination of $A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.

- $R D=$ Data read from location RA during read operation. $\mathrm{PD}=$ Data to be programmed at location PA. Data is latched on the rising edge of $\overline{\mathrm{WE}}$.
- The system should generate the following address patterns:

Word Mode: 555h or 2AAh to addresses A_{10} to A_{0}
Byte Mode: AAAh or 555h to addresses A_{10} to A_{0} and A_{-1}

- Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
- Command combinations not described in "MBM29LV200TC/BC Standard Command Definitions Table" are illegal.

MBM29LV200TC/200BC-70/90

MBM29LV200TC/BC Extended Command Definitions Table

Command Sequence		Bus Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read Cycle		
		Addr	Data	Addr	Data	Addr	Data	Addr	Data		
Set to	Word		3	555h	AAh	2AAh	55h	555h	20h	-	-
Fast Mode	Byte	AAAh		555h		AAAh					
	Word	2	XXXh	A0h	PA	PD	-	-	-	-	
Fast Program	Byte		XXXh								
set from Fast	Word	2	XXXh	90h	XXXh	FOh *3	-	-	-	-	
	Byte		XXXh		XXXh						
Extended Sector Protect*2	Word	3	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	
	Byte										

SPA : Sector address to be protected. Set sector address (SA) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.
SD : Sector protection verify data. Output 01h at protected sector addresses and output 00h at unprotected sector addresses.
*1: This command is valid while Fast Mode.
*2: This command is valid while $\overline{\operatorname{RESET}}=\mathrm{V}_{\mathrm{ID}}$
*3: The data "00h" is also acceptable.

MBM29LV200TC/200BC Sector Protection Verify Autoselect Codes Table

Type			A_{16} to A_{12}	A6	A1	A0	A-1* ${ }^{*}$	Code (HEX)
Manufacture's Code			X	VIL	VIL	VIL	VIL	04h
Device Code	MBM29LV200TC	Byte	X	VIL	VIL	VIH	VIL	3Bh
		Word					X	223Bh
	MBM29LV200BC	Byte	X	VIL	VIL	VIH	VIL	BFh
		Word					X	22BFh
Sector Protection			Sector Addresses	VIL	VIH	VIL	VIL	01h*2

*1: A-1 is for Byte mode.
*2: Outputs 01h at protected sector addresses and outputs 00h at unprotected sector addresses.

MBM29LV200TC/200BC-70/90

Expanded Autoselect Code Table

Type			Code	DQ ${ }_{15}$	DQ ${ }_{14}$	DQ_{13}	DQ_{12}	DQ ${ }_{11}$	DQ ${ }_{10}$	DQ ${ }_{\text {a }}$	DQ_{8}	DQ_{7}	DQ_{6}	DQ ${ }_{5}$	DQ_{4}	DQ_{3}	DQ_{2}	DQ ${ }_{1}$	DQ 0_{0}
Manufacturer's Code*			04h	A. $1 / 0$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Device Code	MBM29LV200TC	(B)	3Bh	A-1	HI-Z	0	0	1	1	1	0	1	1						
		(W)	223Bh	0	0	1	0	0	0	1	0	0	0	1	1	1	0	1	1
	MBM29LV200BC	(B)	BFh	A-1	HI-Z	1	0	1	1	1	1	1	1						
		(W)	22BFh	0	0	1	0	0	0	1	0	1	0	1	1	1	1	1	1
Sector Protection			01h	A. $1 / 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(B) : Byte mode
(W) : Word mode

HI-Z : High-Z

* : At Byte mode, DQ_{15} to DQ_{8} are High-Z and DQ_{15} is A_{-1}, the lowest address.

MBM29LV200TC/200BC-70/90

■ FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes
- Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable.

	(×8)	($\times 16$)		($\times 8$)	($\times 16$)
16K byte	3FFFFh 1FFFFh 3BFFFh 1DFFFh 39FFFh 1CFFFh		64K byte	3FFFFh 2FFFFh	1FFFFh 17FFFh
8K byte			64K byte		
8K byte			64K byte	1FFFFh	OFFFFh
32K byte			32K byte	0FFFFh	07FFFh
64K byte	2FFFFh	Fh	8K byte	07FFFh	03FFFh
64K byte		OFFFFh	8K byte	05FFFh	02FFFh
64K byte			16K byte	03FFFh	01FFFh
	00000h	00000h		00000h 00000h	
MBM29LV200TC Sector Architecture			MBM29LV200BC Sector Architecture		

MBM29LV200TC/200BC-70990

Sector Address Tables (MBM29LV200TC)

Sector Address	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Address Range ($\times 8$)	Address Range ($\times 16$)
SAO	0	0	X	X	X	00000h to 0FFFFh	00000h to 07FFFh
SA1	0	1	X	X	X	10000h to 1FFFFh	08000h to 0FFFFh
SA2	1	0	X	X	X	20000h to 2FFFFh	10000h to 17FFFh
SA3	1	1	0	X	X	30000h to 37FFFh	18000h to 1BFFFh
SA4	1	1	1	0	0	38000h to 39FFFh	1C000h to 1CFFFh
SA5	1	1	1	0	1	3A000h to 3BFFFh	1D000h to 1DFFFh
SA6	1	1	1	1	X	3C000h to 3FFFFh	1E000h to 1FFFFh

Sector Address Tables (MBM29LV200BC)

Sector Address	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Address Range ($\times \mathbf{8}$)	Address Range ($\times \mathbf{1 6}$)
SA0	0	0	0	0	X	00000 h to 03FFFh	00000 h to 01FFFh
SA1	0	0	0	1	0	04000 h to 05FFFh	02000 h to 02FFFh
SA2	0	0	0	1	1	06000 h to 07FFFh	03000 h to 03FFFh
SA3	0	0	1	X	X	08000 h to 0FFFFh	04000 h to 07FFFh
SA4	0	1	X	X	X	10000 h to $1 F F F F h$	08000 h to 0FFFFh
SA5	1	0	X	X	X	20000h to $2 F F F F h$	10000 h to $17 F F F h$
SA6	1	1	X	X	X	30000h to $3 F F F F h$	18000 h to $1 F F F F h$

MBM29LV200TC/200BC-70/90

FUNCTIONAL DESCRIPTION

Read Mode

The MBM29LV200TC/BC have two control functions which must be satisfied in order to obtain data at the outputs. $\overline{C E}$ is the power control and should be used for a device selection. $\overline{O E}$ is the output control and should be used to gate data to the output pins if a device is selected.
Address access time ($\mathrm{t}_{\mathrm{A} C c}$) is equal to the delay from stable addresses to valid output data. The chip enable access time (tcE) is the delay from stable addresses and stable $\overline{\mathrm{CE}}$ to valid data at the output pins. The output enable access time is the delay from the falling edge of $\overline{O E}$ to valid data at the output pins. (Assuming the addresses have been stable for at least tacc-toe time.) When reading out a data without changing addresses after power-up, it is necessary to input hardware reset or change CE pin from "H" or "L".

Standby Mode

There are two ways to implement the standby mode on the MBM29LV200TC/BC devices, one using both the $\overline{\mathrm{CE}}$ and RESET pins; the other via the RESET pin only.
When using both pins, a CMOS standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\operatorname{RESET}}$ inputs both held at $\mathrm{V}_{c c} \pm 0.3 \mathrm{~V}$. Under this condition the current consumed is less than $5 \mu \mathrm{~A}$. The device can be read with standard access time (tcE) from either of these standby modes. During Embedded Algorithm operation, Vcc active current (Iccz) is required even CE = "H".
When using the RESET pin only, a CMOS standby mode is achieved with RESET input held at $\mathrm{V}_{\text {ss }} \pm 0.3 \mathrm{~V}$ ($\overline{\mathrm{CE}}=$ " H " or " L "). Under this condition the current is consumed is less than $5 \mu \mathrm{~A}$. Once the $\overline{\operatorname{RESET}}$ pin is taken high, the device requires $\mathrm{trH}^{\boldsymbol{r}}$ of wake up time before outputs are valid for read access.
In the standby mode the outputs are in the high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Automatic Sleep Mode

There is a function called automatic sleep mode to restrain power consumption during read-out of MBM29LV200TC/200BC data. This mode can be used effectively with an application requested low power consumption such as handy terminals.
To activate this mode, MBM29LV200TC/200BC automatically switch themselves to low power mode when MBM29LV200TC/200BC addresses remain stably during access fine of 150 ns . It is not necessary to control $\overline{\mathrm{CE}}, \overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}$ on the mode. Under the mode, the current consumed is typically $1 \mu \mathrm{~A}$ (CMOS Level).

Since the data are latched during this mode, the data are read-out continuously. If the addresses are changed, the mode is canceled automatically and MBM29LV200TC/200BC read-out the data for changed addresses.

Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\boldsymbol{H}}\right)$, output from the devices are disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The autoselect mode allows the reading out of a binary code from the devices and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the devices to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the devices.
To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{ID}}(11.5 \mathrm{~V}$ to 12.5 V) on address pin Ag. Two identifier bytes may then be sequenced from the devices outputs by toggling address A_{0} from V_{IL} to V_{IH}. All addresses are DON'T CARES except Ao, A A_{1}, A_{6}, and A-1. (See "MBM29LV200TC/200BC Sector Protection Verify Autoselect Codes Table" in ■DEVICE BUS OPERATION.)
The manufacturer and device codes may also be read via the command register, for instances when the MBM29LV200TC/BC are erased or programmed in a system without access to high voltage on the As pin. The command sequence is illustrated in "MBM29LV200TC/200BC Standard Command Definitions Table" in mDEVICE BUS OPERATION. (Refer to "Autoselect Command".)

MBM29LV200TC/200BC-70/90

Abstract

Byte 0 ($\mathrm{A}_{0}=\mathrm{V}_{\mathrm{IL}}$) represents the manufacturer's code (Fujitsu $=04 \mathrm{~h}$) and ($\mathrm{A}_{0}=\mathrm{V}_{\mathrm{I}}$) represents the device identifier code $(M B M 29 L V 200 T C ~=3 B h ~ a n d ~ M B M 29 L V 200 B C ~=~ B F h ~ f o r ~ x 8 ~ m o d e ; ~ M B M 29 L V 200 T C ~=~ 223 B h ~ a n d ~$ MBM29LV200BC $=22 B F h$ for $\times 16$ mode). These two bytes/words are given in the "MBM29LV200TC/200BC Sector Protection Verify Autoselect Codes Table" and "Expanded Autoselect Code Table" in ■DEVICE BUS OPERATION. All identifiers for manufactures and device will exhibit odd parity with DQ_{7} defined as the parity bit. In order to read the proper device codes when executing the autoselect, A must be Vil. (See "MBM29LV200TC/200BC Sector Protection Verify Autoselect Codes Table" and "Expanded Autoselect Code Table" in ■DEVICE BUS OPERATION.)

Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.

The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing $\overline{\mathrm{WE}}$ to V_{IL}, while $\overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}. Addresses are latched on the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens later; while data is latched on the rising edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens first. Standard microprocessor write timings are used.

Refer to ■AC CHARACTERISTICS and ■TIMING DIAGRAM.

Sector Protection

The MBM29LV200TC/BC feature hardware sector protection. This feature will disable both program and erase operations in any number of sectors (0 through 6). The sector protection feature is enabled using programming equipment at the user's site. The devices are shipped with all sectors unprotected. Alternatively, Fujitsu may program and protect sectors in the factory prior to shiping the device.

To activate this mode, the programming equipment must force $V_{I D}$ on address pin A_{9} and control pin $\overline{O E}$, (suggest $\left.\mathrm{V}_{\text {ID }}=11.5 \mathrm{~V}\right), \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, and $\mathrm{A}_{6}=\mathrm{V}_{\mathrm{IL}}$. The sector addresses $\left(\mathrm{A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}\right.$, and $\left.\mathrm{A}_{12}\right)$ should be set to the sector to be protected. "Sector Address Tables (MBM29LV200TC)" and "Sector Address Tables (MBM29LV200BC)" in ■FLEXIBLE SECTOR-ERASE ARCHITECTURE define the sector address for each of the seven (7) individual sectors. Programming of the protection circuitry begins on the falling edge of the $\bar{W} E$ pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the $\overline{W E}$ pulse. See "(13) AC Waveforms for Sector Protection Timing Diagram" in ■TIMING DIAGRAM and "(5) Sector Protection Algorithm" in ■FLOW CHART for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force V_{ID} on address pin A_{9} with $\overline{C E}$ and $\overline{O E}$ at $V_{I L}$ and $\overline{W E}$ at $V_{I H}$. Scanning the sector addresses $\left(A_{16}, A_{15}, A_{14}, A_{13}\right.$, and $\left.A_{12}\right)$ while (A_{6}, A_{1}, $\left.A_{0}\right)=(0,1,0)$ will produce a logical " 1 " code at device output $D Q_{0}$ for a protected sector. Otherwise the devices will read 00 h for unprotected sector. In this mode, the lower order addresses, except for A_{0}, A_{1}, and A_{6} are DON'T CARES. Address locations with $A_{1}=V_{I L}$ are reserved for Autoselect manufacturer and device codes. A_{-1} requires to apply to VIL on byte mode.

It is also possible to determine if a sector is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02h, where the higher order addresses ($\mathrm{A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) are the desired sector address will produce a logical "1" at DQo for a protected sector. See "MBM29LV200TC/ 200BC Sector Protection Verify Autoselect Codes Table" and "Expanded Autoselect Code Table" in ■DEVICE BUS OPERATION for Autoselect codes.

MBM29LV200TC／200BC－70／90

Temporary Sector Unprotection

This feature allows temporary unprotection of previously protected sectors of the MBM29LV200TC／BC devices in order to change data．The Sector Unprotection mode is activated by setting the RESET pin to high voltage （ 12 V ）．During this mode，formerly protected sectors can be programmed or erased by selecting the sector addresses．Once the 12 V is taken away from the RESET pin，all the previously protected sectors will be protected again．See＂（14）Temporary Sector Unprotection Timing Diagram＂in ■TIMING DIAGRAM and＂（6）Temporary Sector Unprotection Algorithm＂in ■FLOW CHART．

RESET

Hardware Reset

The MBM29LV200TC／BC devices may be reset by driving the RESET pin to Vı．The RESET pin has a pulse requirement and has to be kept low（ V_{L} ）for at least 500 ns in order to properly reset the internal state machine． Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode $20 \mu \mathrm{~s}$ after the RESET pin is driven low．Furthermore，once the RESET pin goes high，the devices require an additional trH before it will allow read access．When the RESET pin is low，the devices will be in the standby mode for the duration of the pulse and all the data output pins will be tri－stated．If a hardware reset occurs during a program or erase operation，the data at that particular location will be corrupted．Please note that the RY／$\overline{\mathrm{BY}}$ output signal should be ignored during the $\overline{\mathrm{RESET}}$ pulse．See＂（9）$\overline{\mathrm{RESET}}, \mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram＂in ■ TIMING DIAGRAM for the timing diagram．Refer to＂Temporary Sector Unprotection＂for additional functionality．

If hardware reset occurs during Embedded Erase Algorithm，there is a possibility that the erasing sector（s） cannot be used．

Command Definitions

Device operations are selected by writing specific address and data sequences into the command register． Writing incorrect address and data values or writing them in the improper sequence will reset the devices to the read mode．＂MBM29LV200TC／200BC Standard Command Definitions Table＂in ■DEVICE BUS OPERATION defines the valid register command sequences．Note that the Erase Suspend（BOh）and Erase Resume（30h） commands are valid only while the Sector Erase operation is in progress．Moreover both Read／Reset commands are functionally equivalent，resetting the device to the read mode．Please note that commands are always written at DQ_{7} to DQ_{0} and DQ_{15} to DQ_{8} bits are ignored．

Read／Reset Command

In order to return from Autoselect mode or Exceeded Timing Limits（ $\mathrm{DQ}_{5}=1$ ）to read／reset mode，the read／reset operation is initiated by writing the Read／Reset command sequence into the command register．Microprocessor read cycles retrieve array data from the memory．The devices remain enabled for reads until the command register contents are altered．

The devices will automatically power－up in the read／reset state．In this case，a command sequence is not required to read data．Standard microprocessor read cycles will retrieve array data．This default value ensures that no spurious alteration of the memory content occurs during the power transition．Refer to $⿴ 囗 十$ AC CHARACTERISTICS and ©TIMING DIAGRAM．

MBM29LV200TC/200BC-70/90

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the devices reside in the target system. PROM programmers typically access the signature codes by raising A_{9} to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.

The device contains an Autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Autoselect command sequence into the command register. Following the command write, a read cycle from address XX00h retrieves the manufacture code of 04 h . A read cycle from address XX01h for $\times 16$ (XX02h for $\times 8$) returns the device code (MBM29LV200TC $=3 \mathrm{Bh}$ and MBM29LV200BC $=$ BFh for $\times 8$ mode; MBM29LV200TC $=223 B h$ and MBM29LV200BC $=22 B F h$ for $\times 16$ mode). (See "MBM29LV200TC/200BC Sector Protection Verify Autoselect Codes Table" and "Expanded Autoselect
 defined as the parity
bit. Sector state (protection or unprotection) will be informed by address XX02h for $\times 16$ (XX04h for $\times 8$).
Scanning the sector addresses ($A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12}) while ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " at device output DQ_{0} for a protected sector. The programming verification should be perform margin mode on the protected sector. (See "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\mathrm{BYTE}}=\mathrm{V}$ (H)" and "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}$)" in ■DEVICE BUS OPERATION.)

To terminate the operation, it is necessary to write the Read/Reset command sequence into the register, and also to write the Autoselect command during the operation, execute it after writing Read/Reset command sequence.

Byte/Word Programming

The devices are programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens later and the data is latched on the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first. The rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

The automatic programming operation is completed when the data on DQ_{7} is equivalent to data written to this bit at which time the devices return to the read mode and addresses are no longer latched. (See "Hardware Sequence Flags".) Therefore, the devices require that a valid address to the devices be supplied by the system at this particular instance of time. Hence, $\overline{\text { Data }}$ Polling must be performed at the memory location which is being programmed.

Any commands written to the chip during this period will be ignored. If hardware reset occurs during the programming operation, it is impossible to guarantee the data are being written.

Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from read/reset mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.
"(1) Embedded Program ${ }^{\text {TM }}$ Algorithm" in \quad FLOW CHART illustrates the Embedded Program ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

MBM29LV200TC/200BC-70/90

Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.

Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the devices will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase (Preprogram function). The system is not required to provide any controls or timings during these operations.
The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on DQ7 is "1" (See "Write Operation Status".) at which time the device returns to read the mode.

Chip Erase Time; Sector Erase Time \times All sectors + Chip Program Time (Preprogramming)
"(2) Embedded Erase ${ }^{\text {TM }}$ Algorithm" in \quad FLOW CHART illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of $\overline{\mathrm{WE}}$, while the command (Data=30h) is latched on the rising edge of $\overline{\mathrm{WE}}$. After time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last sector erase command, the sector erase operation will begin.

Multiple sectors may be erased concurrently by writing the six bus cycle operations on "MBM29LV200TC/200BC Standard Command Definitions Table" in ■DEVICE BUS OPERATION. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 50μ s otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last $\overline{\mathrm{WE}}$ will initiate the execution of the Sector Erase command(s). If another falling edge of the $\overline{\mathrm{WE}}$ occurs within the 50μ s time-out window the timer is reset. (Monitor DQ_{3} to determine if the sector erase timer window is still open, see " DQ_{3}, Sector Erase Timer".) Any command other than Sector Erase or Erase Suspend during this time-out period will reset the devices to the read mode, ignoring the previous command string. Resetting the devices once execution has begun will corrupt the data in the sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to "Write Operation Status" for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 6).

Sector erase does not require the user to program the devices prior to erase. The devices automatically program all memory locations in the sector(s) to be erased prior to electrical erase (Preprogram function). When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.
The automatic sector erase begins after the $50 \mu s$ time out from the rising edge of the $\overline{W E}$ pulse for the last sector erase command pulse and terminates when the data on DQ7 is " 1 " (See "Write Operation Status".) at which time the devices return to the read mode. $\overline{\text { Data }}$ polling must be performed at an address within any of the sectors being erased. Multiple Sector Erase Time; [Sector Erase Time + Sector Program Time (Preprogramming)] \times Number of Sector Erase
"(2) Embedded Erase ${ }^{\top \mathrm{M}}$ Algorithm" in ■FLOW CHART illustrates the Embedded Erase ${ }^{\top \mathrm{TM}}$ Algorithm using typical command strings and bus operations.

MBM29LV200TC/200BC-70/90

Erase Suspend

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writting the Erase Suspend command during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.
Writing the Erase Resume command resumes the erase operation. The addresses are DON'T CARES when writing the Erase Suspend or Erase Resume command.

When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of $20 \mu \mathrm{~s}$ to suspend the erase operation. When the devices have entered the erase-suspended mode, the RY/ $\overline{\mathrm{BY}}$ output pin and the DQ_{7} bit will be at logic " 1 ", and DQ_{6} will stop toggling. The user must use the address of the erasing sector for reading DQ_{6} and DQ_{7} to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the devices default to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ_{2} to toggle. (See "DQ2 Toggle Bit ll".)

After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the devices are in the erase-suspend-program mode will cause DQ_{2} to toggle. The end of the erasesuspended Program operation is detected by the RY/ $\overline{\mathrm{BY}}$ output pin, $\overline{\text { Data }}$ polling of DQ7, or by the Toggle Bit I $\left(D Q_{6}\right)$ which is the same as the regular Program operation. Note that $D Q_{7}$ must be read from the Program address while DQ_{6} can be read from any address.

To resume the operation of Sector Erase, the Resume command (30h) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

Extended Command

(1) Fast Mode

MBM29LV200TC/BC has Fast Mode function. This mode dispenses with the initial two unclock cycles required in the standard program command sequence by writing Fast Mode command into the command register. In this mode, the required bus cycle for programming is two cycles instead of four bus cycles in standard program command. (Do not write erase command in this mode.) The read operation is also executed after exiting this mode. To exit this mode, it is necessary to write Fast Mode Reset command into the command register. (Refer to "(8) Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode" in ■ FLOW CHART.) The Vcc active current is required even $\overline{C E}=\mathrm{V}_{\text {IH }}$ during Fast Mode.
(2) Fast Programming

During Fast Mode, the programming can be executed with two bus cycles operation. The Embedded Program Algorithm is executed by writing program set-up command (AOh) and data write cycles (PA/PD). (Refer to "(8) Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode" in $\boldsymbol{\square}$ FLOW CHART.)

MBM29LV200TC/200BC-70/90

(3) Extended Sector Protection

In addition to normal sector protection, the MBM29LV200TC/BC has Extended Sector Protection as extended function. This function enable to protect sector by forcing Vio on RESET pin and write a commnad sequence. Unlike conventional procedure, it is not necessary to force V Io and control timing for control pins. The only $\overline{\text { RESET }}$ pin requires Vio for sector protection in this mode. The extended sector protect requires Vid on RESET pin. With this condition, the operation is initiated by writing the set-up command (60 h) into the command register. Then, the sector addresses pins ($A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12}) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ should be set to the sector to be protected (recommend to set VIL for the other addresses pins), and write extended sector protect command (60 h). A sector is typically protected in $150 \mu \mathrm{~s}$. To verify programming of the protection circuitry, the sector addresses pins ($A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12}) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ should be set and write a command (40h). Following the command write, a logical "1" at device output DQ ${ }_{0}$ will produce for protected sector in the read operation. If the output data is logical " 0 ", please repeat to write extended sector protect command (60h) again. To terminate the operation, it is necessary to set RESET pin to Vוн.

Write Operation Status

Hardware Sequence Flags

Status			DQ ${ }_{7}$	DQ6	DQ5	DQ_{3}	DQ2
In Progress	Embedded Program Algorithm		$\overline{\mathrm{DQ}}_{7}$	Toggle	0	0	1
	Embedded Erase Algorithm		0	Toggle	0	1	Toggle
	Erase Suspended Mode	Erase Suspend Read (Erase Suspended Sector)	1	1	0	0	Toggle
		Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	Data
		Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}}_{7}$	Toggle* ${ }^{*}$	0	0	$1^{* 2}$
Exceeded Time Limits	Embedded Program Algorithm		$\overline{\mathrm{DQ}}_{7}$	Toggle	1	0	1
	Embedded Erase Algorithm		0	Toggle	1	1	N/A
	Erase Suspended Mode	Erase Suspend Program (Non-Erase Suspended Sector)	$\overline{\mathrm{DQ}_{7}}$	Toggle	1	0	N/A

*1: Performing successive read operations from any address will cause DQ6 to toggle.
*2: Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the DQ2 bit. However, successive reads from the erase-suspended sector will cause DQ2 to toggle.
Notes : D_{0} and DQ_{1} are reserve pins for future use.

- DQ_{4} is Fujitsu internal use only.
DQ_{7}
$\overline{\text { Data }}$ Polling
The MBM29LV200TC/BC devices feature $\overline{\text { Data }}$ Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm an attempt to read the devices will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase Algorithm, an attempt to read the device will produce a "0" at the DQ7 output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ7 output. The flowchart for Data Polling (DQ7) is shown in "(3) $\overline{\text { Data }}$ Polling Algorithm" in ■FLOW CHART.
For chip erase and sector erase, the $\overline{\text { Data }}$ Polling is valid after the rising edge of the sixth $\overline{W E}$ pulse in the six write pulse sequence. $\overline{\text { Data }}$ Polling must be performed at sector address within any of the sectors being erased

MBM29LV200TC/200BC-70/90

and not a protected sector. Otherwise, the status may not be valid. Once the Embedded Algorithm operation is close to being completed, the MBM29LV200TC/BC data pins (DQ7) may change asynchronously while the output enable ($\overline{\mathrm{OE}}$) is asserted low. This means that the devices are driving status information on DQ_{7} at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ_{7} has a valid data, the data outputs on DQ_{6} to DQ_{0} may be still invalid. The valid data on DQ_{7} to DQo will be read on the successive read attempts.
The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out. (See "Hardware Sequence Flags".)

See "(6) AC Waveforms for Data Polling during Embedded Algorithm Operations" in ■TIMING DIAGRAM for the Data Polling timing specifications and diagrams.

DQ6

Toggle Bit I

The MBM29LV200TC/BC also feature the "Toggle Bit l" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.

During an Embedded Program or Erase Algorithm cycle, successive attempts to read (OE toggling) data from the devices will result in DQ 6 toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ6 will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit I is valid after the rising edge of the fourth $\overline{W E}$ pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit I is valid after the rising edge of the sixth $\overline{W E}$ pulse in the six write pulse sequence. The Toggle Bit I is active during the sector time out.
In programming, if the sector being written to is protected, the toggle bit will toggle for about $2 \mu \mathrm{~s}$ and then stop toggling without the data having changed. In erase, the devices will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about $100 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.
Either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ toggling will cause the DQ_{6} to toggle. In addition, an Erase Suspend/Resume command will cause the DQ_{6} to toggle.

See "(7) AC Waveforms for Toggle Bit I during Embedded Algorithm Operations" in ■ TIMING DIAGRAM for the Toggle Bit I timing specifications and diagrams.

DQ5

Exceeded Timing Limits
DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a "1". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling is the only operating function of the devices under this condition. The CE circuit will partially power down the device under these conditions (to approximately 2 mA). The $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ pins will control the output disable functions as described in "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\text { BYTE }}=\mathrm{V}_{1 H}$)" and "MBM29LV200TC/200BC User Bus Operations Table ($\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}$)" in mDEVICE BUS OPERATION.

The DQs failure condition may also appear if a user tries to program a non blank location without erasing. In this case the devices lock out and never complete the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ7 bit and DQ_{6} never stops toggling. Once the devices have exceeded timing limits, the DQs bit will indicate a "1." Please note that this is not a device failure condition since the devices were incorrectly used. If this occurs, reset the device with command sequence.

MBM29LV200TC/200BC-70/90

D_{3}

Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ_{3} will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.

If $\overline{\text { Data }}$ Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ_{3} may be used to determine if the sector erase timer window is still open. If DQ_{3} is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by $\overline{\text { Data Polling or Toggle Bit I. If } \mathrm{DQ}_{3} \text { is low ("0"), the device will accept }}$ additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ_{3} prior to and following each subsequent Sector Erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.

See "Hardware Sequence Flags".

DQ2

Toggle Bit II

This toggle bit II, along with DQ6, can be used to determine whether the devices are in the Embedded Erase Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause DQ_{2} to toggle during the Embedded Erase Algorithm. If the devices are in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ_{2} to toggle. When the devices are in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at the DQ2 bit.
DQ_{6} is different from DQ_{2} in that DQ_{6} toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of DQ_{7}, is summarized as follows:

For example, DQ_{2} and DQ_{6} can be used together to determine if the erase-suspend-read mode is in progress. (DQ2 toggles while DQ6 does not.) See also "Hardware Sequence Flags" and "(15) DQ ${ }_{2}$ vs. DQ6" in ■TIMING DIAGRAM.

Furthermore, DQ_{2} can also be used to determine which sector is being erased. When the device is in the erase mode, DQ_{2} toggles if this bit is read from an erasing sector.

Mode	$\mathbf{D Q}_{7}$	$\mathbf{D Q}_{6}$	$\mathbf{D Q}_{2}$
Program	$\overline{\mathrm{DQ}}_{7}$	Toggle	1
Erase	0	Toggle	Toggle
Erase-Suspend Read ${ }^{\star 1}$ (Erase-Suspended Sector)	1	1	Toggle
Erase-Suspend Program	$\overline{\mathrm{DQ}}_{7}$	Toggle $^{{ }^{\star 1}}$	$1^{\star_{2}}$

[^1]
MBM29LV200TC/200BC-70/90

RY/ $\overline{B Y}$

Ready/Busy

The MBM29LV200TC/BC provide a RY/ $\overline{B Y}$ open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the devices are busy with either a program or erase operation. If the output is high, the devices are ready to accept any read/ write or erase operation. When the RY/ $\overline{\mathrm{BY}}$ pin is low, the devices will not accept any additional program or erase commands. If the MBM29LV200TC/BC are placed in an Erase Suspend mode, the RY/ $\overline{\mathrm{BY}}$ output will be high.
During programming, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the fourth $\overline{\mathrm{WE}}$ pulse. During an erase operation, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the sixth $\overline{\mathrm{WE}}$ pulse. The $\mathrm{RY} / \overline{\mathrm{BY}}$ pin will indicate a busy condition during the RESET pulse. Refer to "(8) RY/BY Timing Diagram during Program/Erase Operations" and "(9) $\overline{\text { RESET, RY/ } \overline{B Y}}$ Timing Diagram" in $■$ TIMING DIAGRAM for a detailed timing diagram. The RY/ $\overline{\mathrm{BY}}$ pin is pulled high in standby mode.
Since this is an open-drain output, $\mathrm{RY} / \overline{\mathrm{BY}}$ pins can be tied together in parallel with a pull-up resistor to V cc.

Byte/Word Configuration

The BYTE pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29LV200TC/BC devices. When this pin is driven high, the devices operate in the word (16-bit) mode. The data is read and programmed at DQ15 to DQ_{0}. When this pin is driven low, the devices operate in byte (8-bit) mode. Under this mode, the $\mathrm{DQ}_{15} / \mathrm{A}_{-1}$ pin becomes the lowest address bit and DQ14 to DQ8 bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ_{7} to DQ_{0} and the DQ_{15} to DQ_{8} bits are ignored. Refer to "(10) Timing Diagram for Word Mode Configuration", "(11) Timing Diagram for Byte Mode Configuration" and "(12) BYTE Timing Diagram for Write Operations" in \quad TIMING DIAGRAM for the timing diagram.

Data Protection

The MBM29LV200TC/BC are designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the devices automatically reset the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.

The devices also incorporate several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

Low Vcc Write Inhibit

To avoid initiation of a write cycle during V cc power-up and power-down, a write cycle is locked out for Vcc less than 2.3 V (typically 2.4 V). If V сс < V เко, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the Vcc level is greater than $\mathrm{V}_{\text {Lko. }}$. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when V_{cc} is above 2.3 V .

If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector(s) cannot be used.

Write Pulse "Glitch" Protection

Noise pulses of less than 3 ns (typical) on $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, or $\overline{\mathrm{WE}}$ will not initiate a write cycle.

MBM29LV200TC/200BC-70/90

Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}}$, or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{H}}$. To initiate a write cycle $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be a logical zero while $\overline{\mathrm{OE}}$ is a logical one.

Power-Up Write Inhibit

Power-up of the devices with $\overline{W E}=\overline{C E}=V_{\mathbb{L}}$ and $\overline{O E}=V_{\mathbb{H}}$ will not accept commands on the rising edge of $\overline{W E}$. The internal state macine is automatically reset to the read mode on power-up.

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	TA	-40	+85	${ }^{\circ} \mathrm{C}$
Voltage with respect to Ground All Pins Except $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}{ }^{\star 1}$	Vin, Vout	-0.5	$\mathrm{Vcc}+0.5$	V
Power Supply Voltage*1	Vcc	-0.5	+5.5	V
As, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}{ }^{*}{ }^{2}$	VIN	-0.5	+13.0	V

*1: Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may undershoot $\mathrm{V}_{\text {ss }}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are $\mathrm{Vcc}+0.5 \mathrm{~V}$. During voltage transitions, outputs may overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns.
*2 : Minimum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$ and $\overline{\mathrm{RESET}}$ pins are -0.5 V . During voltage transitions, $\mathrm{A} 9, \overline{\mathrm{OE}}$ and RESET pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on A 9 , $\overline{\mathrm{OE}}$ and $\overline{\mathrm{RESET}}$ pins are +13.0 V which may overshoot to 14.0 V for periods of up to 20 ns . Voltage difference between input voltage and supply voltage (V ın -V cc) do not exceed 9 V .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

- RECOMMENDED OPERATING RANGES

Parameter		Symbol	Value		Unit	
		Min	Max			
Ambient Temperature			TA	-40	+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage	$\begin{aligned} & \text { MBM29LV200TC/BC- } \\ & 70 \end{aligned}$	Vcc	+3.0	+3.6	V	
	$\begin{aligned} & \text { MBM29LV200TC/BC- } \\ & 90 \end{aligned}$		+2.7	+3.6	V	

Note: Operating ranges define those limits between which the functionality of the devices are guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MBM29LV200TC/200BC-70/90

MAXIMUM OVERSHOOT/MAXIMUM UNDERSHOOT

Maximum Undershoot Waveform

Maximum Overshoot Waveform 1

Note: This waveform is applied for $\mathrm{A}, \overline{\mathrm{OE}}$, and RESET.

Maximum Overshoot Waveform 2

DC CHARACTERISTICS

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	ILI	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc }}, \mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cc }} \mathrm{Max}$		-1.0	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vout $=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$		-1.0	+1.0	$\mu \mathrm{A}$
A $9, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current	Ilit	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Vc} \text { Max, } \\ & \mathrm{A}_{9}, \mathrm{OE}, \text { RESET }=12.5 \mathrm{~V} \end{aligned}$		-	35	$\mu \mathrm{A}$
Vcc Active Current *1	Icc1	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	Byte Word	-	22 25	mA
		$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	Byte	-	12	mA
			Word		15	
Vcc Active Current*2	Icc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	35	mA
Vcc Current (Standby)	Icca	$\begin{aligned} & \mathrm{Vcc}=\mathrm{V} c \mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V} c \mathrm{~m} \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V} c \mathrm{c} \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
Vcc Current (Standby, Reset)	Icc4	$\begin{aligned} & \mathrm{V} \mathrm{cc}=\mathrm{V} \mathrm{Vc} \operatorname{Max}, \\ & \text { RESET }=\mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
Vcc Current (Automatic Sleep Mode)*3	Icc5	$\begin{aligned} & \mathrm{V} \mathrm{cc}=\mathrm{Vcc} \operatorname{Max}, \overline{\mathrm{CE}}=\mathrm{V} \mathrm{ss} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}, \\ & \mathrm{~V} \text { IN }=\mathrm{V} c \mathrm{cc} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
Input Low Level	VIL	-		-0.5	0.6	V
Input High Level	VIH	-		2.0	Vcc+0.3	V
Voltage for Autoselect and Sector Protection (A9, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}})^{\star 4}$	VID	-		11.5	12.5	V
Output Low Voltage Level	Vol	$\mathrm{lol}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$		-	0.45	V
Output High Voltage Level	Voh1	$\mathrm{Ioн}^{\text {a }}$-2.0 mA, $\mathrm{Vcc}=\mathrm{Vcc}$ Min		2.4	-	V
	Vон2	Іон $=-100 \mu \mathrm{~A}$.		Vcc-0.4	-	V
Low Vcc Lock-Out Voltage	V lko	-		2.3	2.5	V

*1: The Icc current listed includes both the DC operating current and the frequency dependent component (at 10 MHz).
*2: Icc active while Embedded Algorithm (program or erase) is in progress.
*3: Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
*4: ($\mathrm{V}_{\mathrm{ID}}-\mathrm{V} \mathrm{Cc}$) do not exceed 9 V .

MBM29LV200TC/200BC-70/90

AC CHARACTERISTICS

- Read Only Operations

Parameter	Symbol		Test Setup	Value				Unit	
			-70	-90					
	JEDEC	Standard		Min	Max	Min	Max		
Read Cycle Time	tavav	$t_{\text {RC }}$		-	70	-	90	-	ns
Address to Output Delay	tavqv	$t_{\text {Acc }}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	70	-	90	ns	
Chip Enable to Output Delay	telov	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	70	-	90	ns	
Output Enable to Output Delay	tglav	toe	-	-	30	-	35	ns	
Chip Enable to Output High-Z	tehoz	tDF	-	-	25	-	30	ns	
Output Enable to Output High-Z	tGhQz	tof	-	-	25	-	30	ns	
Output Hold Time From Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	toн	-	0	-	0	-	ns	
RESET Pin Low to Read Mode	-	tready	-	-	20	-	20	$\mu \mathrm{S}$	
$\overline{\mathrm{CE}}$ or $\overline{\mathrm{BYTE}}$ Switching Low or High	-	telfl telfh	-	-	5	-	5	ns	

Note: Test Conditions:
Output Load: 1 TTL gate and 30 pF (MBM29LV200TC/BC-70)
1 TTL gate and 100 pF (MBM29LV200TC/BC-90)
Input rise and fall times: 5 ns
Input pulse levels: 0.0 V or 3.0 V
Timing measurement reference level
Input: 1.5 V
Output:1.5 V

Notes: $C_{L}=30 \mathrm{pF}$ including jig capacitance (MBM29LV200TC/BC-70)
$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance (MBM29LV200TC/BC-90)

Test Conditions

- Write/Erase/Program Operations

Parameter		Symbol		MBM29LV200TC/BC						Unit		
		-70	-90									
		JEDEC	Standard	Min	Typ	Max	Min	Typ	Max			
Write Cycle Time				tavav	twc	70	-	-	90	-	-	ns
Address Setup Time		tavwl	$\mathrm{tas}_{\text {A }}$	0	-	-	0	-	-	ns		
Address Hold Time		twlax	tАн	45	-	-	45	-	-	ns		
Data Setup Time		tovwh	tos	35	-	-	45	-	-	ns		
Data Hold Time		twhdx	toh	0	-	-	0	-	-	ns		
Output Enable Setup Time		-	toes	0	-	-	0	-	-	ns		
Output Enable Hold Time	Read	-	toen	0	-	-	0	-	-	ns		
	Toggle and $\overline{\text { Data Polling }}$			10	-	-	10	-	-	ns		
Read Recover Time Before Write		tGHWL	tghw	0	-	-	0	-	-	ns		
Read Recover Time Before Write		tghel	tghel	0	-	-	0	-	-	ns		
$\overline{\text { CE Setup Time }}$		teLwL	tcs	0	-	-	0	-	-	ns		
WE Setup Time		twlel	tws	0	-	-	0	-	-	ns		
$\overline{\overline{C E}}$ Hold Time		tWHEH	tch	0	-	-	0	-	-	ns		
$\overline{\overline{W E}}$ Hold Time		tehwh	twh	0	-	-	0	-	-	ns		
Write Pulse Width		twlwh	twp	35	-	-	45	-	-	ns		
$\overline{\text { CE Pulse Width }}$		teLeh	tcp	35	-	-	45	-	-	ns		
Write Pulse Width High		twhwL	twPH	25	-	-	25	-	-	ns		
$\overline{\text { CE Pulse Width High }}$		tehel	tcPh	25	-	-	25	-	-	ns		
Byte Programming Operation		twhwh 1	twhwh 1	-	8	-	-	8	-	$\mu \mathrm{s}$		
Sector Erase Operation*1		twhwH2	twhwH2	-	1	-	-	1	-	S		
Vcc Setup Time		-	tvcs	50	-	-	50	-	-	$\mu \mathrm{s}$		
Rise Time to VID*2		-	tvidr	500	-	-	500	-	-	ns		
Voltage Transition Time*2		-	tvLHT	4	-	-	4	-	-	$\mu \mathrm{s}$		
Write Pulse Width*2		-	twpp	100	-	-	100	-	-	$\mu \mathrm{s}$		
$\overline{\mathrm{OE}}$ Setup Time to $\overline{\mathrm{WE}}$ Active*2		-	toesp	4	-	-	4	-	-	$\mu \mathrm{s}$		
$\overline{\mathrm{CE}}$ Setup Time to $\overline{\mathrm{WE}}$ Active*2		-	tcsp	4	-	-	4	-	-	$\mu \mathrm{s}$		
Recover Time From RY/ $\overline{\overline{B Y}}$		-	$t_{\text {RB }}$	0	-	-	0	-	-	ns		
$\overline{\text { RESET Pulse Width }}$		-	$\mathrm{t}_{\text {RP }}$	500	-	-	500	-	-	ns		
RESET Hold Time Before Read		-	trh	200	-	-	200	-	-	ns		
$\overline{\text { BYTE }}$ Switching Low to Output High-Z		-	tFLQz	-	-	30	-	-	35	ns		
$\overline{\text { BYTE Switching High to Output Active }}$		-	tFhav	-	-	70	-	-	90	ns		
Program/Erase Valid to RY/ $\overline{\mathrm{BY}}$ Delay		-	tbusy	-	-	90	-	-	90	ns		
Delay Time from Embedded Output Enable		-	teoe	-	-	70	-	-	90	ns		

*1 : This does not include the preprogramming time.
*2 : This timing is for Sector Protection operation.

MBM29LV200TC/200BC-70/90

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limit			Unit	Comments
	Min	Typ	Max		
Sector Erase Time	-	1	10	s	Excludes programming time prior to erasure
Word Programming Time	-	16	360	us	Excludes system-level overhead
Byte Programming Time	-	8	300	$\mu \mathrm{S}$	
Chip Programming Time	-	2.1	6.2	s	Excludes system-level overhead
Program/Erase Cycle	100,000	-	-	cycle	-

- PIN CAPACITANCE

1. $S O P$

Parameter	Symbol	Test Setup	Typ	Max	Unit
Input Capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{N}}=0$	7.5	9	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	$\mathrm{V}_{\text {OUT }}=0$	8	10	pF
Control Pin Capacitance	$\mathrm{C}_{\mathbb{N} 2}$	$\mathrm{~V}_{\mathbb{N}}=0$	9.5	12.5	pF

Notes: \cdot Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

- DQ15/A-1 pin capacitance is stipulated by output capacitance.

2. $\operatorname{TSOP}(1)$

Parameter	Symbol	Test Setup	Typ	Max	Unit
Input Capacitance	$\mathrm{Cln}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=0$	7.5	9	pF
Output Capacitance	Cout	Vout $=0$	8	10	pF
Control Pin Capacitance	$\mathrm{Cl}_{1 \times 2}$	$\mathrm{V}_{\mathrm{IN}}=0$	9.5	12.5	pF

Notes: - Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

- DQ ${ }_{15} / \mathrm{A}_{-1}$ pin capacitance is stipulated by output capacitance.

MBM29LV200TC/200BC-70/90

- TIMING DIAGRAM

- Key to Switching Waveforms

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
419	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	"H" or "L" Any Change Permitted	Changing State Unknown
	Does Not Apply	Center Line is HighImpedance "Off" State

(1) AC Waveforms for Read Operations

MBM29LV200TC/200BC-70/90

(2) AC Waveforms for Hardware Reset/Read Operations

MBM29LV200TC/200BC-70/90

(3) AC Waveforms for Alternate WE Controlled Program Operations

MBM29LV200TC/200BC-70/90

(4) AC Waveforms for Alternate $\overline{\text { CE Controlled Program Operations }}$

Notes : •PA is address of the memory location to be programmed.

- PD is data to be programmed at byte address.
- $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates last two bus cycles out of four bus cycle sequence.
- These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MBM29LV200TC/200BC-70/90

(5) AC Waveforms Chip/Sector Erase Operations

MBM29LV200TC/200BC-70/90

(6) AC Waveforms for Data Polling during Embedded Algorithm Operations

(7) AC Waveforms for Toggle Bit I during Embedded Algorithm Operations
$\overline{\mathrm{WE}}$

MBM29LV200TC/200BC-70990

(8) RY/BY Timing Diagram during Program/Erase Operations

(9) $\overline{\text { RESET, RY/BY Timing Diagram }}$

MBM29LV200TC/200BC-70/90

(10) Timing Diagram for Word Mode Configuration

(11) Timing Diagram for Byte Mode Configuration

(12) BYTE Timing Diagram for Write Operations

MBM29LV200TC/200BC-70/90

(13) AC Waveforms for Sector Protection Timing Diagram

SAX : Sector Address for initial sector
SAY : Sector Address for next sector
Note: A_{-1} is $\mathrm{V}_{\text {IL }}$ on byte mode.

MBM29LV200TC/200BC-70/90

(14) Temporary Sector Unprotection Timing Diagram

(15) DQ_{2} vs. DQ_{6}
\square

MBM29LV200TC/200BC-70990

(16) Extended Sector Protection Timing Diagram

MBM29LV200TC/200BC-70/90

FLOW CHART

(1) Embedded Program ${ }^{\text {TM }}$ Algorithm

EMBEDDED ALGORITHMS

Program Command Sequence* (Address/Command):

Program Address/Program Data
*: The sequence is applied for $\times 16$ mode.
The addresses differ from $\times 8$ mode.

(2) Embedded Erase ${ }^{T M}$ Algorithm

EMBEDDED ALGORITHMS

* : The sequence is applied for $\times 16$ mode.

The addresses differ from $\times 8$ mode.

MBM29LV200TC/200BC-70/90

(3) Data Polling Algorithm

VA = Byte address for programming
= Any of the sector addresses within the sector being erased during sector erase or multiple sector erases operation
= Any of the sector addresses within the sector not being protected during chip erase

Note : DQ_{7} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{7} may change simultaneously with DQ5.

MBM29LV200TC/200BC-70/90

(4) Toggle Bit Algorithm

*1: Read toggle bit twice to determine whether it is toggling.
*2 : $D Q_{6}$ is rechecked even if $D Q_{5}=$ " 1 " because DQ_{6} may change simultaneously with $D Q_{5}$.

MBM29LV200TC/200BC-70/90

(5) Sector Protection Algorithm

*: A-1 is VIL on byte mode.
(6) Temporary Sector Unprotection Algorithm

MBM29LV200TC/200BC-70/90

(7) Extended Sector Protection Algorithm

MBM29LV200TC/200BC-70990

(8) Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode

FAST MODE ALGORITHM

Note : The sequence is applied for $\times 16$ mode.
The addresses differ from $\times 8$ mode.

MBM29LV200TC/200BC-70/90

ORDERING INFORMATION

Part number	Package	Access Time	Sector Configuration	Remarks
MBM29LV200TC-70PF MBM29LV200TC-90PF	44-pin plastic SOP (FPT-44P-M16)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	Top sector	
MBM29LV200TC-70PFTN MBM29LV200TC-90PFTN	48-pin plastic TSOP (1) (FPT-48P-M19) (Normal bend)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$		
MBM29LV200TC-70PFTR MBM29LV200TC-90PFTR	48-pin plastic TSOP (1) (FPT-48P-M20) (Reverse bend)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$		
MBM29LV200BC-70PF MBM29LV200BC-90PF	44-pin plastic SOP (FPT-44P-M16)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	Bottom sector	
MBM29LV200BC-70PFTN MBM29LV200BC-90PFTN	48-pin plastic TSOP (1) (FPT-48P-M19) (Normal bend)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$		
MBM29LV200BC-70PFTR MBM29LV200BC-90PFTR	48-pin plastic TSOP (1) (FPT-48P-M20) (Reverse bend)	$\begin{aligned} & 70 \\ & 90 \end{aligned}$		

PACKAGE TYPE
PFTN $=48$-Pin Thin Small Outline Package (TSOP) Normal Bend
PFTR $=48$-Pin Thin Small Outline Package (TSOP) Reverse Bend
PF = 44-Pin Small Outline Package (SOP)
SPEED OPTION
See Product Selector Guide
Device Revision
BOOT CODE SECTOR ARCHITECTURE
T = Top sector
B = Bottom sector

DEVICE NUMBER/DESCRIPTION
MBM29LV200
2Mega-bit (256K $\times 8$-Bit or $128 \mathrm{~K} \times 16$-Bit) CMOS Flash Memory 3.0 V-only Read, Program, and Erase

MBM29LV200TC/200BC-70/90

PACKAGE DIMENSIONS

© 2003 FUJITSU LIMITED F48029S-c-6-7

Dimensions in mm (inches)
The values in parentheses are reference values.
(Continued)

MBM29LV200TC/200BC-70/90

48-pin plastic TSOP(1)
(FPT-48P-M20)

Note 1) * : Values do not include resin protrusion.
Resin protrusion and gate protrusion are $+0.15(.006) \mathrm{Max}($ each side).
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

LEAD No.
(24)
(1) \square
(48)

© 2003 FUJTSU LIMTED F480309-C.6.7
Dimensions in mm (inches)
The values in parentheses are reference values.
(Continued)

MBM29LV200TC/200BC-70/90

(Continued)

© 2002 FUJITSU LIMITED F44023S-c-6-6

Dimensions in mm (inches)
The values in parentheses are reference values.

MBM29LV200TC/200BC-70/90

MEMO

MEMO

MBM29LV200TC/200BC-70/90

MEMO

Revision History

Revision DS05-20865-6E (July 31, 2007)
The following comment is added.
This product has been retired and is not recommended for new designs. Availability of this document is retained for reference and historical purposes only.

FUJITSU LIMITED

For further information please contact: Japan
FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94088-3470, U.S.A.
Tel: +1-408-737-5600
Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD. \#05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

F0404
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: Embedded Erase ${ }^{\text {TM }}$ and Embedded Program ${ }^{\text {TM }}$ are trademarks of Advanced Micro Devices, Inc.

[^1]: *1: Performing successive read operations from any address will cause DQ6 to toggle.
 *2: Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the DQ2 bit. However, successive reads from the erase-suspended sector will cause DQ2 to toggle.

