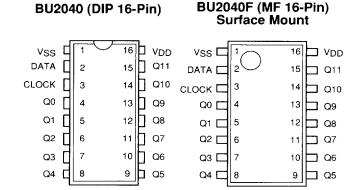


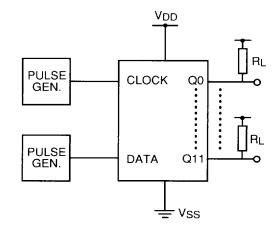
BU2040/BU2040F

Serial I/O Expander

FEATURES

- 12-bit Serial/Parallel Conversion
- Low Quiescent Current Due To CMOS Configuration
- Output Open Drain
- ISINK = 20mA
- Default High-Z On At Power Up
- No External Latching Required

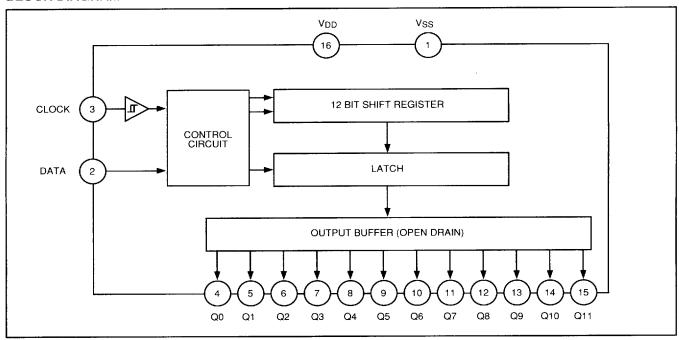

APPLICATIONS


- Microprocessor port expansion
- Serial/Parallel conversion
- Computer peripheral

DESCRIPTION

The BU2040 is a 12-bit serial/parallel converter which can be used to expand the input or output capability of a microcontroller or microprocessor. It has the particular benefit that latching is derived from the clock and data inputs and does not require a separate input.

PIN CONFIGURATION


PIN NAMES

V _{SS}	Steady State Voltage
DATA	Serial DATA Input
CLOCK	Clock Input
Q0-Q11	Outputs
V _{DD}	Supply Voltage
1	

ROHM CORPORATION • 3034 OWEN DRIVE • JACKSON BUSINESS PARK • ANTIOCH, TN 37013 • (615) 641-2020 • FAX (615) 641-2022

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

 $T_A=25^{\circ}C,\ V_{SS}=0V$

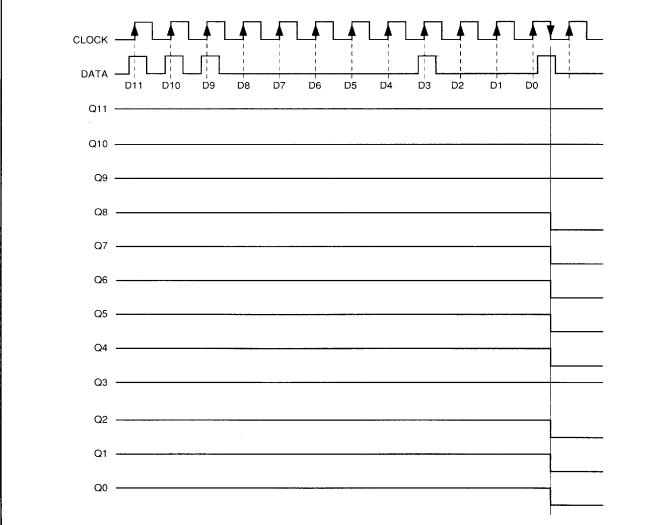
Symbol	Parameter	Rating	Unit
V _{DD}	Supply Voltage	-0.3 to +7.0	٧
Pd	Power Dissipation	1100(DIP)/500(MF)	mW
Topr	Operating Temperature Range	-25 to +75	°C
T _{stg}	Storage Temperature Range	-55 to +125	°C
VIN	Input Voltage	V _{SS} -0.3 to V _{DD} +0.3	٧
Vo	Output Voltage	V _{SS} to 7.0	V
lo	DC Output Current	20	mA

Notes:

- 1. Absolute Maximum Ratings are values below which the device will not sustain damage and does not guarantee operation.
- 2. Power dissipation is done at $11 \text{mW}/^{\circ}\text{C}$ for operation above $T_A = 25^{\circ}\text{C}$.

RECOMMENDED OPERATING CONDITIONS

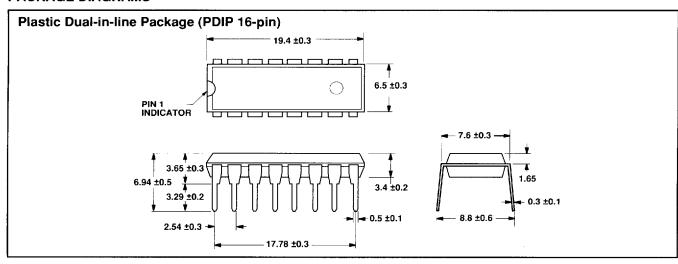
 $T_A = 25$ °C, $V_{SS} = 0V$


Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	4.5	5.0	5.5	V
ViH	Input Voltage (High Level)	0.7 x V _{DD}	V_{DD}	V _{DD}	V
VIL	Input Voltage (Low Level)	0	0	0.3 x V _{DD}	V

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, $V_{DD} = 5V$, $V_{SS} = 0V$

		BU2040/BU2040F				
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
Vol	Output Voltage (Low Level)		_	2	٧	I _{OL} = 20mA
lozh	Output Disable Current (High Level)	_	_	7	μΑ	V _O = 7.0V
lozL	Output Disable Current (Low Level)	_	_	-5	μА	V _O = 0V
IDD	Quiescent Supply Current		_	5	μΑ	V _{IN} = V _{SS} or V _{DD}
tw	Minimum Clock Pulse Width	500			ns	



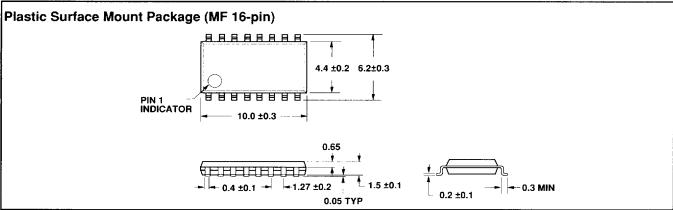
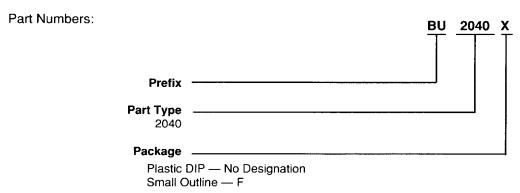

NOTE: If the data is 'high' as the clock pulse falls, the contents of the shift register is transferred to the latch circuit.

FIGURE 1. TIMING DIAGRAM



PACKAGE DIAGRAMS

ORDERING INFORMATION

ROHM CORPORATION reserves the right to make changes to any product herein to improve reliability, function or design. ROHM CORPORATION does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others.

© ROHM CORPORATION November 1991 Printed in U.S.A.

ROHM CORPORATION 3034 Owen Drive Jackson Business Park Antioch, TN 37013 (615) 641-2020 FAX: 615-641-2022