DESCRIPTION

The HY514400A is the 2nd generation and fast dynamic RAM organized $1,048,576 \times 4$-bit. The HY514400A utilizes Hyundai's CMOS silicon gate process technology as well as advanced circuit techniques to provide wide operating margins to the users. Multiplexed address inputs permit the HY514400A to be packaged in a standard $20 / 26$ pin plastic SOJ, TSOP-II and Reverse TSOP-ll.
The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipments. System oriented feature includes single power supply of $5 \mathrm{~V} \pm 10 \%$ tolerance and direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

- Low power dissipation

Max. battery back-up 2.2 mW (L-part)
Max. CMOS standby 1.1 mW (L-part) 5.5 mW

Max. TTL standby 11.0 mW
Max. operating

Speed	Power
50	715.0 mW
60	632.5 mW
70	550.0 mW

- Single power supply of $5 \mathrm{~V} \pm 10 \%$
- TTL compatible inputs and outputs
- Fast access and cycle time

Speed	tRAC	tGAC	tPC
50	50 ns	15 ns	35 ns
60	60 ns	15 ns	40 ns
70	70 ns	20 ns	45 ns

- Fast page mode operation
- Multi-bit test capability
- Read-Modify-Write capability
- CAS-before-RAS, RAS-only, Hidden refresh
- 1024 refresh cycles / 128ms (L-part) 1024 refresh cycles / 16 ms

PIN DESCRIPTION

RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
OE	Output Enable
AO-A9	Address Input
DQO-DQ3	Data Input/Output
Vcc	Power (+5V)
Vss	Ground

PIN CONNECTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

SYMBOL	PARAMETER	RATING	UNIT
TA	Ambient Temperature	0 to 70	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
VIN, VOUT	Voltage on Any Pin Relative to Vss	-1.0 to 7.0	V
VCC	Voltage on Vcc Relative to Vss	-1.0 to 7.0	V
los	Short Circuit Output Current	50	mA
PD	Power Dissipation	0.90	W
TSOLDER	Soldering Temperature * Time	$260 \cdot 10$	${ }^{\circ} \mathrm{C} \cdot \mathrm{sec}$

NOTE: Operation at or above Absolute Maximum Ratings can adversely affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VCC	Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.4	-	VCC+1.0	V
VIL	Input Low Voltage	-1.0	-	0.8	V

NOTE: All voltage are referenced to Vss.

DC CHARACTERISTICS

($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$, VSS $=0 \mathrm{~V}$, uniess otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS	SPEED/ POWER	MIN.	MAX.	UNIT	NOTE
ILI	Input Leakage Current (Any Input Pins)	$\mathrm{V}_{\mathrm{ss}} \leq \mathrm{V} \mathbb{N} \leq 6.5 \mathrm{~V}$ All other pins not under test $=$ Vss		-10	10	$\mu \mathrm{A}$	
ILO	Output Leakage Current (High impedance State)	Vss \leq Vout $\leq 5.5 \mathrm{~V}$ RAS \& CAS at VIH		-10	10	$\mu \mathrm{A}$	
ICC1	Vcc Supply Current, Operating	tre $=\operatorname{trc}$ (min.)	$\begin{aligned} & 50 \\ & 60 \\ & 70 \end{aligned}$	-	$\begin{aligned} & 130 \\ & 115 \\ & 100 \\ & \hline \end{aligned}$	mA	1,2,3
tcce	Vce Supply Current, TIL Standby	RAS \& CAS at VIH, other inputs \geq vSs		-	2	mA	
ICC3	Vcc Supply Current, RAS-only refresh	tRC $=$ tRC(min.)	$\begin{aligned} & 50 \\ & 60 \\ & 70 \end{aligned}$	-	$\begin{aligned} & 130 \\ & 115 \\ & 100 \\ & \hline \end{aligned}$	mA	1,3
ICC4	Vcc Supply Current, Fast Page mode	tPC $=\operatorname{tPC}(\min$.	$\begin{aligned} & 50 \\ & 60 \\ & 70 \\ & \hline \end{aligned}$	-	80 70 60	mA	1,2,3
ICC5	Vcc Supply Current, CMOS Standby	RAS \& CAS $\geq \mathrm{VCC}-0.2 \mathrm{~V}$	L-Part	-	1 0.2	mA	5
ICC6	Voc Supply Current, CAS-before-RAS refresh	$\operatorname{tRC}=\operatorname{trc}($ (min.)	$\begin{aligned} & 50 \\ & 60 \\ & 70 \end{aligned}$	-	$\begin{aligned} & 130 \\ & 115 \\ & 100 \end{aligned}$	mA	1,3
10.7	Vec Supply Current, Battery Back up (L-part only)	tRC $=125 \mu \mathrm{~s}$, CAS = CBR cycling or $0.2 \vee$ OE \& WE = $\mathrm{Vco-0.2V}$, $\mathrm{AO}-\mathrm{A} 9=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0.2 V $D Q 0-D Q 3=0.2 \mathrm{~V}$. $\mathrm{Vcc}-0.2 \mathrm{~V}$ or open	tRAS \leq 300ns	-	300	$\mu \mathrm{A}$	1,4,5
			$\begin{gathered} \text { tRAS } \leq \\ 1 \mu \mathrm{~s} \end{gathered}$	-	400		
VOL	Output Low Voltage	$10 \mathrm{~L}=4.2 \mathrm{~mA}$		\cdots	0.4	V	
VOH	Output High Voltage	$1 \mathrm{OH}=-5 \mathrm{~mA}$		2.4	-	V	

NOTE :

1. ICC1, ICC3, ICCA, ICCE and ICC7 depend on cycle rate.
2. ICC1, ICC3, ICCA depend on output loading. Specified values are oblained with the output open.
3. It depends on user whether column address is changed or not at least once while RAS=VIL and CAS=VIH.
4. Only tras(max.) $=1 \mu \mathrm{~s}$ is applied to refresh of battery backup but tras(max.) $=10 \mu \mathrm{~s}$ is applied to normal functional operation.
5. Icc5(max.) $=0.2 \mathrm{~mA}$ and icc7 are applied to L-parts only (HY514400ALJ, HY514400ALT and HY514400ALR).

AC CHARACTERISTICS

($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{VSS}=0 \mathrm{~V}$, unless otherwise noted.) NOTE $1,2,3,13$

\#	SYMBOL	PARAMETER		HY514400AلI/AT/AR/ALJ/ALT/ALR						UNIT	NOTE
				-50		. 60		. 70			
				MIN.	MAX.	MiN.	MAX.	MiN.	MAX.		
1	tRC	Random Read or Write Cycle Time		90	.	110	-	130	-	ns	
2	tRWC	Read-Modify-Write Cycle Time		130	-	150	-	180	-	ns	
3	tPC	Fast Page Mode Cycle Time		35	-	40	-	45	-	ns	
4	tPRWC	Fast Page Mode Read-Modify-Write Cycle Time		75	-	80	-	95	-	ns	
5	tRAC	Access Time from RAS		-	50	.	60	-	70	ns	4,9,10
6	tCAC	Access Time from CAS		-	15	.	15	-	20	ns	4,9
7	taA	Access Time from Column Address		-	25	-	30	-	35	ns	4,10
8	tCPA	Access Time from CAS Precharge		-	30	\checkmark	35	-	40	ns	4,15
9	tClz	CAS to Output Low Impedance		0	-	0	.	0	.	ns	4
10	tOfF	Output Bufler Turn-aff Delay		0	15	0	15	0	20	ns	5
11	tT	Transition Time (Rise and Fall)		3	50	3	50	3	50	ns	3
12	tRP	RAS Precharge Time		30	-	40	.	50	.	ก	
13	tRAS	RAS Pulse Width		50	10K	60	10K	70	10K	ns	
14	tRASP	$\overline{\text { RAS Puise Width (Fast Page Mode) }}$		50	200K	60	200K	70	200K	ns	
15	tRSH	RAS Hold Time		15	.	15	-	20	-	ns	
16	TCSH	CAS Hold Time		50	-	60	-	70	.	ns	
17	tCAS	$\overline{\text { CAS Pulse width }}$		15	10K	15	10K	20	10K	ns	
18	tRCD	$\overline{\text { RAS }}$ to CAS Delay		15	35	20	45	20	50	ns	9
19	trab	$\overline{\text { RAS }}$ to Column Address Delay Time		10	25	15	30	15	35	ns	10
20	tCRP	$\overline{\mathrm{CAS}}$ to RAS Precharge Time		5	-	5	-	5	-	ns	15
21	tCP	$\overline{\text { CAS Precharge Time }}$		10	.	10	-	10	-	ns	17
22	UASR	Row Address Set-up Time		0	-	0	-	0	-	ns	
23	tRAH	Row Address Hold time		8	-	10	.	10	-	ns	
24	tASC	Column Address Set-up Time		0	-	0	.	0	-	ns	14
25	tCAH	Column Address Hold Time		15	-	15	-	15	-	ns	14
26	tAR	Column Address Hold Time from $\overline{\mathrm{RAS}}$		45	\checkmark	50	-	55	-	ns	
27	tRAL	Column Address to $\overline{\mathrm{RAS}}$ Lead Time		25	-	30	-	35	-	ns	
28	tRCS	Read Command Set-up Time		0	-	0	-	0	-	ns	14
29	tRCH	Read Command Hold Time Referenced to CAS		0	-	0	-	0	-	n \$	6,14
30	tRRH	Read Command Hold Time Referenced to RAS		0	-	0	-	0	-	ns	6
31	WWCH	Write Command Hold Time		10	-	15	-	15	-	ns	14
32	tWCR	Write Command Hold Time from RAS		40	-	50	-	55	-	ns	
33	tWP	Write Command Pulse Width		10	-	15	-	15	-	ns	
34	tRWL	Write Command to RAS Lead Time		15	-	15	-	20	-	ns	
35	tCWL	Write Cormmand to CAS Lead Time		15	-	15	-	20	-	ns	16
36	tos	Data-In Set-up Time		0	.	0	-	0	-	ns	7
37	tDH	Data-In Hold Time		10	-	15	-	15	-	ns	7
38	IDHR	Data-In Hold Time Referenced to $\overline{\text { RAS }}$		40	-	50	-	55	-	ns	
39	tref	Refresh Period (1024 cycles)	L-part	\cdots	$\begin{gathered} 16 \\ 128 \\ \hline \end{gathered}$		$\begin{gathered} 16 \\ 128 \end{gathered}$		$\begin{gathered} 16 \\ 128 \end{gathered}$	ms	$\begin{aligned} & 12 \\ & 11 \end{aligned}$
40	whes	Write Command Set up Time		0	.	0	-	0	-	ns	8,14

AC CHARACTERISTICS

(continued)										
\#	SYMBOL	PARAMETER	HY514400AJ/AT/AR/ALJ/ALT/ALR						UNIT	NOTE
			- 50		-60		-70			
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
41	tcwo	$\overline{\text { CAS }}$ to $\overline{\text { WE }}$ Delay Time	35	-	35	-	40	-	ns	8
42	tRWD	$\overline{\mathrm{RAS}}$ to WE Delay Time	70	-	80	-	95	-	ns	8
43	tAWD	Column Address to WE Delay Time	45	-	50	-	60	-	ns	8
44	tCSR	$\overline{\text { CAS }}$ Set-up Time (CBR Cycle)	5	-	5	-	5	-	ns	14
45	tCHR	$\overline{\text { CAS }}$ Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	15
46	tRPC	$\overline{\mathrm{RAS}}$ to CAS Precharge Time	5	-	5	-	5	-	ns	14
47	tCPT	$\overline{\mathrm{CAS}}$ Precharge Time (CBR Counter Test)	25	-	30	-	35	-	ns	17
48	tROH	$\overline{\mathrm{RA}}$ S Hold Time Referenced to $\overline{\mathrm{OE}}$	10	-	10	-	10	20	ns	
49	tOEA	$\overline{O E}$ Access Time	-	15	-	15	-	20	ns	
50	tOED	$\overline{\mathrm{OE}}$ to Data Delay	15	-	15	-	20	-	ns	
51	toez	Output Buffer Turn Off Delay Time from OE	0	15	0	15	0	20	ns	5
52	tOEH	$\overline{\text { OE Command Hold Time }}$	15	-	15	-	20	-	ns	
53	tCPWD	$\overline{\text { WE }}$ Delay time from $\overline{\mathrm{CAS}}$ Precharge	50	-	55	-	65	-	ns	8
54	tRHCP	RAS Hold Time from CAS Precharge	30	-	35	-	40	-	ns	
55	tWRP	$\overline{W E}$ to $\overline{R A S}$ Precharge Time (CBR Cycle)	10	-	10	-	10	-	ns	
56	twRH	$\overline{\text { WE }}$ to RAS Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	
57	WTS	Write Command Set-up Time (Test Mode In)	10	-	10	-	10	-	ns	
58	WWTH	Write Command Hold Time (Test Mode In)	10	-	10	-	10	-	ns	

AC CHARACTERISTICS IN TEST MODE Note 18

\#	SYMBOL	PARAMETER	HY514400AJ/AT/AR/ALJ/ALT/ALR						UNIT	NOTE
			-50		-60		-70			
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
1	tRC	Random Read or Write Cycle Time	95	-	115	-	135	-	ns	
2	tRWC	Read-Modify-Write Cycle Time	135	-	155	-	185	-	ns	
3	tPC	Fast Page Mode Cycle Time	40	-	45	-	50	-	ns	
4	tPRWC	Fast Page Mode Read-Modify-Write Cycle Time	80	-	85	-	100	-	ns	
5	tRAC	Access Time from RAS	-	55	-	65	-	75	ns	4,9,10
6	tCAC	Access Time from CAS	-	20	-	20	-	25	ns	4,9
7	tAA	Access Time from Column Address	-	30	-	35	-	40	ns	4,10
8	tCPA	Access Time from CAS Precharge	-	35	-	40	-	45	ns	4
13	tRAS	RAS Pulse Width	55	10K	65	10K	75	10K	ns	
14	tRASP	RAS Pulse Width (Fast Page Mode)	55	200K	65	200K	75	200K	ns	
15	tRSH	RAS Hold Time	20	-	20	.	25	-	ns	
16	tCSH	CAS Hold Time	55	-	65	-	75	-	ns	
17	tCAS	CAS Pulse Width	20	10K	20	10K	25	10K	ns	
27	tRAL	Column Address to $\overline{\mathrm{RAS}}$ Lead Time	30	-	35	-	40	-	ns	
41	tCWD	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ Delay Time	40	-	40	-	50	-	ns	8
42	tRWD	$\overline{\mathrm{RAS}}$ to WE Dealy Time	75	-	85	-	100	-	ns	8
43	tAWD	Column Address to WE Delay Time	50	-	55	-	65	-	ns	8
49	toea	OE Access Time	-	20	-	20	-	25	ns	
50	TOED	$\overline{O E}$ to Data Delay	20	-	20	-	25	-	ns	
52	toEH	$\overline{\mathrm{OE}}$ Command Hold Time	20	-	20	-	25	-	ns	

NOTE:

1. An initial pause of 200μ s is required after power-up followed by any $8 \overline{R A S}$-only or $\overline{\text { CAS }}$-before- $\overline{R A S}$ refresh cycles before proper device operation is achieved.
2. If $\overline{R A S}=V$ ss during power-up, the HY514400A could begin an active cycle. These condition results in higher current than necessary current which is demanded from the power supply during power-up. It is recommended that $\overline{R A S}$ and $\overline{C A S}$ track with Vcc during power-up or be heid at a valid VIH in order to minimize the power-up current
3. VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH (min.) and VIL (max.), and are assumed to be 5 ns for all inputs.
4. Measured at $\mathrm{VOH}=2.4 \mathrm{~V}$ and $\mathrm{VOL}=0.4 \mathrm{~V}$ with a load equivalent to 2 TTL loads and 100 pF .
5. tOFF(max.) define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
6. Either tRCH or tRRH must be satisfied for a read cycle.
7. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in Read-Modify-Write cycles.
8. tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twos \geq twes(min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle. if $\mathrm{tRWD} \geq \mathrm{tRWD}(\mathrm{min}$.$) , tCWD \geq \mathrm{tCWD}(\mathrm{min}$.), tAWDZtawD(min.), and tCPWDZtCPWD(min.), the cycle is a Read-Modify-Write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminated.
9. Operation within the tRCD (max.) limit insures that tRAC(max.) can be met. tRCD(max.) is specified as a reference point only. If tRCD is greater than the specified tRCD(max.) limit, then access time is controlled by tCAC.
10. Operation within the tRAD(max.) limit insures that tRAC(max.) can be met. tRAD(max.) is specified as a reference point only. If tRAD is greater than the specified tRAD(max.) limit, then access time is controlled by taA.
11.tREF(max.) $=128 \mathrm{~ms}$ is applied to L-Parts(HY514400ALJ, HY514400ALT and HY514400ALR).
12.A burst of $1024 \overline{\mathrm{CAS}}$-before-RAS refresh cycles must be executed within 16 ms (128 ms for L-part) after exiting self refresh.
11. When CAS goes low, 4-bits data are written into the device.
12. These parameters are determined by the earlier falling edge of CAS.
13. These parameters are determined by the later rising edge of $\overline{\mathrm{CAS}}$.
16.tCWL must be satisfied by CAS for 16-bits access cycles.
17.tCP and tCPT are measured when CAS is high state.
14. These specificaitons are applied to the test Mode.

CAPACITANCE

($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, unless otherwise noted.)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
CIN1	Input Capacitance (AO-A9)	-	5	pF
CIN2	Input Capacitance $(\overline{R A S}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE},} \overline{\mathrm{OE}})$	-	7	pF
CDQ	Data Input/Output Capacitance (DQO-DQ3)	-	7	pF

TIMING DIAGRAM

READ CYCLE

EARLY WRITE CYCLE

WRITE CYCLE ($\overline{\mathrm{OE}}$ CONTROLLED WRITE)

READ-MODIFY-WRITE CYCLE

4675088 0004163 365

FAST PAGE MODE READ CYCLE

fast Page mode early write cycle

4675088

FAST PAGE MODE READ-MODIFY-WRITE CYCLE

RAS-ONLY REFRESH CYCLE

has
cas

A0-9

NOTE:AO-10 = "H" or "L"

CAS-BEFORE- $\overline{\text { RAS }}$ REFRESH CYCLE

RRAS

NOTE:AO-9 and DE="H" or "L"

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE

The HY514400A is a DRAM organized $1,048,576 \times 4$-bit. It is internally organized $524,288 \times 8$-bit. In Test Mode, data are written into 8 sectors (Each is composed of 512 K bits) in parallel and retrieved the same way. Column address $A 0$ is not used. If, upon reading, ail 8 -bit data from 8 sectors are equal (all " 1 "s or " 0 "s), the DQ2 pin indicates a "1". If they are not equal, the DQ2 pin indicates a " 0 ". The DQO, DQ1 and DQ3 pins always indicate a "'1" in Test Mode Read cycles. The diagram below shows the timing of the HY514400A to enter Test Mode. In Test Mode, the 1 M $\times 4$ DRAM can be tested as if it were a 512 Kx 4 DRAM. WE, CAS-before-RAS cycle (Test Mode in Cycle) puts the HY514400A into Test Mode and CAS-before-RAS or RAS-only refresh cycle puts it back into Normal Mode. In Test Mode, WE, CAS-before-RAS cycle shall be used for the refresh operation. The Test Mode function reduces test time. ($1 / 2$ in case of N test pattern)

TEST MODE IN CYCLE

8. 5

BLOCK DIAGRAM IN TEST MODE

PACKAGE INFORMATION

300 mil 20/26 pin Small Out line J-form Package (J)

UNT : $\operatorname{NCH}(\mathrm{mm})$

300 mil 20/26 pin Thin Small Outline Package (T) (R)

UNT : NOH(Tm)

ORDERING INFORMATION

PART NUMBER	SPEED	POWER	PACKAGE
HY514400AJ	$50 / 60 / 70$		SOJ
HY514400ALJ	$50 / 60 / 70$	L-part	SOJ
HY514400AT	$50 / 60 / 70$		TSOP-II
HY5;4400ALT	$50 / 60 / 70$	L-part	TSOP-II
HY514400AR	$50 / 60 / 70$		TSOP-II(P)
HY514400ALR	$50 / 60 / 70$	L-part	TSOP-II(P)

