GP34063

DC TO DC CONVERTER CONTROLLER

Description

The GP34063 is a monolithic regulator subsystem, intended for use as DC to DC converter. This device contains a temperature compensated band gap reference, a duty-cycle control oscillator, driver and high current output switch. It can be used for step down, step-up or inverting switching regulators as well as for series pass regulators.

Features

*Operation from 3.0 V to 40 V .
*Short circuit current limiting.
*Low standby current.
*Output switch current of 1.5 A without external transistors.
*Frequency of operation from 100 Hz to 100 kHz .
*Step-up, step-down or inverting switch regulators.

Package Dimensions

REF.	Millimeter		REF.	Millimeter	
	Min.	Max.		Min.	Max.
A	-	0.5334	c1	0.203	0.279
A1	0.381	-	D	9.017	10.16
A2	2.921	4.953	E	6.096	7.112
b	0.356	0.559	E1	7.620	8.255
b1	0.356	0.508	e	2.540 BSC	
b2	1.143	1.778	HE	-	10.92
b3	0.762	1.143	L	2.921	3.810
c	0.203	0.356			

Pin Configuration \& Block Diagram

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	VALUE	Unit
Operating junction temperature	Tj	150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range	Ta	$0 \sim 70$	${ }^{\circ} \mathrm{C}$
Storage Temperature range	Tstg	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$
Supply Voltage	Vcc	40	V
Comparator input voltage range	Vi(comp)	$-0.3 \sim+40$	V
Switch collector voltage	Vc(sw)	40	V
Switch Emitter voltage	Ve(sw)	40	V
Switch collector to Emitter voltage	Vce(dr)	40	V
Switch current	Isw	1.5	A
Power Dissipation	Pd	1250	mW
Thermal Resistance	ReJA	100	${ }^{\circ} \mathrm{C} ~ / \mathrm{W}$

Electrical Characteristics $\left(0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ},, V c c=5 V\right.$ unless otherwise specified)

Parameter	SYMBOL	Test Conditions	Min	Typ.	Max.	Unit
Oscillator						
Frequency	fosc	$\mathrm{V}_{\text {Pin }} 5=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	24	42	48	kHz
Charging Current	Ichg	$V c c=5$ to 40, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	22	31	42	uA
Discharging Current	Idischg	$\mathrm{Vcc}=5$ to 40, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	140	190	260	uA
Discharge to Charge Current Ratio	K	Pin7 to Vcc, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	5.2	6.1	7.5	
Current limit Sense Voltage	Vsense	Ichg = idschg, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	250	300	350	mV
Output Switch						
Saturation Voltage 1(note)	Vce(sat)1	Isw $=1 \mathrm{~A}, \mathrm{Vc}$ (driver) $=\mathrm{Vc}$ (sw)		0.95	1.3	V
Saturation Voltage 2(note)	Vce(sat)2	Isw $=1 \mathrm{~A}, \mathrm{Vc}$ (driver) $=50 \mathrm{~mA}$		0.45	0.7	V
DC Current Gain(note)	Gi(DC)	Isw $=1 \mathrm{~A}, \mathrm{Vce}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	50	180		
Collect Off State Current (note)	C(off)	$V c e=40 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		0.01	100	uA
Comparator						
Threshold Voltage	Vth	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ 34063 A 34063 B 34063 C	1.241	1.25	1.259	V
			1.237	1.25	1.262	V
			1.225	1.25	1.275	V
Threshold Voltage Line Regulation	Vth	$\mathrm{Vcc}=3 \sim 40 \mathrm{~V}$		2	5	mV
Input Bias Current	Ibias	$\mathrm{Vi}=0 \mathrm{~V}$		50	400	nA
Total Device						
Supply Current	Icc	$\begin{aligned} & \mathrm{Vcc}=5 \sim 40 \mathrm{~V}, \\ & \mathrm{Ct}=0.001, \\ & \mathrm{Pin} 7 \text { to Vcc, } \\ & \mathrm{Vc}>\mathrm{Vth}, \\ & \text { Pin2 = GND } \end{aligned}$		2.7	4.0	mA

Note : Output switch tests are performed under pulsed conditions to minimize power dissipation.

Characteristics Curve

Application Information

Step-Up Converter

Test	Conditions	Results
Line Regulation	Vin $=8 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	$30 \mathrm{mV}= \pm 0.05 \%$
Load Regulation	Vin $=12 \mathrm{~V}, \mathrm{Io}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV}= \pm 0.017 \%$
Output Ripple	Vin $=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	$400 \mathrm{mVp}-\mathrm{p}$
Efficiency	Vin $=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	87.7%
Output Ripple With Optional Filter	Vin $=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	$40 \mathrm{mVp}-\mathrm{p}$

External Current Boost Connections for Ic Peak Greater than 1.5A

NOTE : If the switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to 2.0 us to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

CORPORATION

Step-Down Converter

Test	Conditions	Results
Line Regulation	$\operatorname{Vin}=15 \mathrm{~V}$ to $25 \mathrm{~V}, I \mathrm{lo}=50 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 0.12 \%$
Load Regulation	$\mathrm{Vin}=25 \mathrm{~V}, \mathrm{Io}=50 \mathrm{~mA}$ to 500 mA	$3 \mathrm{mV}= \pm 0.03 \%$
Output Ripple	$\mathrm{Vin}=25 \mathrm{~V}, \mathrm{Io}=500 \mathrm{~mA}$	$120 \mathrm{mVp}-\mathrm{p}$
Short Circuit Current	$\mathrm{Vin}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	1.1 A
Efficiency	$\mathrm{Vin}=25 \mathrm{~V}, \mathrm{Io}=500 \mathrm{~mA}$	83.7%
Output Ripple With Optional Filter	$\mathrm{Vin}=25 \mathrm{~V}, \mathrm{Io}=500 \mathrm{~mA}$	$40 \mathrm{mVp}-\mathrm{p}$

External Current Boost Connections for Ic Peak Greater than 1.5A

External NPN Switch

External PNP Saturated Switch

Voltage Inverting Converter

Test	Conditions	Results
Line Regulation	Vin $=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{Io}=100 \mathrm{~mA}$	$3 \mathrm{mV}= \pm 0.12 \%$
Load Regulation	Vin $=5 \mathrm{~V}, \mathrm{Io}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V}= \pm 0.09 \%$
Output Ripple	$V i n=5 \mathrm{~V}, \mathrm{Io}=100 \mathrm{~mA}$	$500 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Short Circuit Current	$\mathrm{Vin}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{Vin}=5 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$	62.2%
Output Ripple With Optional Filter	Vin $=5 \mathrm{~V}, \mathrm{Io}=100 \mathrm{~mA}$	$70 \mathrm{mVp}-\mathrm{p}$

External Current Boost Connections for Ic Peak Greater than 1.5A


```
    Important Notice:
        All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM
        GTM reserves the right to make changes to its products without notice.
    GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems
    GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.
Head Office And Factory
    Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
    TEL : 886-3-597-7061 FAX : 886-3-597-9220, 597-0785
    China: (201203) No.255, Jang-Jiang Tsai-Lueng RD. , Pu-Dung-Hsin District, Shang-Hai City, China
    TEL:86-21-5895-7671 ~ 4 FAX:86-21-38950165
```

