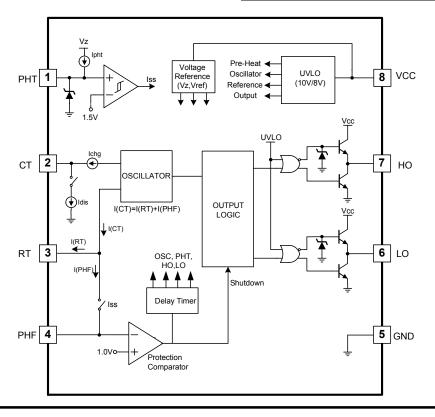

### DESCRIPTIONS

**BLOCK DIAGRAM** 

The IP3101 provides simple and high performance control functions for the half bridge L/C resonant system, specially electronic ballast . It internally integrated the essential functions of the half bridge L/C resonant system so the conventional system can be realized a minimum board area, small external components and low power dissipation.

Internally integrated soft-start circuit eliminated the need for external soft-start circuit. And the initial preheating switching frequency and preheating time can be easily programmable with only one capacitor (preheating frequency capacitor) and one resistor (preheating time capacitor) depending on the types of lamps. Also the normal operating frequency can be easily adjusted by timing resistor (Rt) and timing capacitor (Ct).

The cold cathode current can be limited by changing the normal operating frequency to soft-start frequency with an external small signal transistor. No lamp protection or any required protection like over current protection can be realized by adding an external small signal transistor.




### FEATURES

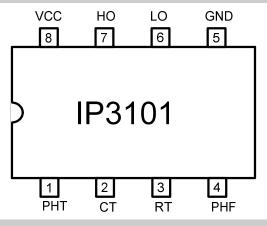
- Internal Soft Start
- Programmable Soft Start Frequency
- Programmable Preheating Time
- Very Precision Internal Operating Frequency(<u>+</u>5%)
- No Lamp Protection or Over Current Protection
- Precision Internal Reference Voltage
- 8DIP, 8SOP Packages

### **ORDER INFORMATIONS**

| Device | Package | Operating Temp |  |  |
|--------|---------|----------------|--|--|
| IP3101 | 8DIP    |                |  |  |
| I3101  | 8SOP    | -25 C ~ 125 C  |  |  |



September. 2003


http://www.interpionsemi.com



IP3101

# Versatile Gate Driver

## **PIN CONNECTIONS**



### **PIN DESCRIPTIONS**

| NO | SYMBOL | I/O | DESCRIPTION                                                           |  |  |  |  |
|----|--------|-----|-----------------------------------------------------------------------|--|--|--|--|
| 1  | PHT    | I   | Preheating Time & Soft-start Time Control Pin with Capacitor          |  |  |  |  |
| 2  | СТ     | I   | Internal Oscillator Timing Control Pin with Capacitor                 |  |  |  |  |
| 3  | RT     | I   | Internal Oscillator Timing Control Pin with Resister                  |  |  |  |  |
| 4  | PHF    | I   | Preheating Frequency & Soft-Start Frequency Control Pin with Resister |  |  |  |  |
| 5  | GND    | -   | Ground                                                                |  |  |  |  |
| 6  | LO     | 0   | Low Side Gate Drive Output                                            |  |  |  |  |
| 7  | НО     | 0   | High Side Gate Drive Output                                           |  |  |  |  |
| 8  | VCC    | -   | Supply Voltage                                                        |  |  |  |  |

## ABSOLUTE MAXIMUM RATINGS

| CHARACTERISTICS                  | SYMBOL | VALUE      | UNIT        |
|----------------------------------|--------|------------|-------------|
| Maximum Supply Voltage           | VCCMAX | 30         | V           |
| Maximum Operating Supply Voltage | VOPMAX | 24         | V           |
| Totem-pole Output Peak Current   | IPEAK  | 300        | <u>+</u> mA |
| Power Dissipation(8DIP)          | Pd     | 800        | mW          |
| PIN1,2,3,4 Voltage               | VIN    | -0.4 ~ 6   | V           |
| Output Clamp Diode Current       | ICLAMP | 30         | mA          |
| Operating Junction Temperature   | Tj     | -25 ~ +125 | °C          |
| Storage Temperature              | Tstg   | -65 ~ 150  | °C          |

September. 2003

http://www.interpionsemi.com



## **ELECTRICAL CHARACTERISTICS**

(Ta = 25°C, Vcc=14V, fosc=46KHz, unless otherwise specified.)

| CHARACTERISTICS                          | SYMBOL  | CONDITIONS                    | MIN  | ТҮР  | МАХ  | UNIT |
|------------------------------------------|---------|-------------------------------|------|------|------|------|
| Total Supply Current Section             | on      |                               | 1    | 1    | 1    |      |
| Start-up Current                         | IST     | Vcc = 9V                      | -    | 125  | 250  | uA   |
| Quiescent Current                        | IQ      | Not Switching                 | 3    | 7.5  | 12   | mA   |
| Operating Supply Current                 | ICC     | fosc=46KHz, Co=1nF            | 4    | 9    | 14   | mA   |
| Under Voltage Lock Output                | Section |                               | 1    |      | -    |      |
| Vcc Turn-On Voltage                      | VCCON   | Vcc Increasing                | 9    | 10   | 11   | V    |
| UVLO Hysteresis Voltage                  | HYS     |                               | 1.5  | 2    | 2.5  | V    |
| Preheating (Soft Start) Sect             | tion    |                               | 1    | 1    | 1    |      |
| PHT Charging Current                     | IPHT    | PIN1=0V                       | 0.7  | 0.9  | 1.1  | uA   |
| PHT Threshold Voltage                    | VPHT    | PIN1 Increasing,<br>Rphf=33KΩ | 1.2  | 1.5  | 1.8  | V    |
| PHF Reference Voltage                    | VPHF    | IPHF=100uA                    | 1.95 | 2.00 | 2.05 | V    |
| PHF Reference Voltage<br>Line Regulation | DVPHF1  | Vcc=12~20V                    | -6   | 0.1  | 6    | mV   |
| PHF Reference Voltage<br>Load Regulation | DVPHF2  | lo=50uA~200uA                 | -12  | -0.1 | 12   | mV   |
| Protection Section                       |         |                               | ż    |      |      |      |
| Protection Input Threshold<br>Voltage    | VPROT   | PIN4=from 2.0V to 0V          | 0.7  | 1.0  | 1.3  | V    |
| Protection Triggering Cur-<br>rent       | IPROT   | PIN4=0V                       | -    | -1   | -    | mA   |
| PHF Maximum Current                      | IPHF    | VPHF=1.5V                     | 200  | -    | -    | uA   |



# **ELECTRICAL CHARACTERISTICS (Continued)**

| CHARACTERISTICS                    | SYMBOL | CONDITIONS                               | MIN  | ТҮР  | МАХ  | UNIT |
|------------------------------------|--------|------------------------------------------|------|------|------|------|
| Oscillator Section                 |        |                                          |      | I    | I    | 1    |
| RT Reference Voltage               | VRT    | IRT=100uA                                | 1.95 | 2.00 | 2.05 | V    |
| RT Short to GND Current            | ISCRT  | PIN3=0V                                  | 1    | 2    | -    | mA   |
| RT Reference Line Regula-<br>tion  | DVRT1  | Vcc=12V~20V                              | -6   | 0.1  | 6    | mV   |
| RT Reference Load Regu-<br>lation  | DVRT2  | lo=100uA~500uA                           | -12  | -0.1 | 12   | mV   |
| Soft Start Output Fre-<br>quency   | FPHT11 | PIN1=0V,Rphf=33KΩ,<br>CT=470pF, RT=20KΩ  | 61   | 68   | 75   | KHz  |
| Operating Frequency NOTE           | FOSC1  | PIN1=5V, Rphf=33KΩ,<br>CT=470pF, RT=20KΩ | 43   | 46   | 49   | kHz  |
| Frequency Variation With Vcc       | DVFSC1 | Vcc=14V~24V                              | -    | 0.01 | -    | %    |
| Dead Time                          | TD     | PIN1=5V, Rphf=33KΩ,<br>CT=470pF, RT=20KΩ | 1.15 | 1.75 | 2.35 | us   |
| Output Section                     |        |                                          |      | 1    | 1    | 1    |
| Output High Voltage 11             | VOH11  | lo = -10mA                               | 11   | 12   | 13   | V    |
| Output High Voltage 12             | VOH12  | lo = -100mA                              | 10.5 | 11.5 | 12.5 | V    |
| Output Low Voltage 21              | VOL21  | lo = 10mA                                | 0    | 0.05 | 0.4  | V    |
| Output Low Voltage 22              | VOL22  | Io = 100mA                               | 0.05 | 0.4  | 1.2  | V    |
| Output Maximum Voltage             | VHOMAX | Vcc=20V, No Load                         | 11   | 14   | 17   | V    |
| Output Voltage with UVLO activated | VUV    | Vcc=5V, lo=100uA                         | -    | 0.6  | 1    | V    |

\* NOTE : FOSC (Operating Frequency) is the half of Oscillator Frequency.



IP3101

# **Versatile Gate Driver**

### **APPLICATION INFORMATIONS**

#### 1. Calculation for V<sub>PHT</sub>

The V<sub>PHT</sub> is voltage of pin 1. The preheating time is decided by this voltage.

$$V_{PHT} = \frac{44000}{R_{PHF}} + 0.05$$

Where,

 $R_{PHF}$  is the value of resistor which is connected to pin 4.

#### 2. Calculation for T<sub>PH</sub>

The  $T_{PH}$  is preheating time, from preheating frequency to normal operating frequency. When the voltage of pin 1 reach to the  $V_{PHT}$ , the preheating will be completed.

$$T_{PH} = \frac{C_{PHT}}{0.9 \cdot 10^{-6}} \times V_{PHT}$$

Where,

 $C_{PHT}$  is the value of capacitor which is connected to pin 1.

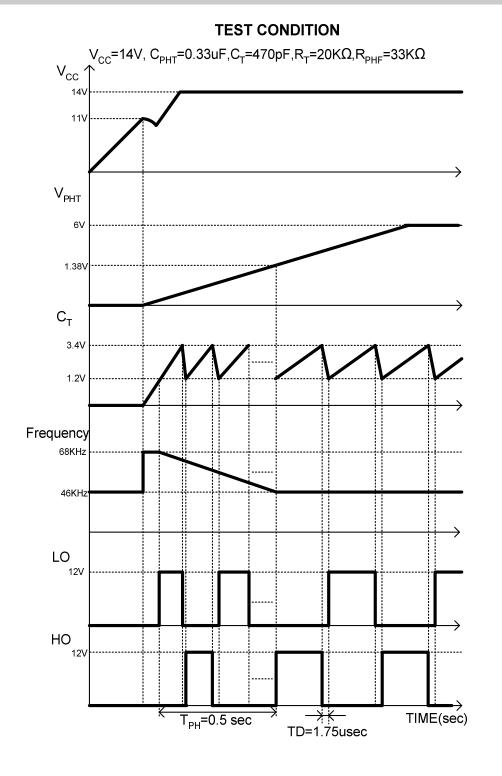
#### 3. Calculation for fsw

The f<sub>SW</sub> is normal operating frequency.

$$f_{SW} \cong \frac{1}{2.2 \cdot R_T C_T}$$

Where,

CT & RT are the value of capacitor & resistor which are connected to pin 2 & pin 3.

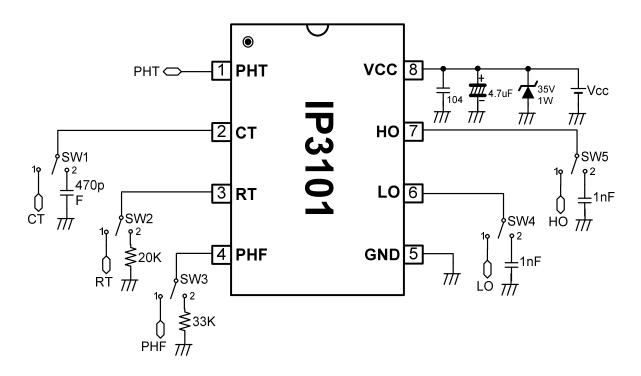

#### 4. Calculation for f<sub>PRH</sub>

The f<sub>PRH</sub> is preheating frequency.

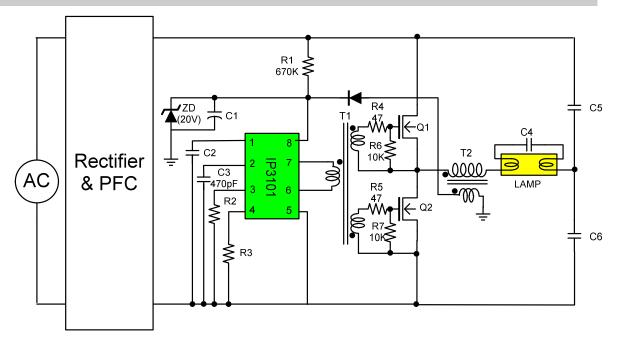
$$f_{PRH} \cong \frac{R_T + R_{PHF}}{2.5 \cdot R_T C_T R_{PHF}}$$



## **OPERATION TIMING CHART**

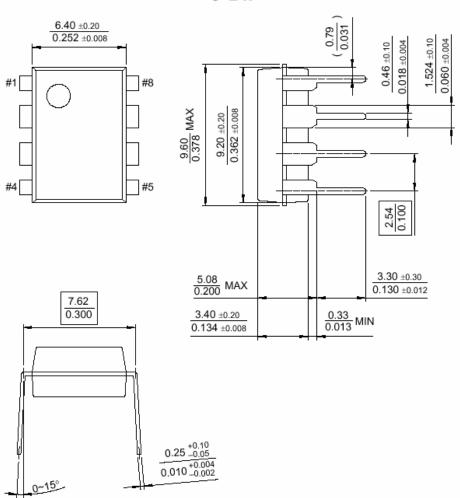






IP3101

**Versatile Gate Driver** 

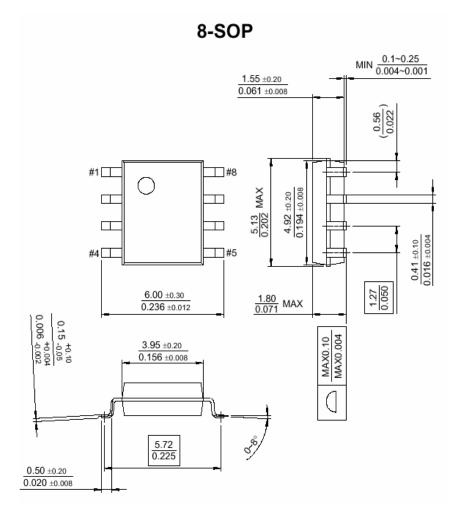
## **TEST CIRCUITS**




### **TYPICAL APPLICATION CIRCUITS**






### **PACKAGE DIMENSIONS**



8-DIP



### **PACKAGE DIMENSIONS**

