ADC100 Precision 22 Bit Integrating AID Converter

THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000

FEATURES

- 22-BIT RESOLUTION
$\cdot \pm 10.48$ INPUT RANGE
- 1ppm/ ${ }^{\circ} \mathrm{C}$ MAX. SCALE FACTOR ERROR
- 2 ppm MAX. LINEARITY ERROR
- AUTO ZERO
- BUS COMPATIBLE
- INTERNAL CLOCK and REFERENCE
- LOW POWER CONSUMPTION (0.4 WATTS)

DESCRIPTION

ADC100 is a high performance 22 -bit A/D converter based on a patented architecture which provides outstanding performance (accuracy) comparable to the best digital meters. The ADC100 is available in two operating temperature ranges, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. " M " versions are screened for high reliability and quality.

ADC100 offers 3 ppm max. linearity error and $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. scale factor error over the military temperature range. It also has excellent offset stability at 2 ppm max. which the user can auto zero if desired.

ADC100's compatibility with popular microcomputer buses increases its ease of application in smart systems. An on-board microprocessor controls all internal functions of the ADC100. Thaler designers have minimized external connections to greatly reduce the problem often encountered when applying ADC's.
Operating from $\pm 15 \mathrm{VDC}$ and a +5 VDC power supply, ADC100 is packaged in a hermetically sealed $40-$ pin ceramic DIP package. Precision test equipment, scientific and medical instruments, and data acquisition systems are primary application areas for the unusually high resolution and accuracy of this ADC.

MAXIMUM RATING SPECIFICATIONS		ADC100	
MODEL	ADC100		
PARAMETER	MIN	MAX	UNITS
TEMPERATURE			
Operating Storage	$\begin{gathered} -55 \\ 0 \end{gathered}$	$\begin{aligned} & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
POWER SUPPLY			
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} +14 \\ -14 \\ +4 \end{gathered}$	$\begin{gathered} \hline+16 \\ -16 \\ +6 \\ \hline \end{gathered}$	VDC VDC VDC
INPUTS			
Analog Inputs Digital Inputs	$V_{\text {EE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	

EXTERNAL CONNECTIONS

NOTES:

1. Power Supply Decoupling

The ADC100 has internal $0.1 \mu \mathrm{~F}$ decoupling capacitors for all power supply inputs. The internal decoupling capacitors are adequate for applications with relatively short power supply leads (approx. 5") or if additional capacitors are located on a circuit board. For applications with long power supply leads an external capacitor of 10 mF on the $+/-15 \mathrm{~V}$ inputs and 33 mF on the +5 V input is recommended.
2. Ground

The ground connection (pin 7) should be made as solid as possible since ground noise can result in a loss of accuracy. Use of a ground plane is a good approach to maintain the full accuracy of the ADC100.

3. External Components

A $0.68 \mu \mathrm{~F}$ polystyrene integration capacitor must be connected to pins 34 and 35 with a lead length not exceeding 2 ".
4. Analog Inputs

In order to avoid differential noise pickup it is recommended to use parallel adjacent lines for the analog inputs (pins 39, 40) on PC boards and shielded lines outside of the PC connections.

THEORY OF OPERATION

In the ADC100 block diagram (see Figure 1), V_{hi} and $\mathrm{V}_{\text {low }}$ are the inputs. Both are buffered and fed into a differential, voltage controlled, single output current source. This current is added to the reference current at the input of the op amp integrator. The output of the integrator is fed into a Schmitt trigger, which in turn, is fed into the ADC's timing control circuitry. When the integrator output actuates the Schmitt trigger, the timing circuit changes the direction of the reference current source and the integrator begins integrating in the opposite direction. This continues until the Schmitt trigger is actuated again by the integrator and reverses the direction of the reference current.
The equation for integration times are:

$$
T p=\frac{V \times C}{I \text { ref }+I \text { inp }} \quad T m=\frac{V \times C}{-I \text { ref }+I \text { inp }}
$$

```
\(\mathrm{V}=\mathrm{Voltage}\)
C= Integration Capacitor Value
I ref = Reference Current
I inp = Input Current
```

Resolving these equations produces:

$$
\begin{aligned}
& \qquad I \text { inp }=I \text { ref } \frac{T p-T m}{T p+T m} \\
& T p=\text { Time Positive } \\
& T m=\text { Time Negative }
\end{aligned}
$$

The timing control circuitry governs the counters that measure the integration time in both directions.
The ADC100's on-board microprocessor is used to calculate the results of the integration equation above. It is also used to perform error corrections and to control the built-in-auto-zero function. Note that the mP automatically performs an auto-zero function at start-up, but it is recommended, to achieve maximum accuracy, that an auto-zero be performed again after the ADC100 is fully warmed up.
When the $\mu \mathrm{P}$ detects a convert signal, it lowers the status lines to indicate that the ADC is involved in a conversion. When it detects a change in slope direction, the $\mu \mathrm{P}$ will collect the counts for the integration time. When sufficient counts have been collected, the $\mu \mathrm{P}$ performs the calculations described above.
When the calculations are complete, the $\mu \mathrm{mP}$ places the most significant byte in the output buffer and raises the S_{0} flag. When another pulse is placed on the convert line, the middle byte is placed on the output, the S_{0} flag is lowered and the S_{1} flag raised. When the last pulse is placed in the convert line, the least significant byte is placed in the output buffer and both status flags are high indicating that the ADC100 is ready for another conversion.
Status line summary:

FIGURE 1. BLOCK DIAGRAM

CONNECTING THE ADC100

POWER SUPPLIES

The power supply lines are connected to pins 4-7. Pin 4 is -15 V , pin 5 is +15 v , pin 6 is +5 V and pin 7 is GND.

OUTPUT DATA LINES

The output data is available in byte form on pins $13-20$. Pin 20 is the Most Significant Bit and pin 13 the Least Significant Bit. The data lines go to a high impedance state when the Output Enable line is at a logic one level.

OUTPUT ENABLE (PIN 21)

Data is placed on the Output Data Lines by a logic zero on this line.

CONVERT (Pin22)

This line is used to initiate a conversion cycle and to retrieve the output data. The status lines indicate which function will be executed. The first pulse (transition from logic one to logic zero) starts the conversion cycle. Two subsequent pulses are used to place the lower two bytes on the Output Data Lines.

AUTO-ZERO I RESET (Pin 29)

A logic zero on this input will autozero the ADC1503 by internally connecting the analog high to analog low. Since the $\mu \mathrm{P}$ is reset the status lines S1 and SO are tristate before going to the low position. The status lines will remain low until the autozero is complete.

INTEGRATION CAPACITOR (Pin 34, 35)

A . $68 \mu \mathrm{~F}$ polystyrene capacitor must be connected to these pins. Lead length should be as short as possible and not exceed $2^{\prime \prime}$.

ANALOG INPUTS (Pin 39, 40)

Both analog inputs are buffered by op-amps and have a common mode rejection of approximately 80 dB . min. To maintain the full accuracy at the ADC it is recommended to keep the input to analog common to less than 0.1VDC.

STATUS LINES (Pins 23, 24)

These lines indicate the present state of the ADC. When the Convert line receives the first pulse in a conversion cycle the Status Lines go to logic zero, indicating that a conversion cycle is in progress. When the conversion is complete the microprocessor places the MSB of the output data in the output buffer and then raises S_{0} to a logic one, indicating that the MSB at the output data is available in the output buffer. When the Convert Line is pulsed again the middle byte of the output data is placed in that output buffer and S_{1} changes to logic one and S_{0} to logic zero. The third pulse places the LSB of the output data in the buffer and both status lines go to the logic one. The converter is now ready for the next conversion cycle.
The table below shows a summary of the status code.

S_{1}	$\mathrm{~S}_{0}$	
0	0	Conversion in progress.
0	1	Conversion complete. MSB in output.
1	0	Middle byte in output register.
1	1	LSB in output. Ready for next conversion.

OUTPUT DATA REPRESENTATION

The output data is represented in BOB (Bipolar Offset Binary) format. One LSB is scaled to be exactly 5 mV . The table below shows the output data codes for zero and plus-minus full scale input voltage.

Input Voltage	Output Data		
	High Byte	Middle Byte	Low Byte
-10.485760 V	00	00	00
0.0 V	20	00	00
+10.485755 V	$3 F$	FF	FF

TIMING DIAGRAMS

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {AZD }}$	AZ Pulse Width	0.2			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {TRST }}$	Tristate Time			30	ms
$\mathrm{t}_{\text {AZ }}$	AZ Time			400	ms

FIGURE 2. AUTO ZERO

FIGURE 3. CONVERSION

TIMING DIAGRAMS

FIGURE 4. DATA OUTPUT

1. GOLD PLATING 60 MICRO INCHES MINIMUM THICKNESS OVER 100 MICRO INCHES NOMINAL THICKNESS OF NICKEL
FIGURE 5. MECHANICAL SPECIFICATIONS
