50E D 4496204 0025643 602 **III**HIT3 HD61104,HD61104A (Dot Matrix Liquid Crystal Graphic **Display Column Driver**) 7-52-13-07

Description

HD61104, HD61104A is a column (segment) driver for large-area dot matrix liquid crystal graphic display systems.

Features

- Display duty cycle: 1/64-1/200
- Internal liquid crystal display driver: 80 drivers
- 4-bit bus, bidirectional shift data transfer
- Cascade connection with enable format
- Data transfer rate: 3.5 MHz
- Power supply for logic circuit: $5 V \pm 10\%$
- Power supply for LCD drive circuits : 10 to 26 V (HD61104) 10 to 28 V (HD61104A)
- Standby function
- CMOS process
- 100-pin flat plastic package

Ordering Information

Type No.	LCD Driving Level (V)	Package
HD61104	+10 to +26	100 pin plastic QFP (FP-100)
HD61104A	+10 to +28V	_
HD61104TF	+10 to +28V	100 pin plastic T- QFP (TFP-100)

Absolute Maximum Ratings

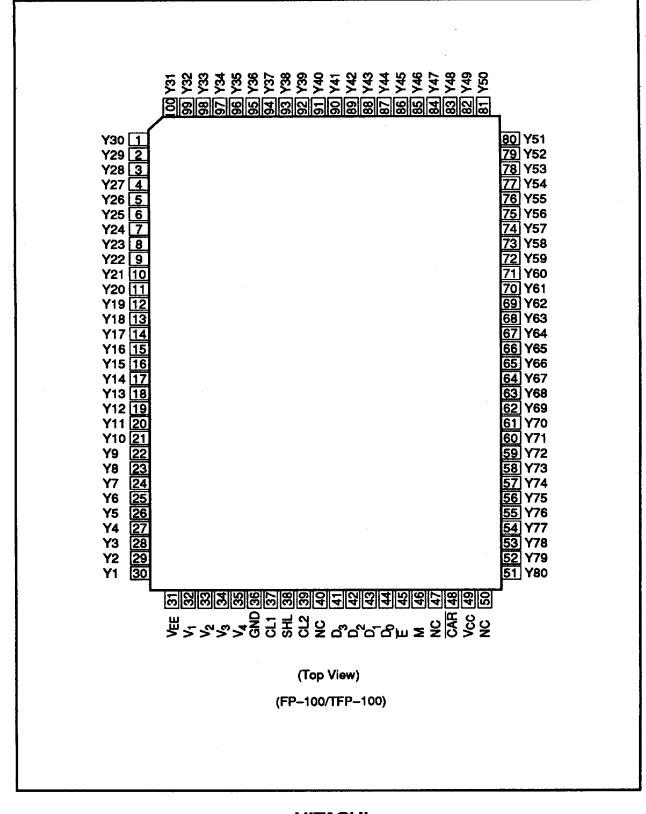
ltem		Symbol	Value	Unit	Note
Supply voltage (1)		V _{CC}	-0.3 to +7.0	v	2
Supply voltage (2)	HD61104	V _{EE}	$V_{CC} = 28.0$ to $V_{CC} = 0.3$	v	
	HD61104A	V _{EE}	V_{CC} – 28.5 to V_{CC} + 0.3		
Terminal voltage (1)		V _{T1}	-0.3 to V _{CC} + 0.3	v	2, 3
Terminal voltage (2)		V _{T2}	$V_{EE} = 0.3$ to $V_{CC} = 0.3$	v	4
Operating temperatur	9	T _{opr}	-20 to +75	°C	
Storage temperature		T _{stg}	-55 to +125	°C	

Notes: 1. LSIs may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the limits of electrical characteristics, because using them beyond these conditions may cause malfunction and poor reliability.

2. All voltage values are referenced to GND = 0 V.

- 3. Applies to input terminals, SHL, CL1, CL2, D0-D3, E, and M.
- 4. Applies to V1, V2, V3, and V4. Must maintain

 $V_{CC} \ge V_1 \ge V_3 \ge V_4 \ge V_2 \ge V_{FE}$

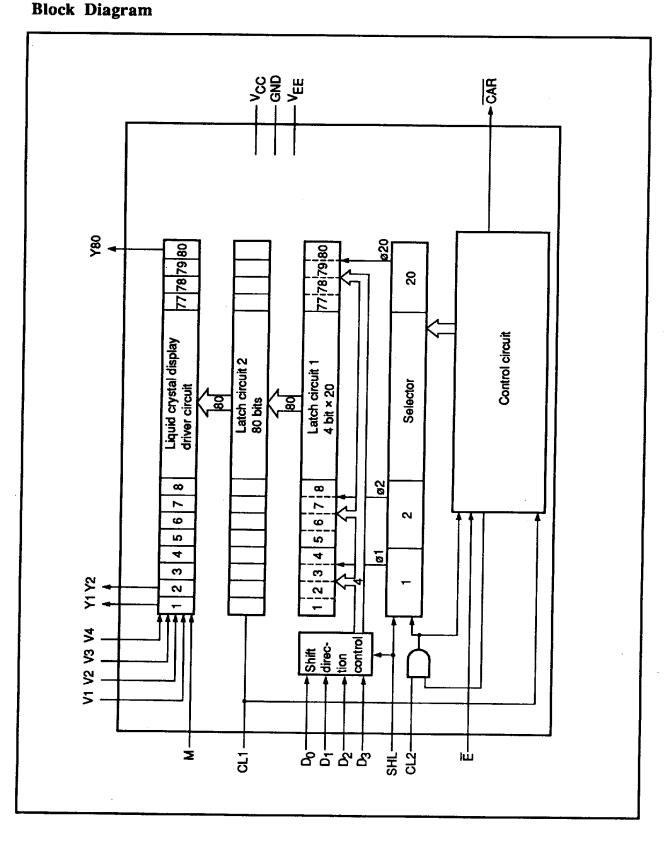

Connect a protection resister of 15 $\Omega \pm$ 10% to each terminal in series.

HITACHI

50E D 🗰 4496204 0025644 549 🗰 HIT3

Pin Arrangement

T-52-13-07



HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 321

HD61104, HD61104A

T-52-13-07

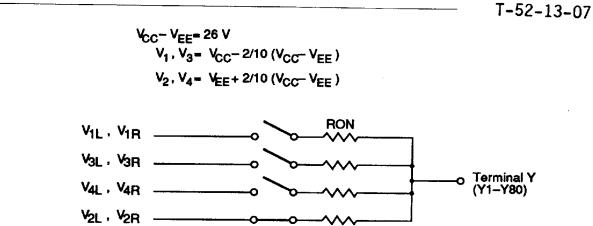
HITACHI

322 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

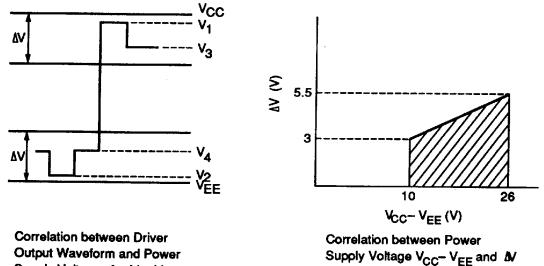
Electrical Characteristics

T-52-13-07

DC Characteristics


 $(V_{CC} = 5 V \pm 10\%, \text{ GND} = 0 V, V_{CC} - V_{EE} = 10 \text{ to } 26 V \text{ (HD61104)}, V_{CC} - V_{EE} = 10$ to 28 V (HD61104A), Ta = -20 to $+75^{\circ}C$)

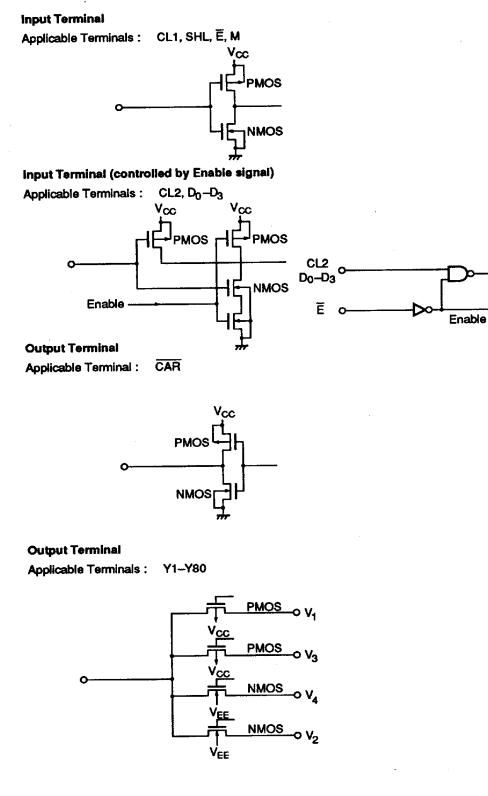
Item	Symbol	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	VIH	$0.7 \times V_{CC}$		V _{CC}	V		1
Input low voltage	V _{IL}	0		$0.3 \times V_{OC}$	V		1
Output high voltage	VOH	V _{CC} - 0.4			V	l _{OH} = – 400 µA	2
Output low voltage	VOL			0.4	V	l _{OL} = 400 μA	2
Driver on resistance	RON		102	7.5	kΩ	V _{EE} = -1 0V,Load current =100 μA	5
Input leakage current	l _{IL1}	-1		1	μA	$V_{IN} = 0$ to V_{CC}	1
Input leakage current	I _{IL2}	-25		25	μA	$V_{IN} = V_{EE}$ to V_{CC}	3
Dissipation current (1)	IGND			2.0	mA		4
Dissipation current (2)	leε			0.2	mA	HD61104	4
				0.4		HD61104A	
Dissipation current (3)	IST			100	μA		4 5


Notes: 1. Applies to CL1, CL2, SHL, E, M, and D₀-D₃.

- Applies to CAR. 2.
- 3. Applies to V_1 , V_2 , V_3 , and V_4 .
- 4. Specified when display data is transferred under following conditions: CL2 frequency fcp2 = 2.5 MHz (data transfer rate) fcp1 = 14.0 kHz (data latch frequency) CL1 frequency f_M = 35 Hz (frame frequency/2) M frequency Display duty ratio 1/200 Specified when $V_{IH} = V_{CC}$, $V_{IL} = GND$ and no load on outputs. currents between V_{CC} and GND
 - IGND: currents between V_{CC} and V_{EE} l_{EE}:
- 5. Currents between V_{CC} and GND at standby (\overline{E} input = high).
- 6. Resistance between terminal Y (one of Y1 to Y80) and terminal V (one of V1, V2, V3, and V4) when load current flows through one of the terminals Y1 to Y80. This value is specified under the following conditions:

HITACHI

The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to V₁ and V₃, and negative voltage to V₂ and V₄, within the ΔV range. This range allows stable impedance on driver output (R_{ON}). Notice that ΔV depends on power supply voltage $V_{CC} - V_{EE}$.


Output Waveform and Power Supply Voltages for Liquid **Crystal Display Drive**

HITACHI

324 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Terminal Configuration

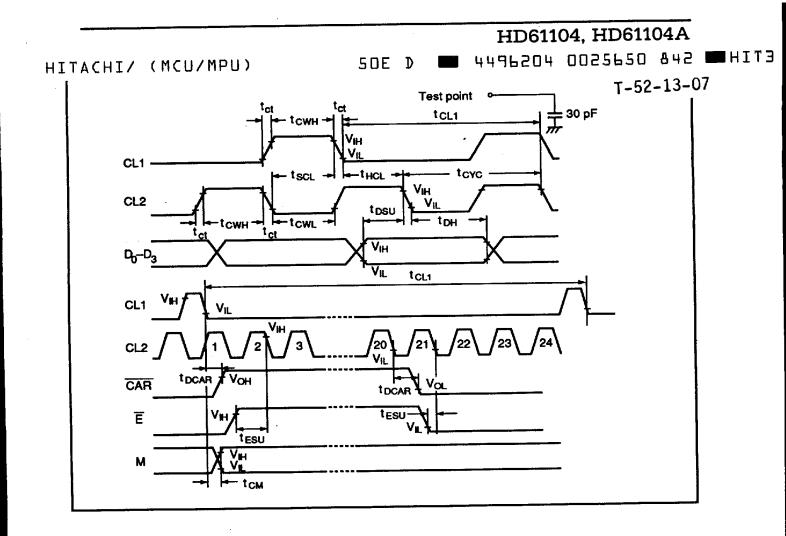
T-52-13-07

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 325

Powered by ICminer.com Electronic-Library Service CopyRight 2003

0

HD61104, HD61104A


T-52-13-07 -

AC Characteristics ($V_{CC} = 5 V \pm 10\%$, GND = 0 V, Ta = -20 to $\pm 75^{\circ}$ C)

Item	Symbol	Min	Тур	Max	Unit	Note
Clock cycle time	tcyc	285			ns	
Clock high level width	tсwн	110			ns	
Clock low level width	tcwL	110	_	_	ns	·· , ,
Clock setup time	tSCL	80		<u> </u>	ns	
Clock hold time	tHCL	80	<u> </u>		ns	
Clock rise/fail time	tст			30	ns	
Data setup time	tDSU	80	_		ns	
Data hold time	^t DH	80	<u> </u>		ns	
E setup time	tesu	75		_	ns	
Output delay time	¹ DCAR	_		180	ns	1
M phase difference time	tсм	_		300	ns	<u> </u>
CL1 cycle time	t _{CL1}	t _{CYC} × 10			ns	

Note: 1. The following load circuit is connected for specification:

HITACHI

HITACHI

	CU/MPU)		50	ED	4496204 00	25651 789
Terminal Name	Number of Terminals	1/0	Connected to	Functions		T-52-13-07
V _{CC}	1		Power	V _{CC} – GND:	Power supply for	internal logic
gnd V _{ee}	1		supply	V _{CC} -V _{EE} :	Power supply for	LCD drive circuit
V ₁	4		Power	Power supply	for liquid crystal drive	Э.
V ₂ V ₃			supply		ection level	
<u>V4</u>				V ₃ , V ₄ : nor	-selection level	
Y1-Y80	80	0	LCD	Liquid crystal	driver outputs.	
				Selects one of	the 4 levels, V_1 , V_2 ,	V ₃ , and V ₄ . Relation
				among output	level, M, and display	data (D) is as follow:
					M <u>1</u> 0	
					D _ 1 0 1	0
				Dut _l leve	out V ₁ V ₂ V ₃ 	V4
м	1	I	Controller	Switch signal t AC.	o convert liquid cryst	al drive waveform int
CL1	1	1	Controller	Latch clock of	display data (falling e	dge triggered).
				Synchronized	with the fall of CL1, lic conding to the display	quid crystal driver
CL2	1	1	Controller	Shift clock of d	isplay data (D).	
	······			Falling edge tri	ggered.	
D ₀ D ₃	4	I.	Controller	Input of 4-bit di	splay data (D)	- <u> </u>
				D	Liquid Crystal Driver Output	Liquid Crystal Display
				1 (High level)	Selection level	On
				0 (Low level)	Non-selection	Off
				Truth table (Po	sitive logic)	
				SHL	Input data and latch	n circuit 1
				0	$\underline{D_3 \rightarrow 1 \rightarrow 5 \rightarrow 9} - $	→ 73 → 77
					$D_2 \rightarrow 2 \rightarrow 6 \rightarrow 10 - $	
					$\underline{D_1 \rightarrow 3 \rightarrow 7 \rightarrow 11} -$	- → 75 → 79

HITACHI

328 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Terminal Name	Number of Terminals	1/0	Connected to	Function	T-52-13-07			
	· · · · · · · · · · · · · · · · · · ·			Truth table	(Positive logic) (cont)			
				SHL	Input data and latch circuit 1			
				1	$D_3 \rightarrow 80 \rightarrow 76 \rightarrow 72 \rightarrow 8 \rightarrow 4$			
					$D_2 \rightarrow 79 \rightarrow 75 \rightarrow 71 \rightarrow 7 \rightarrow 3$			
					$D_1 \rightarrow 78 \rightarrow 74 \rightarrow 70 \rightarrow 6 \rightarrow 2$			
					$D_0 \rightarrow 77 \rightarrow 73 \rightarrow 69 \rightarrow 5 \rightarrow 1$			
					hen SHL = 0, the data that is input to D ₃ is each bit of the latch circuit 1 in order of $1 \rightarrow 5 \rightarrow$			
SHL	1	1	V _{CC} or GND	Selects a s	hift direction of display data.			
Ē	1	I	GND or the	Enable inpu	ut.			
	terminal CAR of the HD61104			The operati level.	on stops at high level, and is enabled at low			
CAR	1	0	Input	Enable output.				
			terminal E of the HD61104					
NC	3			Unused. No	wire should be connected.			

HITACHI

T-52-13-07

Typical Application

Figure 1 is an LCD panel with 200×640 dots on which characters are displayed with 1/200 duty cycle dynamic drive.

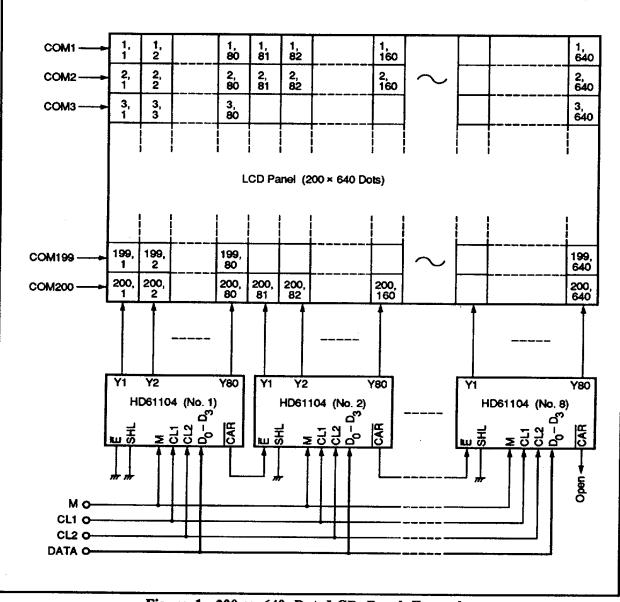
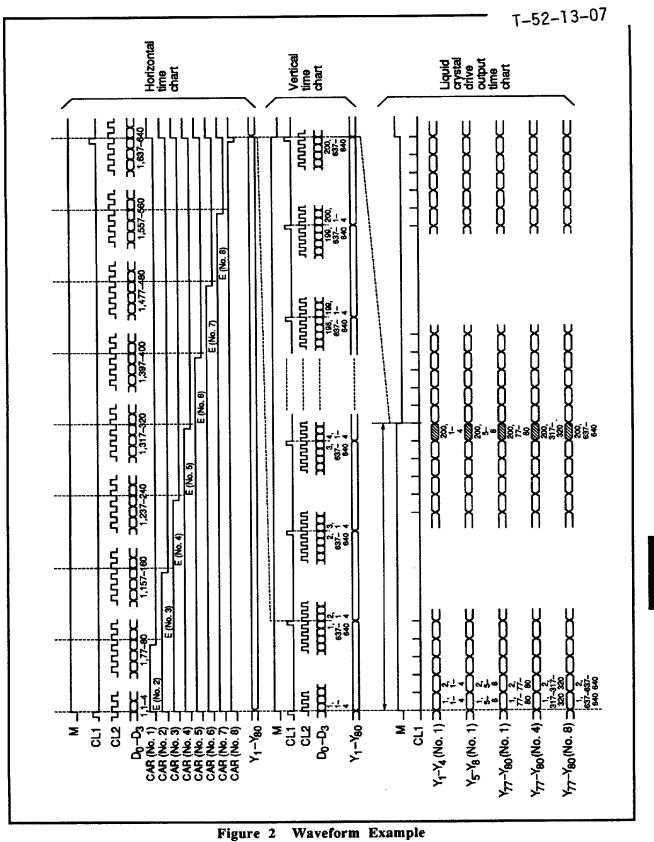



Figure 1 200 × 640 Dot LCD Panel Example

Cascade eight HD61104s. Input data to the D_0 — D_3 terminals of Nos. 1–8. Connect \overline{E} of No. 1 to GND. Connect no lines to \overline{CAR} of No. 8. Connect common signal terminals (COM1–COM200) to the common driver HD61105. (m,n) of LCD panel is the address corresponding to each dot. Figure 2 shows timing.

HITACHI

50E D ■ 4496204 0025654 498 ■HIT3 HD61104, HD61104A

HITACHI

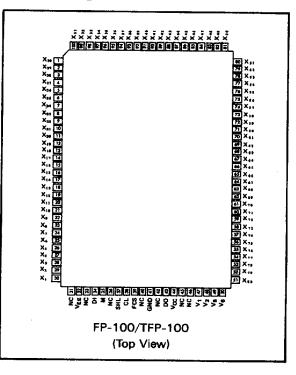
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 331

HD61105, HD61105A - T-52-13-07 (Dot Matrix Liquid Crystal Graphic Display Common Driver)

Description

The HD61105, HD61105A is a common signal driver for dot matrix liquid crystal graphic display systems. It provides 80 driver output lines and the impedance is low enough to drive a large screen.

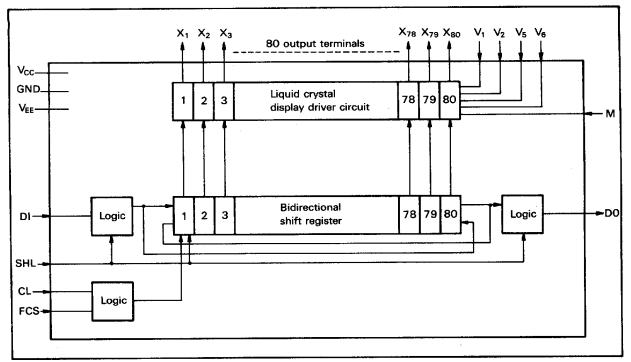
As the HD61105, HD61105A is produced in a CMOS process, it is fit for use in portable battery drive equipments utilizing the liquid crystal display's low power consumption.


Features

- Dot matrix liquid crystal graphic display common driver with low impedance
- Internal liquid crystal display driver circuit: 80 circuits
- Display duty ratio factor: 1/64—1/200
- Internal 80-bit shift register
- Power supply for logic circuit: $5 \pm 10\%$
- Power supply for LCD drive circuits: —10 to 26 V (HD61105)
- 100-pin plastic OFP (FP-100)

Ordering Information

Type No.	LCD Driving Level (V)	Package
HD61105	10 to 26	100 pin
HD61105A	10 to 28	 plastic QFP (FP-100)
HD61105TF	10 to 28	100 pin plastic T-QFP (TFP-100)


Pin Arrangement

HITACHI

Block Diagram

T-52-13-07

Absolute maximum ratings

ltem		Symbol	Value	Unit	Note
Supply voltage (1)		Vcc	- 0.3 to + 7.0	v	2
Supply voltage (2)	HD61105	VEE	$V_{CC} = 28.0 \text{ to } V_{CC} + 0.3$	v	5
	HD61105A		$V_{CC} = 28.5$ to $V_{CC} + 0.3$		
Terminal voltage (1)		V _{T1}	- 0.3 to V _{CC} +0.3	V	2, 3
Terminal voltage (2)		V _{T2}	$V_{EE} - 0.3$ to $V_{CC} + 0.3$	V	4, 5
Operating temperature		Торг	- 20 to + 75	٠C	
Storage temperature		Tstg	- 55 to + 125	°C	

Notes: 1. LSIs may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the limits of electrical characteristics, because using them beyond these conditions may cause malfunction and poor reliability.

2. All voltage values are referred to GND = 0 V.

3. Applies to input terminals except V_1 , V_2 , V_5 , and V_6 .

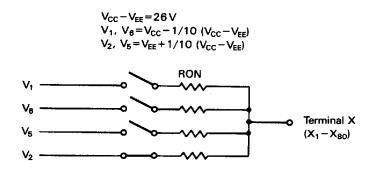
4. Applies to V₁, V₂, V₅, and V₆. 5. V_{CC} \ge V₁ \ge V₆ \ge V₅ \ge V₂ \ge V_{EE} must be maintained.

HITACHI

HITACHI/ (MCU/MPU) HD61105, HD61105A

T-52-13-07

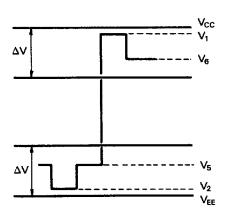
Electrical Characteristics

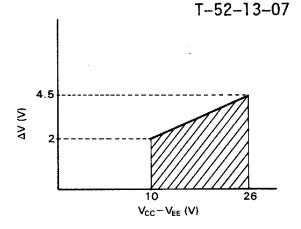

DC Characteristics

 $(V_{\rm CC}=5~V~\pm~10\%,~GND=0~V,~V_{\rm CC}-V_{\rm EE}=10$ to 26 V (HD61105), $V_{\rm CC}-V_{\rm EE}=10$ to 28 V (HD61105A), $T_a=-20$ to $+~75^{\circ}C)$

Test item		Specifications					
	Symbol	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	Ин	$0.7 \times V_{CC}$		Vcc	v		1
Input low voltage	VIL	GND		$0.3 \times V_{CC}$	v		1
Output high voltage	Voн	Vcc - 0.4			v	$I_{OH} = -0.4mA$	2
Output low voltage	Vol		_	0.4	V	$l_{OL} = 0.4 mA$	2
Vi—Xj on resistance	Ron		_	2.0	kΩ	$V_{CC} - V_{EE} = 10 V$ Load current ± 150 μ A	5
Input leakage current	I _{IL1}	- 1.0	_	1.0	μA	$V_{IN} = 0$ to V_{CC}	3
Input leakage current	l _{1L2}	- 25	_	25	μA	$V_{IN} = V_{EE}$ to V_{CC}	4
Clock frequency	f _{CL}		_	100	kHz	Transfer clock CL	
Dissipation current (1)	I _{GG1}	_	_	200	μA	at 1/200 duty cycle operation	6
Dissipation current (2)	IEE	_	_	100	μA	at 1/200 duty cycle operation	7

Notes: 1. Applies to input terminals FCS, SHL, DI, M, and CL.


- 2. Applies to output terminal of DO.
- 3. Applies to the terminals NC, and the input terminals FCS, SHL, DI, M, and CL.
- 4. Applies to V_1 , V_2 , V_5 , and V_6 . No wire should be connected to $X_1 X_{80}$.
- 5. Resistance value between terminal X (one of X_1 to X_{80}) and terminal V (one of V_1 , V_2 , V_5 , and V_6) when load current is applied to one of terminals X_1 to X_{80} . This value is specified under the following conditions:



The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to V_1 and V_5 , and negative voltage to V_2 and V_5 , within

the $\triangle V$ range. This range allows stable impedance on driver output (R_{ON}). Notice that $\triangle V$ depends on power supply voltage $V_{CC}-V_{EE}$.

HITACHI

Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive

Correlation between Power Supply Voltage $V_{CC} - V_{EE}$ and $\triangle V$

- 6. The currents flowing through the GND terminal. Specified when display data is transferred under following conditions:
 - CL frequency

M frequency

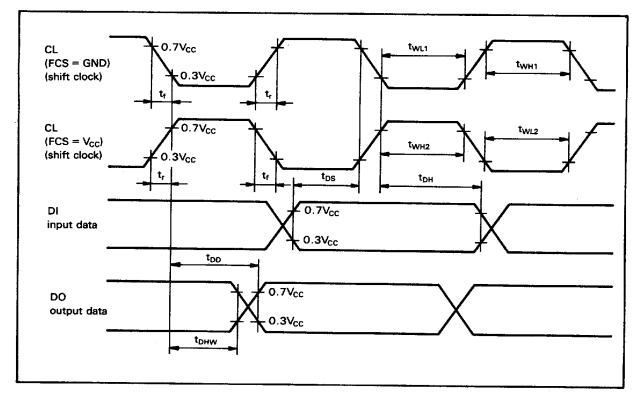
Display duty ratio

 $V_{IH} = V_{CC}, V_{IL} = GND$

No load on outputs

- fc⊾
- fM
- 7. The currents flowing through the V_{EE} terminal in the conditions of note 6. No line should be connected to the V terminal.

HITACHI


335 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

= 14kHz (data transfer rate) = 35 Hz (frame frequency/2) 1/200

HD61105, HD61105A

T-52-13-07

AC Characteristics ($V_{cc} = 5 V \pm 10\%$, GND = 0 V, $T_{e} = -20 to + 75^{\circ}C$)

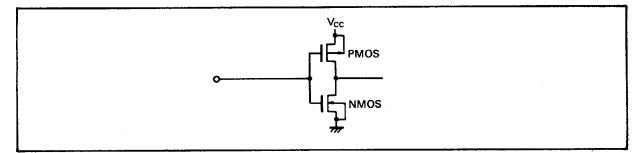
Item	Symbol	Min	Тур	Max	Unit	Note
Clock low level width (FCS = GND)	twL1	5.0			μS	
Clock high level width (FCS = GND)	twn1	125	******		ns	
Clock low level width (FCS = V _{CC})	twL2	125		<u></u>	ns	
Clock high level width (FCS = V_{CC})	twn2	5.0			μS	
Data setup time	t _{DS}	100			ns	÷
Data hold time	t _{DH}	100			лs	
Output delay time	t _{DD}			3.0	μS	1
Output hold time	torw	100		<u> </u>	ns	
Clock rise time	tr			30	ns	
Clock fall time	tr			30	ns	<u>-</u>

Note: 1. The following load circuits are connected for specification:

Output terminal

30 pF (including jig capacitance)

HITACHI

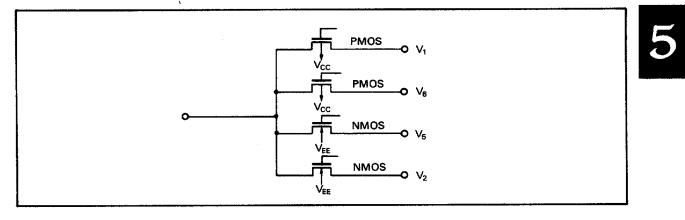

市

T-52-13-07

Terminal Configuration

Input Terminal

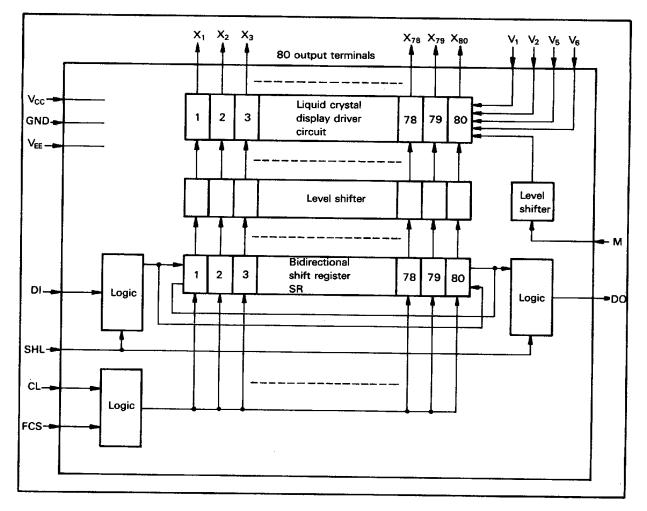
Applicable Terminals: DI, CL, SHL, FCS, M


Output Terminal

Applicable Terminal: DO

Output Terminal

Applicable Terminals: X1-X80


HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 337

HD61105, HD61105A

T-52-13-07

Block Diagram

HITACHI

HD61105, HD61105A

T-52-13-07

(Positive Logic)

Block Functions

Bidirectional Shift Register

This is a 80-bit bidirectional register. The data from the DI terminal is shifted by the shift clock CL. The output terminal DO outputs the last shifted data. In case of serial cascade connection, terminal DO functions as the data input to the next LSI. Terminal SHL selects the data shift direction (table 1), and the terminal FCS selects the shift clock phase (table 2).

Liquid Crystal Display Driver Circuit

The combination of the data from the shift register with M signal allows one of the four liquid crystal display driver levels V1, V2, V5, and V6 to be transferred to the output terminals (table 3).

Table 1 SHL Truth Table

SHL	Data Shift Direction	.
1	$DI \rightarrow SR1 \rightarrow SR2 \rightarrow SR3$ $SR79 \rightarrow SR80 \rightarrow D0$	
0	$DI \rightarrow SR80 \rightarrow SR79 \rightarrow SR78 \cdots SR2 \rightarrow SR1 \rightarrow DO$	

Table 2 FCS Truth Table

FCS	Shift Clock Phase	
0	Shifted at the falling edge of CL	
1	Shifted at the rising edge of CL	

Table 3 M Truth Table

Data from the Shift Register		(Positive Logic)	
	M	Output level	
0	0	V5	
1	0	V1	
0	1	V ₆	
1	1	V2	

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 339

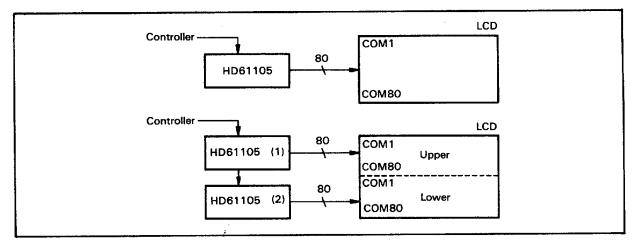
Powered by ICminer.com Electronic-Library Service CopyRight 2003

5

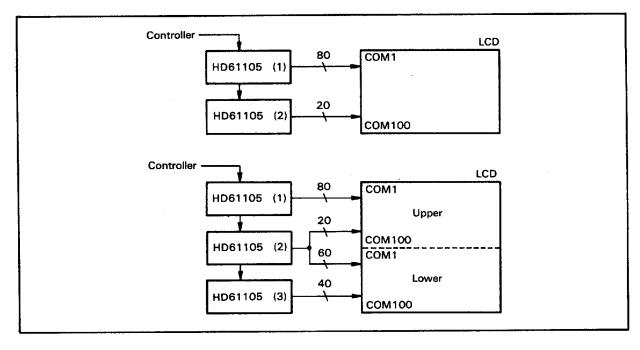
HD61105, HD61105A

HD61105 Terminal Functions Terminal Number of Connected Name Terminals 1/0 to **Functions** Vcc 1 Power Vcc - GND: Power supply for internal logic GND 1 supply Vcc - VEE: Power supply for LCD drive circuit 1 V_{EE} V₁ 4 Liquid Power supply for liquid crystal drive V2 crystal V1, V2: selection level V5 drive V5, V6: non-selection level V6 level power supply FCS 1 1 Vcc or GND Selects shift clock phase. FCS = V_{CC} Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL M 1 E Controller Signal to convert LCD driver signal into AC CL 1 F Controller Shift clock $FCS = V_{CC}$ Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL DI 1 L Controller or Shift register data input terminal DO of In case of cascade connection, the terminal DI is connected HD61105 to the terminal DO of the preceding LSI. DO 1 0 Open or Shift register data output terminal DI of In case of cascade connection, the terminal DO is con-HD61105 nected to the terminal DI of the next LSI. SHL 1 Ł Selects shift direction of bidirectional shift register. Vcc or GND SHL Shift Direction Common Scanning Direction Vcc $DI \rightarrow SR1 \rightarrow SR2 \rightarrow SR80$ $X_1 \rightarrow X_{80}$ GND DI → SR80 → SR79 → SR1 $X_{80} \rightarrow X_1$ 80 X1---X80 0 Liquid Liquid crystal display driver output Outputs one of the four liquid crystal display driver levels crystal display V_1 , V_2 , V_5 , and V_6 with the combination of the data from the shift register and M signal. Μ 0 Data Output level Data 1: Selection level Data 0: Non-selection level When SHL is V_{CC}, X₁ corresponds to COM1 and X₈₀ corresponds to COM80. When SHL is GND, X₈₀ corresponds to COM1 and X₁ corresponds to COM80. NC 7 Open Unused. No line should be connected.

HITACHI


Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

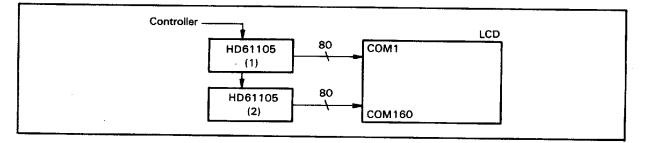
T-52-13-07


HD61105, HD61105A T-52-13-07

Outline of HD61105 System Configuration

When display duty ratio of LCD is 1/80

When display duty ratio of LCD is 1/100

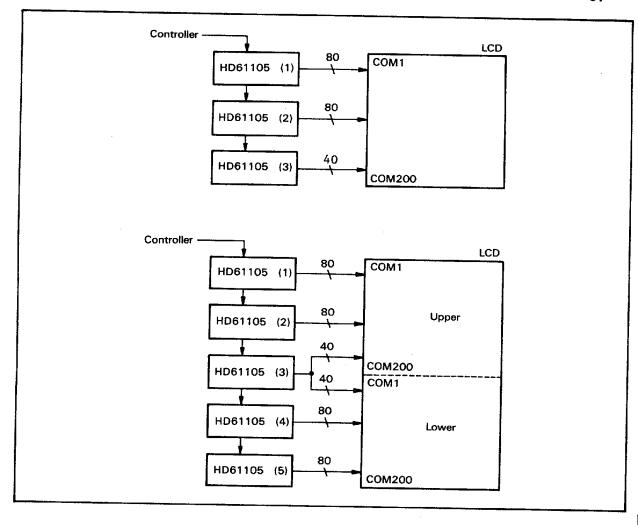


HITACHI

HD61105, HD61105A

T-52-13-07

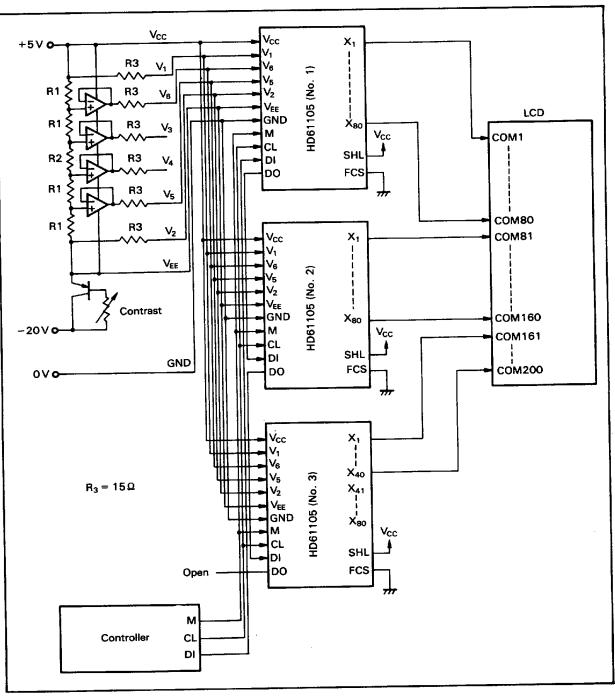
When display duty ratio of LCD is 1/160


When display duty ratio of LCD is 1/160

HITACHI

When display duty ratio of LCD is 1/200

T-52-13-07


5

HITACHI

HD61105, HD61105A

Example of Connection

1/200 duty ratio

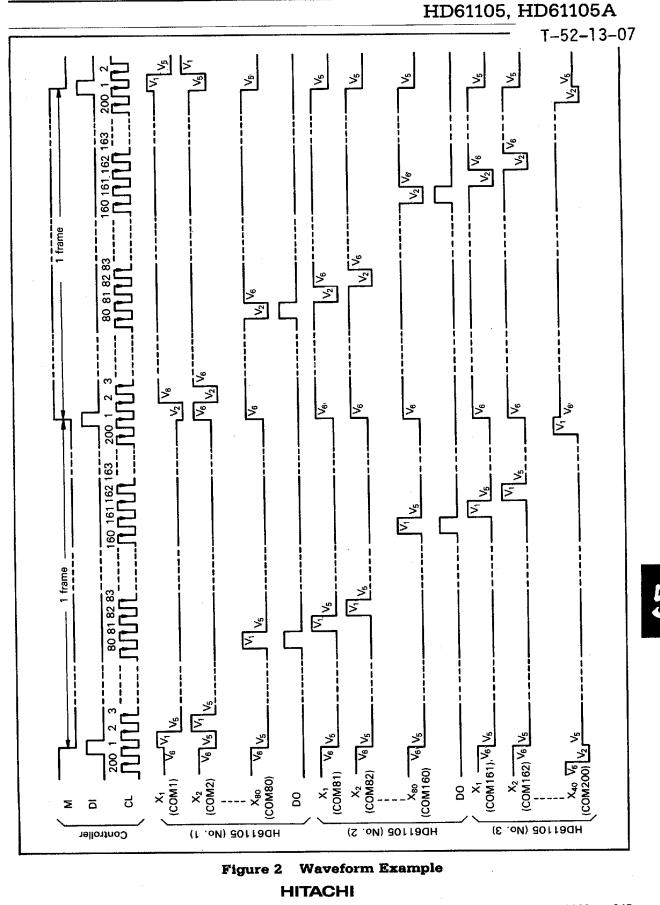
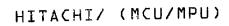

Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/15, the values of R1 and R2 should satisfy $\frac{R1}{4R1+R2} = \frac{1}{15}$ For example, R1 = 3 K Ω , R2 = 33 K Ω

Figure 1 Example of Connection (SHL = V_{CC} , FCS = GND)

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

T-52-13-07


50E D 4496204 0025669 9Ъ9 🎟 HIT3

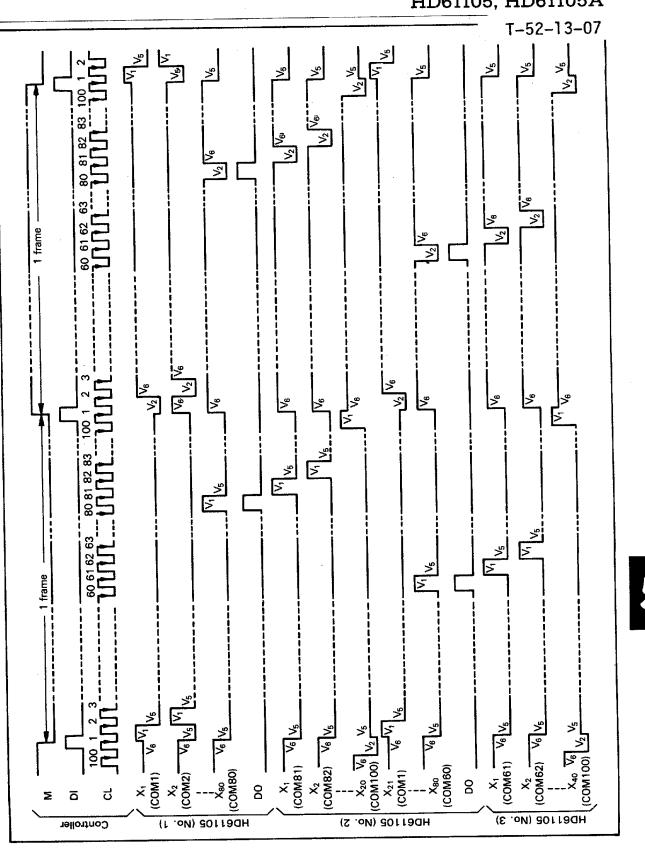

HD61105, HD61105A T-52-13-07 Vcc +5V √cc X_1 ٧, R3 V_1 ٧ĥ ÷ /5 R1≥ R3 HD61105 (No. V₆ V2 1111 LCD V_{EE} GND **R1** COM1 RЗ V₃ м X80 CL Vcc R2 ₹ R3 V4 DI SHL DO FCS R1 Upper R3 V5 R1 сомво R3 V_2 X₁ COM81 Vcc ٧ı VEE X₂₀ COM100 ٧5 3 COM1 X₂₁ HD61105 (No. ٧, Contrast VEE GND - 12 М COM60 X_{80} CL Vcc Lower COM61 Dł SHL DO GND FCS oν **COM100** Vcc X1 V1 Vв ŝ V5 X₄₀ HD61105 (No. $R3 = 15\Omega$ V2 X_{41} Vee GND Μ X80 CL Vcc DI SHL Open DO FCS М Controller сι DI Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/11, the values of R1 and R2 should satisfy **R1** $\overline{4R1+R2} = \overline{11}$ For example, $R1 = 3 K\Omega$, $R2 = 21 K\Omega$

Figure 3 Example of Connection 1 (SHL = V_{CC} , FCS = GND)

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 346

Waveform Example Figure 4

HITACHI

HD61105, HD61105A

50E D 🖿 4496204 0025671 577 🖿 HITS

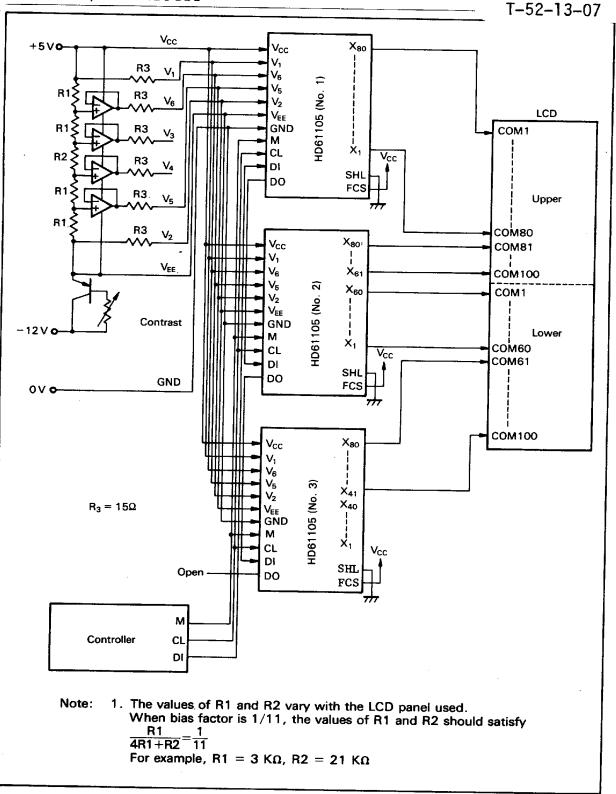
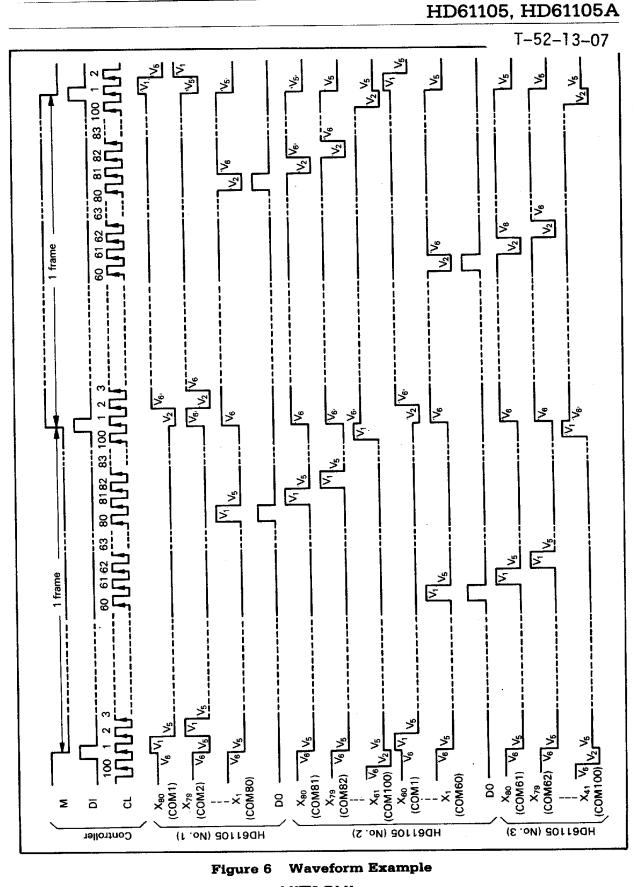



Figure 5 Example of Connection 2 (SHL = GND, FCS = V_{CC})

HITACHI

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 349