5 BIT PROGRAMMABLE SYNCHRONOUS BUCK CONTROLLERIC PRELIMINARY DATASHEET

FEATURES

■ Dual Layout Compatible with RC5051

- Designed to meet Intel specification of VRM8.2 \& VRM8.3 for Pentium IITM
- On board DAC programs the output voltage from 1.3V to 3.5 V (US3010) \& 1.8 V to 3.5 V for US3010A
- Loss less Short Circuit Protection
- Synchronous operation allows maximum efficiency
- Patented architecture allows fixed frequency operation as well as 100% duty cycle during dynamic load
- Soft Start
- High current totem pole driver for direct driving of the external Power MOSFET
- Power Good function

APPLCATIONS

- Pentium II \& Pentium Pro™ processor DC to DC converter application
- Low cost Pentium with AGP

DESCRIPTION

The US3012 family of controller ICs are specifically designed to meet Intel specification for Pentium IITM and Pentium ProTM microprocessor applications as well as the next generation P6 family processors. These products feature a patented topology that in combination with a few external components as shown in the typical application circuit below, will provide in excess of 16A of output current for an on- board DC/DC converter while automatically providing the right output voltage via the 5 bit internal DAC. These devices also feature, loss less current sensing by using the Rds-on of the high side Power MOSFET as the sensing resistor, a Power Good window comparator that switches its open collector output low when the output is outside of a $\pm 10 \%$ window . Other features of the device are ; Undervoltage lockout for both 5 V and 12 V supplies as well as an external programmable soft start function as well as programming the oscillator frequency by using an external capacitor.

TYPICAL APPLCATION

Notes: Pentium II and Pentium Pro are trade marks of Intel Corp.

PACKAGE ORDER INFORMATION

Ta $\left({ }^{\circ} \mathbf{C}\right)$	Device	Package	VID Voltage Range
0 TO 70	US3012CW	20 pin Plastic SOIC WB	1.3 V to 3.5 V
0 TO 70	US3012ACW	20 pin Plastic SOIC WB	1.8 V to 3.5 V

ABSOLUTE MAXIMUM RATINGS

V5 supply Voltage .. 7V
V12 Supply Voltage ... 20V
Storage Temperature Range - $65 \mathrm{TO} 150^{\circ} \mathrm{C}$
Operating Junction Temperature Range 0 TO $125^{\circ} \mathrm{C}$

PACKAGE INFORMATION

20 PIN WIDE BCD	Stic soic (W)
Top View	
${ }_{\text {PGd }}^{\text {En }}$	${ }_{18}^{19 \mathrm{D}} \mathrm{D}$
cs+ +4	1703
cs-5	16 ss
V56	${ }^{15} 5$ Gnd
	${ }^{1984}$
Pandi0	T11Nc
$\theta_{\text {JA }}=85^{\circ} \mathrm{C} / \mathrm{W}$	

ELECTRICAL SPEOFICATIONS

Unless otherwise specified ,these specifications apply over, $\mathrm{V} 12=12 \mathrm{~V}, \mathrm{~V} 5=5 \mathrm{~V}$ and $\mathrm{Ta}=0$ to $70^{\circ} \mathrm{C}$. Typical values refer to $\mathrm{Ta}=25^{\circ} \mathrm{C}$. Low duty cycle pulse testing are used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
VID Section						
DAC output voltage (note 1)			0.99 Vs	Vs	1.01Vs	V
DAC Output Line Regulation					0.1	\%
DAC Output Temp Variation					0.5	\%
VID Input LO					0.4	V
VID Input HI			2			V
VID input internal pull-up resistor to V5				27		$\mathrm{k} \Omega$
Power Good Section						
Under voltage lower trip point		Vout ramping down	0.89 Vs	0.90 Vs	0.91Vs	V
Under voltage upper trip point		Vout ramping up		0.92 Vs		V
UV Hysterises			. 015 V s	. 02 V S	.025Vs	V
Over voltage upper trip point		Vout ramping up	1.09 Vs	1.10 Vs	1.11Vs	V
Over voltage lower trip point		Vout ramping down		1.08 V s		V
OV Hysterises			. 015 V s	. 02 V s	.025Vs	V
Power Good Output LO		$\mathrm{RL}=3 \mathrm{~mA}$			0.4	V
Power Good Output HI		RL=5K pull up to 5 V	4.8			V
Soft Start Section						
Soft Start Current		CS $+=0 \mathrm{~V}, \mathrm{CS}-=5 \mathrm{~V}$		10		uA

UVLO Section UVLO Threshold-12V					
	Supply ramping up	9.2	10	10.8	V
UVLO Hysterises-12V		0.3	0.4	0.5	V
UVLO Threshold-5V	Supply ramping up	4.1	4.3	4.5	V
UVLOHysterises-5V		0.2	0.3	0.4	V
Error Comparator Section					
Input bias current				2	uA
Input Offset Voltage		-2		+2	mV
Delay to Output	Vdiff $=10 \mathrm{mV}$			100	nS
Current Limit Section					
C.S Threshold Set Current		160	200	240	uA
C.S Comp Offset Voltage		-5		+5	mV
Hiccup Duty Cycle	Css=0.1 uF			2	\%
Supply Current					
Operating Supply Current	$\begin{array}{\|l} \hline \text { CL=3000pF } \\ \text { V5 } \\ \text { V12 } \\ \hline \end{array}$		$\begin{aligned} & 20 \\ & 14 \end{aligned}$		mA
Output Drivers Section					
Rise Time	CL=3000pF		70	100	nS
Fall Time	CL=3000pF		70	130	nS
Dead band Time	CL=3000pF	100	200	300	nS
Oscillator Section					
Osc Frequency	$\mathrm{Ct}=150 \mathrm{pF}$	190	220	250	Khz
Osc Valley				0.2	V
Osc Peak			V5		V
Output Enable Section					
Pull up Resistor to V5			35		k Ω
HI Threshold Voltage		2			V
LOThreshold Voltage				0.8	V

Note 1: Vs refers to the set point voltage given in Table 1.

D4	D3	D2	D1	D0	Vs
0	1	1	1	1	1.30^{\star}
0	1	1	1	0	1.35^{\star}
0	1	1	0	1	1.40^{*}
0	1	1	0	0	1.45^{\star}
0	1	0	1	1	1.50^{\star}
0	1	0	1	0	1.55^{\star}
0	1	0	0	1	1.60^{*}
0	1	0	0	0	1.65^{*}
0	0	1	1	1	1.70^{\star}
0	0	1	1	0	1.75^{*}
0	0	1	0	1	1.80
0	0	1	0	0	1.85
0	0	0	1	1	1.90
0	0	0	1	0	1.95
0	0	0	0	1	2.00
0	0	0	0	0	2.05

D4	D3	D2	D1	D0	Vs
1	1	1	1	1	${ }^{* *}$
1	1	1	1	0	2.1
1	1	1	0	1	2.2
1	1	1	0	0	2.3
1	1	0	1	1	2.4
1	1	0	1	0	2.5
1	1	0	0	1	2.6
1	1	0	0	0	2.7
1	0	1	1	1	2.8
1	0	1	1	0	2.9
1	0	1	0	1	3.0
1	0	1	0	0	3.1
1	0	0	1	1	3.2
1	0	0	1	0	3.3
1	0	0	0	1	3.4
1	0	0	0	0	3.5

Table 1 - Set point voltage vs. VID codes

PIN DESCRIPTIONS

PIN\#	PIN SYMBOL	Pin Description
20	D0	LSB input to the DAC that programs the output voltage. This pin can be pulled up externally by a 10 k resistor to either 3.3 V or 5 V supply.
19	D1	Input to the DAC that programs the output voltage.This pin can be pulled up externally by a $10 \mathrm{k} \Omega$ resistor to either 3.3 V or 5 V supply.
18	D2	Input to the DAC that programs the output voltage. This pin can be pulled up externally by a 10 k resistor to either 3.3 V or 5 V supply.
17	D3	MSB input to the DAC that programs the output voltage. This pin can be pulled up externally by a 10 k resistor to either 3.3 V or 5 V supply.
8	D4	This pin selects a range of output voltages for the DAC. The voltage range for both the "A" and the none " A " versions of the device is given in table 1.
3	PGd	This pin is an open collector output that switches LO when the output of the converter is not within $\pm 10 \%$ (typ) of the nominal output voltage. When PWRGD pin switches LO the sat voltage is less than 0.4 V at 3 mA .
14	Vfb	This pin is connected directly to the output of the Core supply to provide feedback to the Error comparator.
4	CS+	This pin is connected to the Drain of the power MOSFET of the Core supply and it provides the positive sensing for the internal current sensing circuitry. An external resistor programs the C.S threshold depending on the Rds of the power MOSFET. An external capacitor is placed in parallel with the programming resistor to provide high frequency noise filtering.
5	CS-	This pin is connected to the Source of the power MOSFET for the Core supply and it provides the negative sensing for the internal current sensing circuitry.
16	SS	This pin provides the soft start for the switching regulator. An internal current source charges an external capacitor that is conected from this pin to the GND which ramps up the outputs of the switching regulator, preventing the outputs from overshooting as wellas limiting the input current. The second function of the Soft Start cap is to provide long off time for the synchronous MOSFET or the Catch diode (HICCUP) during current limiting.
1	Ct	This pin programs the oscillator frequency in the range of 50 kHZ to 500 kHZ with an external capacitor connected from this pin to the GND.
10	Gnd	This pin serves as the ground pin and must be conected directly to the ground plane. A high frequency capacitor (0.1 to 1 uF) must be connected from V5 and V12 pins to this pin for noise free operation.
9	Lov	Output driver for the synchronous power MOSFET.
12	HDr	Output driver for the high side power MOSFET.
13	V12	This pin is connected to the 12 V supply and serves as the power Vcc pin for the output drivers.A high frequency capacitor (0.1 to 1 uF) must be connected directly from this pin to GND pin in order to supply the peak current to the power MOSFET during the transitions.
6	V5	5 V supply voltage.
2	OUTEN	This is the output enable pin. This pin is internally pulled high through a resistor to 5 V supply. A low signal on this pin disables the output.
$\begin{aligned} & 7,11 \\ & 15 \end{aligned}$	N.C	No connect.

BLOCK DIAGRAM

Figure 1 - Simplified block diagram of the US3012/3012A.

TYPICAL APPUCATION

SYNCHRONOUS OPERATION
(Dual Layout with RC5051)

Typical application of US3012/3012A in an on board DC-DC converter providing the Core supply for the Pentium II microprocessor.

Table of components that need to be modified to make the dual layout work for US3012A* and RC5051.

Part \#	R 1	R 2	R 4	R 7	R 8	R 9	R 10	R 11	C 2	C 5	C 8	D 1
RC5051	V	O	O	V	V	V	O	S	V	O	V	V
US3012A	S	V	S	O	S	O	V	O	V	V	V	O

S-Short O- Open V-See Unisem or Raytheon parts list for the value.
*Table also applies to the none "A" version of the part.
Note 1 : R8 can be replaced with shorting wire of \#20 AWG or lower. This elliminates the expensive current sense resistor that otherwise is needed with RC5051.

US3012/3012A and RC5051 Dual Layout Parts List

Ref Desig	Description	Qty	Part \#	Manuf
Q1	MOSFET	1	IRL3103	
			IRL3103S (Note 1)	IR
Q2	MOSFET	1	IRL3103	
			IRL3103S (Note 1)	IR
L1	Inductor	1	$\mathrm{L}=1 \mathrm{uH}$	
L2	Inductor	1	Core:T50-18	
			Turns:14 AWG	
			$\mathrm{L}=2.5 \mathrm{uH} \quad \mathrm{R}=2 \mathrm{mohm}$	Micro Metal
D1	Diode	1	open	
C11	Capacitor , Electrolytic	5	6MV1500GX,1500uF,6.3V,	Sanyo
C3	Capacitor , Electrolytic	2	6MV1500GX,1500uF,6.3V,	Sanyo
C1	Capacitor , Electrolytic	1	680uF,10V, EEUFA1A681L	Panasonic
C2	Capacitor, Ceramic	1	1 uF , SMT	
C 4	Capacitor, Ceramic	1	$1 \mathrm{uF}, \mathrm{SMT}$	
C5	Capacitor, Ceramic	1	220 pF, SMT	
C6	Capacitor, Ceramic	1	1 uF , SMT	
C7	Capacitor, Ceramic	1	470 pF , SMT	
C8	Capacitor, Ceramic	1	150pF, X7R, SMT	
C9	Capacitor, Ceramic	1	0.01 uF, SMT	
C10	Capacitor, Ceramic	1	0.01 uF , SMT	
R1	Resistor	1	Short, SMT	
R2	Resistor	1	$2.21 \mathrm{k} \Omega, 1 \%$,SMT	
R3	Resistor	1	$10 \Omega, 5 \%$, SMT , 1206 size	
R4	Resistor	1	Short, SMT	
R5	Resistor	1	$10 \Omega, 5 \%$, SMT , 1206 size	
R6	Resistor		$10 \Omega, 5 \%$, SMT, 1206 size	
R7	Resistor	1	open, SMT	
R8	Resistor	1	short, \#20 AWG wire	
R9	Resistor	1	open, SMT	
R10	Resistor	1	100 2 , 1\%, SMT	
R11	Resistor		$10 \mathrm{k} \Omega, 1 \%$,SMT	
$\overline{\mathrm{R} 12}$	Resistor	1	$100 \mathrm{k} \Omega, 5 \%$, SMT	
R13	Resistor	1	See Raytheon Parts List , SMT	
HS1	Q1 Heatsink	1	6270	Thermalloy
HS2	Q2 Heatsink	1	6270	Thermalloy

Note 1 : For the applications where it is desirable not to use the Heatsink, the IRL3103S MOSFET in the TO263 SMT package with 1 " square of pad area using top and bottom layers of the board as a minimum is required.

Application Infor mation

An example of how to calculate the components for the application circuit is given below.
Assuming, two sets of output conditions that this regulator must meet,
a) $\mathrm{Vo}=2.8 \mathrm{~V}, \mathrm{lo}=14.2 \mathrm{~A}, \Delta \mathrm{Vo}=185 \mathrm{mV}, \Delta \mathrm{lo}=14.2 \mathrm{~A}$
b) $\mathrm{Vo}=2 \mathrm{~V}, \mathrm{lo}=14.2 \mathrm{~A}, \Delta \mathrm{Vo}=140 \mathrm{mV}, \Delta \mathrm{lo}=14.2 \mathrm{~A}$

The regulator design will be done such that it meets the worst case requirement of each condition.

Output Capacitor Selection

The first step is to select the output capacitor. This is done primarily by selecting the maximum ESR value that meets the transient voltage budget of the total $\Delta \mathrm{V}$ o specification. Assuming that the regulators DC initial accuracy plus the output ripple is 2% of the output voltage, then the maximum ESR of the output capacitor is calculated as :
$E S R \leq \frac{100}{14.2}=7 \mathrm{~m} \Omega$
The Sanyo MVGX series is a good choice to achieve both the price and perform ance goals. The 6M V1500G X , 1500uF, 6.3 V has an ESR of less than $36 \mathrm{~m} \Omega$ typ. Selecting 6 of these capacitors in parallel has an ESR of $\approx 6 \mathrm{~m} \Omega$ which achieves our low ESR goal.

Other type of Electrolytic capacitors from other manufacturers to consider are the Panasonic "FA" series or the Nichicon "PL" series.

Reducing the Output Capacitors Using Voltage Level Shifting Technique

The trace resistance or an external resistor from the output of the switching regulator to the Slot 1 can be used to the circuit advantage and possibly reduce the number of output capacitors, by level shifting the DC regulation point when transitioninig from light load to full load and vice versa. To accomplish this, the output of the regulator is typically set about half the DC drop that results from light load to full load. For example, if the total resistance from the output capacitors to the Slot 1 and back to the GND pin of the device is $5 \mathrm{~m} \Omega$ and if the total Δ l, the change from light load to full load is 14A, then the output voltage measured at the top of the resistor divider which is also connected to the output capacitors in this case, must be set at half of the 70 mV or 35 mV higher than the DAC voltage setting.

This intentional voltage level shifting during the load transient eases the requirement for the output capacitor ESR at the cost of load regulation. One can show that the new ESR requirement eases up by half the total trace resistance. For example, if the ESR requirement of the output capacitors without voltage level shifting must be $7 \mathrm{~m} \Omega$ then after level shifting the new ESR will only need to be $8.5 \mathrm{~m} \Omega$ if the trace resistance is $5 \mathrm{~m} \Omega(7+5 / 2=9.5)$. However, one must be careful that the combined "voltage level shifting" and the transient response is still within the maximum tolerance of the Intel specification. To insure this, the maximum trace resistance must be less than:
Rs $\leq 2\left(\mathrm{Vspec}-0.02^{*} \mathrm{Vo}-\Delta \mathrm{Vo}\right.$) $/ \Delta \mathrm{I}$
Where:
Rs=Total maximum trace resistance allowed
Vspec=Intel total voltage spec
Vo=Output voltage
$\Delta \mathrm{V}$ o=Output ripple voltage
Δ l=load current step
For example, assuming:
Vspec $= \pm 140 \mathrm{mV}= \pm 0.1 \mathrm{~V}$ for 2 V output
$\mathrm{Vo}=2 \mathrm{~V}$
$\Delta V o=a s s u m e 10 \mathrm{mV}=0.01 \mathrm{~V}$
$\Delta l=14.2 \mathrm{~A}$
Then the Rs is calculated to be:
$R s \leq 2(0.140-0.02 * 2-0.01) / 14.2=12.6 \mathrm{~m} \Omega$
However, if a resistor of this value is used, the maximum power dissipated in the trace (or if an external resistor is being used) must also be considered. For example if Rs $=12.6 \mathrm{~m} \Omega$, the power dissipated is ($\left.\mathrm{lo}^{\wedge} 2\right)^{\star} \mathrm{Rs}=\left(14.2^{\wedge} 2\right)^{*} 12.6=2.54 \mathrm{~W}$. This is a lot of power to be dissipated in a system. So, if the $\mathrm{Rs}=5 \mathrm{~m} \Omega$, then the power dissipated is about 1 W which is much more acceptable. If level shifting is not implemented, then the maximum output capacitor ESR was shown previously to be $7 \mathrm{~m} \Omega$ which translated to ≈ 6 of the 1500 uF , 6MV1500GX type Sanyo capacitors. With $\mathrm{Rs}=5 \mathrm{~m} \Omega$, the maximum ESR becomes $9.5 \mathrm{~m} \Omega$ which is equivalent to ≈ 4 caps. Another important consideration is that if a trace is being used to implement the resistor, the power dissipated by the trace increases the case temperature of the output capacitors which could seriously effect the life time of the output capacitors.

Output Inductor Selection

The output inductance must be selected such that under low line and the maximum output voltage condition, the inductor current slope times the output capacitor ESR is ramping up faster than the capacitor voltage is
drooping during a load current step. However if the inductor is too small , the output ripple current and ripple voltage become too large. One solution to bring the ripple current down is to increase the switching frequency, however that will be at the cost of reduced efficiency and higher system cost. The following set of formulas are derived to achieve the optimum performance without many design iterations.
The maximum output inductance is calculated using the following equation :
$\mathrm{L}=\mathrm{ESR} * \mathrm{C} *(\mathrm{Vinm}$ in $-\mathrm{Vom} \mathrm{ax}) /(2 * \Delta \mathrm{l})$
Where:
Vinmin $=$ Minimum input voltage
For $\mathrm{Vo}=2.8 \mathrm{~V}, \Delta \mathrm{I}=14.2 \mathrm{~A}$
$\mathrm{L}=0.006$ * 9000 * ($4.75-2.8) /(2$ * 14.2) $=3.7 \mathrm{uH}$
Assuming that the programmed switching frequency is set at 200 KHZ , an inductor is designed using the Micrometals' powder iron core material. The summary of the design is outlined below :
The selected core material is Powder Iron, the selected core is T50-52D from Micro Metal wounded with 8 Turns of \#16 AWG wire, resulting in 3 uH inductance with $\approx 3 \mathrm{~m} \Omega$ of DC resistance.
Assuming $\mathrm{L}=3 \mathrm{uH}$ and the switching frequency ; Fsw = 200 KHZ , the inductor ripple current and the output ripple voltage is calculated using the following set of equations:
T=1/Fsw
$\mathrm{T} \equiv$ Switching Period
D \approx (Vo + Vsync) / (Vin - Vsw + Vsync)
$\mathrm{D} \equiv$ Duty Cycle
Ton $=D^{*} T$
Vsw \equiv High side Mosfet ON Voltage = 10 * Rds
Rds \equiv Mosfet On Resistance
Toff $=\mathrm{T}$ - Ton
Vsync \equiv Synchronous MOSFET ON Voltage=lo * Rds
$\Delta \mathrm{lr}=(\mathrm{Vo}+\mathrm{Vsync}$) * Toff/L
$\Delta \mathrm{Ir} \equiv$ Inductor Ripple Current
$\Delta \mathrm{Vo}=\Delta \mathrm{lr}$ * ESR
$\Delta \mathrm{Vo} \equiv$ Output Ripple Voltage
In our example for $\mathrm{Vo}=2.8 \mathrm{~V}$ and 14.2 A load, Assuming IRL3103 MOSFET for both switches with maximum on resistance of $19 \mathrm{~m} \Omega$, we have :
$\mathrm{T}=1 / 200000=5 \mathrm{uSec}$
$\mathrm{Vsw}=\mathrm{Vsync}=14.2^{*} 0.019=0.27 \mathrm{~V}$
$\mathrm{D} \approx(2.8+0.27) /(5-0.27+0.27)=0.61$
Ton $=0.61 * 5=3.1 \mathrm{uSec}$
Toff $=5-3.1=1.9 \mathrm{uSec}$
$\Delta \mathrm{lr}=(2.8+0.27) * 1.9 / 3=1.94 \mathrm{~A}$
$\Delta \mathrm{Vo}=1.94$ *. $006=.011 \mathrm{~V}=11 \mathrm{mV}$

Power Component Selection

Assuming IRL3103 MOSFETs as power components, we will calculate the maximum power dissipation as follows:
For high side switch the maximum power dissipation happens at maximum Vo and maximum duty cycle.
Dmax $\approx(2.8+0.27) /(4.75-0.27+0.27)=0.65$
Pdh $=\operatorname{Dmax}{ }^{*} \mathrm{Io}^{\wedge} 2^{*}$ Rds (\max)
$\mathrm{Pdh}=0.65^{*} 14.2^{\wedge} 2^{*} 0.029=3.8 \mathrm{~W}$
Rds $(\max)=$ Maximum Rds-on of the MOSFET at $125^{\circ} \mathrm{C}$ For synch MOSFET, maximum power dissipation happens at minimum Vo and minimum duty cycle.
Dmin $\approx(2+0.27) /(5.25-0.27+0.27)=0.43$
$\mathrm{Pds}=(1-\mathrm{Dmin})^{*} \mathrm{l}^{\wedge} 2^{*} \mathrm{Rds}(\max)$
Pds $=\left(1-0.43\right.$) * $14.2^{\wedge} 2$ * $0.029=3.33 \mathrm{~W}$

Heatsink Selection

Selection of the heat sink is based on the maximum allowable junction temperature of the MOSFETS. Since we previously selected the maximum Rds-on at $125^{\circ} \mathrm{C}$, then we must keep the junction below this temperature. Selecting TO220 package gives $\theta \mathrm{jc}=1.8^{\circ} \mathrm{C} / \mathrm{W}$ (From the venders' datasheet) and assuming that the selected heatsink is Black Anodized , the Heat sink to Case thermal resistance is ; $\theta \mathrm{cs}=0.05^{\circ} \mathrm{C} / \mathrm{W}$, the maximum heat sink temperature is then calculated as :
$\mathrm{Ts}=\mathrm{Tj}-\mathrm{Pd}$ * $(\theta \mathrm{jc}+\theta \mathrm{cs})$
$\mathrm{Ts}=125-3.82^{*}(1.8+0.05)=118^{\circ} \mathrm{C}$
With the maximum heat sink temperature calculated in the previous step, the Heat Sink to Air thermal resistance ($\theta \mathrm{sa}$) is calculated as follows :
Assuming Ta $=35^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=\mathrm{Ts}-\mathrm{Ta}=118-35=83^{\circ} \mathrm{C}$ Temperature Rise
Above Ambient
θ sa $=\Delta \mathrm{T} / \mathrm{Pd}$
θ sa $=83 / 3.82=22^{\circ} \mathrm{C} / \mathrm{W}$
Next, a heat sink with lower θ sa than the one calculated in the previous step must be selected. One way to do this is to simply look at the graphs of the "Heat Sink Temp Rise Above the Ambient" vs. the "Power Dissipation" given in the heatsink manufacturers' catalog and select a heat sink that results in lower temperature rise than the one calculated in previous step. The following heat sinks from AAVID and Thermaloy meet this criteria.
Co. Part\#
Thermalloy 6078B
AAVID 577002

Following the same procedure for the Schottcky diode results in a heatsink with θ sa $=25^{\circ} \mathrm{C} / \mathrm{W}$. Although it is possible to select a slightly smaller heatsink, for simplicity the same heatsink as the one for the high side MOSFET is also selected for the synchronous MOSFET.

Switcher Current Limit Protection

The PWM controller uses the MOSFET Rds-on as the sensing resistor to sense the MOSFET current and compares to a programmed voltage which is set externally via a resistor (Rcs) placed between the drain of the MOSFET and the "CS+" terminal of the IC as shown in the application circuit. For example, if the desired current limit point is set to be 22A and from our previous selection, the m axim um MOSFET Rds-on $=19 \mathrm{~m} \Omega$, then the current sense resistor, Rcs is calculated as :
Vcs=IcL*Rds=22*0.019=0.418V
$\mathrm{Rcs}=\mathrm{Vcs} / \mathrm{lb}=(0.418 \mathrm{~V}) /(200 \mathrm{uA})=2.1 \mathrm{k} \Omega$
Where: $\mathrm{lb}=200 \mathrm{uA}$ is the internal current setting of the device

Switcher Timing Capacitor Selection

The switching frequency can be programmed using an external timing capacitor. The Ct value can be approximated using the equation below:

$$
F_{S W} \approx \frac{3.5 \times 10^{-5}}{C_{T}}
$$

Where:
$C_{T}=$ Ti min g Capacitor
Fsw $=$ Switching Frequency

$$
\begin{aligned}
& I f, F_{s w}=200 \mathrm{kHz}: \\
& C_{T} \approx \frac{3.5 \times 10^{-5}}{200 \times 10^{3}}=175 \mathrm{pF}
\end{aligned}
$$

Switcher Output Voltage Adjust

As it was discussed earlier,the trace resistance from the output of the switching regulator to the Slot 1 can be used to the circuit advantage and possibly reduce the number of output capacitors, by level shifting the DC regulation point when transitioninig from light load to full load and vice versa. To account for the DC drop, the output of the regulator is typically set about half the DC drop that results from light load to full load. For example, if the total resistance from the output capacitors to the

Slot 1 and back to the GND pin of the device is $5 \mathrm{~m} \Omega$ and if the total Δ, the change from light load to full load is 14A, then the output voltage measured at the top of the resistor divider which is also connected to the output capacitors in this case, must be set at half of the 70 mV or 35 mV higher than the DAC voltage setting. To do this, the top resistor of the resistor divider(R10 in the application circuit) is set at 100Ω, and the R11 is calculated. For example, if DAC voltage setting is for 2.8 V and the desired output under light load is 2.835 V , then R11 is calculated using the following formula :
$R 11=100^{*}\left\{\mathrm{Vdac} /\left(\mathrm{Vo}-1.004^{*} \mathrm{Vdac}\right)\right\} \quad[\Omega]$
$R 11=100^{*}\left\{2.8 /\left(2.835-1.004^{*} 2.800\right)\right\}=11.76 \mathrm{k} \Omega$
Select $11.8 \mathrm{k} \Omega$, 1%
Note: The value of the top resistor must not exceed 100Ω. The bottom resistor can then be adjusted to raise the output voltage.

Soft Start Capacitor Selection

The soft start capacitor must be selected such that during the start up when the output capacitors are charging up, the peak inductor current does not reach the current limit treshold. A minimum of 1uF capacitor insures this for most applications. An internal 10uA current source charges the soft start capacitor which slowly ramps up the inverting input of the PWM comparator Vfb3. This insures the output voltage to ramp at the same rate as the soft start cap thereby limiting the input current. For example, with 1uF and the 10uA internal current source the ramp up rate is $(\Delta \mathrm{V} / \Delta \mathrm{t})=\mathrm{I} / \mathrm{C}=1 \mathrm{~V} / 100 \mathrm{mS}$. Assuming that the output capacitance is 9000 uF , the maximum start up current will be:
$\mathrm{I}=9000 \mathrm{uF}{ }^{*}(1 \mathrm{~V} / 100 \mathrm{mS})=0.09 \mathrm{~A}$

Input Filter

It is highly recommended to place an inductor between the system 5 V supply and the input capacitors of the switching regulator to isolate the 5 V supply from the switching noise that occurs during the turn on and off of the switching components. Typically an inductor in the range of 1 to 3 uH will be sufficient in this type of application.

Switcher External Shutdown

The best way to shutdown the part is to pull down on the soft start pin using an external small signal transistor such as 2N3904 or 2N7002 small signal MOSFET. This allows slow ramp up of the output, the same as the power up.

Layout Considerations

Switching regulators require careful attention to the layout of the components, specifically power components since they switch large currents. These switching components can create large amount of voltage spikes and high frequency harmonics if some of the critical components are far away from each other and are connected with inductive traces. The following is a guideline of how to place the critical components and the connections between them in order to minimize the above issues. Start the layout by first placing the power components:

1) Place the input capacitors $C 3$ and the high side mosfet ,Q1 as close to each other as possible
2) Place the synchronous mosfet, Q2 and the Q1 as close to each other as possible with the intention that the source of Q1 and drain of the Q2 has the shortest length.
3) Place the snubber R4 \& C7 between Q1 \& Q2.
4) Place the output inductor ,L2 and the output capacitors , C10 between the mosfet and the load with output capacitors distributed along the slot 1 and close to it.
5) Place the bypass capacitors, C4 and C6 right next to 12 V and 5 V pins. C4 next to the 12 V , pin 13 and C 6 next to the 5V, pin 6.
6) Place the IC such that the pwm output drives, pins 12 and 9 are relatively short distance from gates of Q1 and Q2.
7) If the ouput voltage is to be adjusted, place resistor dividers, R10 \& R11 close to the feedback pin.
Note 1: Although, the device does not require resistor dividers and the feedback pin can be directly connected to the output, they can be used to set the outputs slightly higher to account for any output drop at the load due to the trace resistance. See the application note.
8) Place timing capacitor C8 close to pin1 and soft start capacitor C2 close to pin 16.
Component connections:
Note : It is extremely important that no data bus should be passing through the switching regulator section specifically close to the fast transition nodes such as PWM drives or the inductor voltage.
Using 4 layer board, dedicate on layer to GND, another layer as the power layer for the $5 \mathrm{~V}, 3.3 \mathrm{~V}$ and Vcore.
Connect all grounds to the ground plane using direct vias to the ground plane.
Use large low inductance/low impedance plane to connect the following connections either using component side or the solder side.
a) C3 to Q1 Drain
b) Q1 Source to Q2 Drain
c) Q2 drain to L2
d) L2 to the output capacitors, C10
e) C10 to the slot 1
f) Input filter L1 to the C3

Connect the rest of the components using the shortest connection possible

