

MV8860

DTMF DECODER

The MV8860 detects and decodes all 16 DTMF tone pairs. The device accepts the high group and low group square wave signals from a DTMF filter (MV8865) and provides a 3-state buffered 4-bit binary output. The clock signals are derived from an on-chip oscillator requiring only a single resistor and low cost crystal as external components. The MV8860 is implemented in CMOS technology and incorporates an on-chip regulator, providing low power operation and power supply flexibility.

The MV8860 is available in Plastic DIL (DP) and Ceramic

The MV8860 is available in Plastic DIL (DP) and Ceramic DIL (DG), both with an operating temperature range of -40°C to +85°C.

Fig.1 Pin connections (top view)

FEATURES

See Section .

- 18 Pin DIL Package
- Central Office Quality Detection
- Excellent Voice Talk-Off
- Detect Times down to 20 ms
- Single Supply 5V, or 8 to 13V Operation
- Latched 3-State Buffered Outputs
- Detects All 16 DTMF Combinations
- Uses Inexpensive 3.58 MHz Crystal
- Low Power CMOS Circuitry
- Adjustable Acquisition and Release Times
- Equivalent to MT8860X

APPLICATIONS

In DTMF Receivers For:

- End-to-end Signalling
- Control Systems
- PABX
- Central Office
- Mobile Radio
- Key Systems
- Tone to Pulse Converters

Fig.2 MV8860 functional block diagram

95D 07059 D

MV8860

7-75-27-07

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = +25^{\circ}\text{C}; \ f_c = 3.579545\,\text{MHz}$ $5\text{V operation: } V_{DD} - V_{EE} = 5\text{V}, \ V_{SS} = V_{EE}, \ \text{connections as Fig.5a}$ $12\text{V operation: } V_{DD} - V_{EE} = 12\text{V}, \ R_{SSEE} = 900\Omega \ , \ \text{connections as Fig.5b}$ Outputs not loaded For input current parameters only, $V_{IH} = V_{IHO} = V_{DD}, \ V_{IL} = V_{EE}, \ V_{ILO} = V_{SS}$ All voltages referenced to $V_{EE} \ \text{unless otherwise noted}.$

		Characteris	itic	Symbol	Min	Тур	Max	Unit	Test Conditions
1	⊢	Operating Supply V	 	4.75	5	5.25	V		
2	1	(V _{DD} - V _{EE}) Internal Logic Ground Voltage (V _{DD} - V _{SS})		V _{DD}	8	-3-	13	l v	Connections Fig. 5a
3	s			 	4.75		5.25	V V	Connections Fig. 5b Connections Fig. 5a
4	Įυ			V _{DDSS}	6.0	6.5	7.5	l v	Connections Fig. 5b
5	P			 	1.0.0	1.3	4	mA	5V
6	P	Operating Supply C		· I _{DD}	-	2.5	5	mA	12V Vpp - Vss = 5.5V
7	1 4	Internal Logic Groun	nd Pin Current	Iss	1	5.5	6.7	mA	12V RSSEE = 900Ω
8	ľ	Operating Power Co	naumation	Po		6.5	1	mW	5V
9	匚		•			66		mW	12V
10	1	High Level Input Vo		V _{IH}	3.5	4		V	5V
11	ļ	(All Inputs Except O		}	8.5	9		V	12V
12		Low Level Input Vol		V _{IL}		1	1.5	V	5V
13		(All Inputs Except O		<u> </u>	ļ	3	3.5	V	12V
14	Į	High Level Input Vol	tage	V _{IHO}	3.5	4.5	L	V	5V
15	1	OSC1		<u> </u>	10.5	11		V	12V
16 17	N	Low Level Input Volt	V _{ILO}		0.5	1.5	V	5V Ref V _{SS}	
	Р	Steering Input Thres	5314	 	ļ	0.5	1.5	V	12V Ref V _{SS}
18 19	U		V _{TSt}	2.04	2.27	2.5	V	5V	
20	Т	Voltage Pull Down Sink Current			5.4	6.0	6.6	V	12V
21	S	(INF:)	ent	I _{IHI}	10	25	75	JJA	5V
22		Pull Up Source Curre	ant .		10	190	400	AUL	12V 5V
23		(TOE)		IILT	10	7	45 250	ALK ALK	12V
24		Input High Leakage Current		1	10	55 0.1		AUA	5V or 12V
25		Input Low Leakage Current		l _{iH}		0.1	1.5	ALA.	00 01 120
26	0	High Level Output V	oltage	·	4.9	<u>U. I</u>	1.5	V	5V
27		(All Outputs Except	OSC2)	V _{OH}	11.9			V	12V
28	Ţ	Low Level Output Vo	Itage		11.5		0.1	V	5V
29	P	(All Outputs Except (OSC2)	V _{OL}			0.1	v	12V
30		High Level Output Vo	oltage		4.9		0.1	v	5V
31	S	OSC2		V _{OHO}	11.9			V	12V
32		Low Level Output V	oltage	V _{OLO}			0.1	V	12V 5V Ref V _{SS}
33		OSC2		OLO			0.1	V	12V Ref V _{SS}
34		Output Drive	P Channel	Юн	0.4	0.6		mA	5V V _{OH} ≈ 4.5V
35	o	Current	Source	,OH	0.5	0.8		mA	12V V _{OH} = 11.5V
30	ū	(All Outputs	N Channel	loL	0.8	1.2		mA	$5V V_{OL} = 0.5V$
37	Т	Except OSC2)	Sink	·OL	1.0	1.6		mA	12V V _{OL} = 0.5V
1.325	P	Output Drive	P Channel	Іоно	90	120		μA	$5V V_{OH} = 4.5V$
40	U	Current	Source	оно	90	120		ΛUΑ	5V V _{OH} = 4.5V 12V V _{OH} = 11.5V
41		T OSC2 N	N Channel	loLo	100	160		μA	5V V _{OL} = 0.5V
	s	Sink		. 010	100	160		ΑUA	12V V _{SS} = 0.5V
43	Ì	Tristate Output	$L_1 \cdot L_4 = H$			0.035	1.5	μA	5V Appl V _{OL} = 0V
44		Current	$L_1 \cdot L_4 = L$	-		0.1	1.5	μA	5V Appl V _{OH} = 5V
45		(High Impedance $L_1 \cdot L_4 = H$		loz		0.1	1.5	μÀ	12V Appl V _{OL} = 0V
AII (IA)		State) $L_1 \cdot L_4 = L$				0.3	1.5	μA	12V Appl V _{QH} = 12V

All "typical" parametric information is for design aid only, not guaranteed and not subject to production testing.

95D 07060 D

MV8860

AC ELECTRICAL CHARACTERISTICS

T-75-27-07

Test conditions (unless otherwise stated): T_{amb} = +25°C; V_{DD} = +5V; f_c = 3.579545MHz

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Characte	eristic	Symbol	Min	Тур	Max	Unit	Test Cor	ditions
Tone Frequency Deviation Reject Dig E T Tone Present Detection Time tone Present Detection Time tone Absent Detection		_	Tone Frequency	Δf _A			±2.5	% Nom.	I .	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-	Tone Frequency	Deviation Reject	Δf _R	±3.5			% Nom.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	_ T	Tone Present De	tection Time	t _{DP}	6		10	ms		
Second Color Col	4	I	Tone Absent Det	ection Time	t _{DA}	0.6	4	10	ms		
T			Guard Time (Adju	ustable)	t _{GT(P or E)}	<u> </u>	20		ms	See Fig. 3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	_	Time to Receive	= (t _{DP} + t _{GTP})	t _{REC}	28	30	35	ms	Fig. 7a R =	300k Ω
No. No.	7		Invalid Tone Dura	ation (f _n of t _{REC})	t _{REC}			20	ms	C =	0.1µF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	_	Interdigit Pause	$= (t_{DA} + t_{GTA})$	t _{ID}	30			ms		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Acceptable Drop Out (fn of tip)				20	ms		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	I/P	FL FH input Transition Time		t _T			1.0	us	10% - 90% \	/ _{DD}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		Capacitance Any Input		С		5	7.5	pF		
19 S 200 ns V _{DD} 12V	12	_	Propogation Delay St to L ₁ - L ₄		tel		8	11	AUS	V _{DD} 5V	
19 S 200 ns V _{DD} 12V	13	_				İ	8	11	,tus	V _{DD} 12V	
19 S 200 ns V _{DD} 12V	14	- 1	Propogation Dela	Propogation Delay St to StD			12	14	,JUS	V _{DD} 5V	
19 S 200 ns V _{DD} 12V	15	- 1			1 0.5		12	14	Ais.	V _{DD} 12V	
19 S 200 ns V _{DD} 12V	16	- 1	Propogation	Enable	t _{PTE}		300		ns		
19 S 200 ns V _{DD} 12V	17	7	Delay TOE to		1,12		200		ns		
19	18	1	L1 - L4	Disable	t _{PTD}		300		ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	3					200		ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		Crystal/Clock Fre	Crystal/Clock Frequency		3.5759	3.5795	3.5831	MHz	OSC 1	OSC 2
22 L Input Fall Time t_{HLCI} 110 ns $V_{DD} = V_{SS}$ 23 O (OSC 1) Duty Cycle DC_{CI} 40 50 60 %	21	С	Clock	Rise Time	tLHCI			110	ns	10% - 90%	Externally
23 O (OSC 1) Duty Cycle DC _{CI} 40 50 60 %	22	L	Input	Fall Time	t _{HLCI}				ns	$V_{DD} = V_{SS}$	Applied
	23	0			DCCI	40	50				Clock
	24	С	Clock Output	Capacitive	CLOC			30	ρF	With Clock I	Orive to OSC 1
25 K (OSC 2) Load C _{LOX} nF Sinusoidal (25	K	(OSC 2)	Load	Crox				nF	Sinusoidal O With Crystal	utput

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Para	meter	Min	Max				Max
V _{DD} - V _{EE}			16	V	Davis Diaglackia	DG Package*	1000mW
					Power Dissipation	DP Package**	450mW
V _{DD} • V _{SS} (Lo			5.5	v		* Derate 16mW/°C a	bove 75°C
Voltage on any pin except OSC1 OSC2		V _{EE} -0.3	V _{DD} +0.3	v		** Derate 6.3mW/°C a All leads soldered	
Voltage OSC	1 OSC2	V _{SS} -0.3	V _{DD} + 0.3	٧	1		
Max current at any pin (except V _{DD} & V _{EF})			10	mA			
Operating Temperature	DP/DG Package	40	+ 85	•c]		
Storage	DG Package	-55	+175	°C	1		
Temperature	DP Package	-55	+125	°C	1		

95D 07061

D

MV8860

T-75-27-07

Orig To Chan	ПФ	TOE	L4	L3	L2	L1
	x	L	Z L	Z	Z	Z H
	1] H]	L	L	L	Н
1	2	H	L	L	н	L
	3	H	L L L	L	H	H
	4	H	Ŀ	Н	L	H
DR	5	H	Ĺ	H	H	Ľ
1	6 7	H	L	Н	Н	H
1	8	H	H	Ľ	- [Ľ
	9	H	Ĥ	Ī	Ē	Ĥ
	ő	H	H	Ī	H	Ë
	*	H	H	Ē	Н	L H
1	#	H	Н	H	L	L
D	Α	Н	Н	Н	L	Н
i	В	H	Н	Н	Н	L
1	C	H	Н	Н	Н	
	D	Н	L	L	L	L
	(a) Output coding					

Detected Character	INH	ESt
None X	Ø	ΙΓ
DR D	H	ΗL

ESt	St	GТ	StD*
L H L H	IICC	L Z Z H	L H H

(b) Inhibit function

(c) Steering

* DELAYED WRT St.

FOR THE PURPOSE OF THESE TABLES CONSIDER:

V_{S1} < V_{TS1} LOGIC LOW (L) V_{S1} > V_{TS1} LOGIC HIGH (H)

H=LOGIC HIGH L=LOGIC LOW

##"DON'T CARE" LOGIC HIGH OR LOW

Z=HIGH IMPEDANCE X=ANY CHARACTER

Table 1 Coding data

Fig.3 Timing diagram

95D 07062 D

MV8860

PIN FUNCTIONS

T-75-27-07

			7-73-27-07			
Pin	Name	Description				
1	OSC2	CLOCK OUTPUT	3.58MHz crystal with parallel 5M Ω resistor connected between these pins completes internal oscillator,			
2	OSC1	CLOCK INPUT	running between V _{DD} and V _{SS} .			
3	IC	Internal connection for testing only (reset) Note 1				
4	FH	High frequency group input. Accepts single rectangular wave High group tone from DTMF filter				
5	L1					
6	L2	Data Outputs. 3 state Provides 4 Bit binary	b buffered word corresponding to the tone pair decoded, when			
7	L3	enabled by TOE See Table 1 for state to	able			
8	L4					
9	TOE	3 state output enable internal pull up	3 state output enable input. Logic high on this input enables outputs L1-L4. Internal pull up			
10	V _{SS}	Internal logic ground. For V_{DD} - $V_{EE} = 5V \ V_{SS}$ connected to V_{EE} . For V_{DD} - $V_{EE} > 8V$, V_{SS} connected via resistor to V_{EE} see Fig. 5				
11	V _{EE}	Negative power supply. External logic ground				
12	INH	Inhibit input. Logic high inhibits detection of tones representing characters #, *, A, B, C, D. internal pull down				
13	FL	Low frequency group input. Accepts single rectangular wave low group tone from DTMF filter				
14	St	Steering input. A voltage greater than V _{TSt} on this input causes the device to accept validity of the detected tone pair and latch the corresponding codeword at the outputs Voltage< V _{TSt} on this pin frees the device to accept a new tone pair. See Table 1c and Functional Description				
15	StD	Delayed Steering Output. Flags when a valid tone pair has been received. Presents logic high when output latch updated. When St voltage exceeds V _{TSt} . Returns to logic low when St voltage falls below V _{TSt}				
16	ESt	Early Steering Output. Presents a logic high immediately the digital algorithm detects a recognisable tone pair. Any momentary loss of the incoming tone or excessive distortion of the tone will cause ESt to return to a logic low				
17	GТ	Guard Time Output. 3 state output. Normally connected to St, is used in the steering algorithm and is a function of St and ESt (See Table 1c)				
18	V _{DD}	Positive power supply				
<u> </u>		diameter and the second				

Note 1: Must be left open circuit.

MV8860

OPERATING NOTES

The MV8860 is a CMOS Digital DTMF detector and decoder. Used in conjunction with a suitable DTMF filter (MV8865) it can detect and decode all 16 Standard DTMF

(MV885) it can detect and decode all to standard of which tone pairs, accurately discriminating between adjacent frequencies in both high and low groups in the presence of noise and normal voice signals.

To form a complete DTMF receiver the MV8860 must be preceded by a DTMF filter, the function of which is to september and laboratory arate the high group and low group components of the composite dual tone signal and limit the resulting pair of sinewave signals to produce rectangular wave signals having the same frequencies as the individual components of the composite DTMF input. The high group and low group rectangular waves are applied to the MV8860s FH and FL Inputs, respectively. The MV8865 DTMF filter provides these functions

Within the MV8860 the FL and FH signals are operated on by a complex averaging algorithm. This is implemented using digital counting techniques (Control/Discriminators, Fig.2) to determine the frequencies of the incoming tones and verify that they correspond to standard DTMF fre-quencies. When both high group and low group signals have been simultaneously detected, a flag ESt (Logic High), is generated. ESt is generated (cancelled) rapidly on detecting the presence (absence) of a DTMF tone pair (see Fig.3) and is used to perform a final validity check

The final validity check requires the input DTMF signal to be present uninterrupted by drop out or excessive distortion (which would result in ESt being cancelled) for a minimum time (f_{REC}) before being considered valid. This contributes greatly to the talk off performance of the system. The check also imposes a minimum period of 'tone absent' before a valid received tone is recognised as having ended. This allows short periods of drop out (tpo) or ended. This allows short periods of drop out (1_{DO}) or excessive noise to occur during a received tone, without it being misinterpreted as two successive characters by the steering circuit (ESt, St, GT). A capacitor C (Fig.7a) is charged via resistor R from ESt which a DTMF tone pair is detected. After a period t_{GTP}, V_C exceeds the St input threshold voltage V_{TSt}, setting an internal flag indicating the detected signal is valid. Functioning of the check algorithm is completed by the three state output GT which is T-75-27-07

normally connected to St and operates under the control of ESt and St. Its mode of operation is shown by the steering

state table (Table 1c) and timing diagram (Fig.3).
Internally the presence of the ESt flag allows the control/discriminator to identify the detected tones to the code converter which in turn presents a 4 bit binary code word, corresponding to the original transmitted character, to the output latch. The appearance of the internal St flag clocks the latch, presenting the output code at the tristate outputs L₁ to L₄. The St internal flag is delayed (by t_{PStD}) and appears at the StD output to provide a strobe output function indicating that a new character has been received and the output updated. StD will return to a logic low after

the St flag has been reset by $V_{\rm C}$ (Fig.7a) falling below $V_{\rm TSt-}$ increasing the 'time to receive' ($t_{\rm REC}$) tends to further improve talk off performance (discrimination against voice simulation of a DTMF tone pair) but degrades the acceptable signal to noise ratio for the incoming signal. Increasing interdigit pause t_{ID} further reduces the probability of receiving the same character twice and improves acceptable signal to noise ratio but imposes a longer interdigit pause. Reducing t_{REC} or t_{ID} has the opposite effect respectively. The values of t_{REC} and t_{ID} can be tailored by adjusting t_{GTP} and t_{GTA} as shown in Fig.7.

When L₁ to L₄ are connected to a data bus TOE may be controlled by external circuitry or connected directly to StD

automatically enabling the outputs whenever a tone is received. In either case StD may be used to flag external cir-

cultry indicating a character has been received.

The MV8860 may be operated from either a 5V or 8 to 13V supply by use of the internal zener reference. The relevant connection diagrams are shown in Fig.5.

When using the MV8860 with the MV8865 DTMF filter it is only necessary to use the MV8865 crystal oscillator (see Fig.6). When using the higher supply voltage range the MV8865 OSC2 output should be capacitively coupled to the MV8860 OSC1 input as shown in Fig.6. Where it is desirable to receive only the characters avail-

able on a rotary dial telephone, taking INH to a logic high inhibits detection of the additional DTMF characters. Incidentally this also further improves talk off due to the reduced number of detectable tones.

Fig.4 DTMF matrix, indicating character-tone pair correspondence

Fla.5 Power supply connection options

Company of the Compan

95D 07064

D MV8860

Fig.6 Single-ended input receiver using the MV8865 (5 V operation)

Fig.7 Guard time adjustment