

μ -POWER OPERATIONAL AMPLIFIER

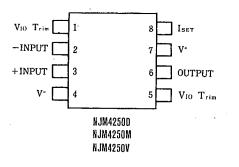
GENERAL DESCRIPTION

The NJM4250 is extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

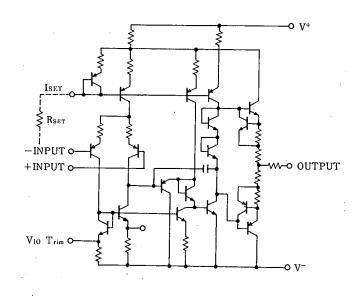
FEATURES

- Operating Voltage
- Low Operating Current
- Programable monolithic OP-Amp
- Very Low Power Consumption
- Package Outline
- Bipolar Technology
- DIP8, DMP8, SSOP8

 $(\pm 1V \sim \pm 18V)$ (0.1mA max.)


NJM42500

NJM4250M



NJM4250 V

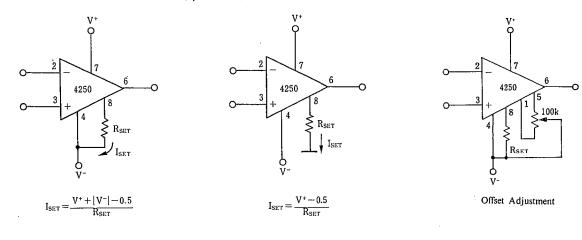
PIN CONFIGURATION

■ EQUIVALENT CIRCUIT (1/2 shown)

4

 $(Ta=25^{\circ}C, V^{\dagger}/V^{-}=\pm 15V)$

4-197

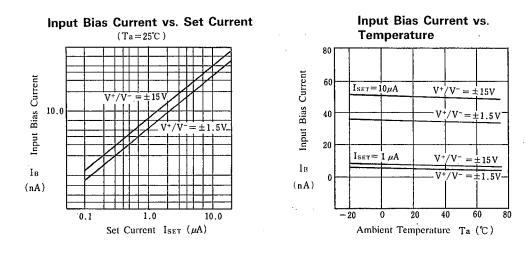

ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18	v	
Differential Input Voltage	ViD	±30	v	
Input Voltage	Vic	±15 (note)	v	
Power Dissipation		(DIP8) 500	mW	
	PD	(DMP8) 300	mW	
		(SSOP8) 250	mW	
I _{SET} Current	Iset	150	μΑ	
Operating Temperature Range	Topr	-20~+75	Ĉ	
Storage Temperature Range	Tstg	-40~+125	C	

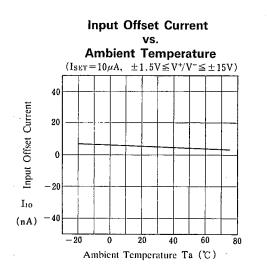
(note) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

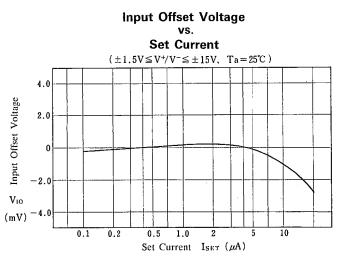
ELECTRICAL CHARACTERISTICS

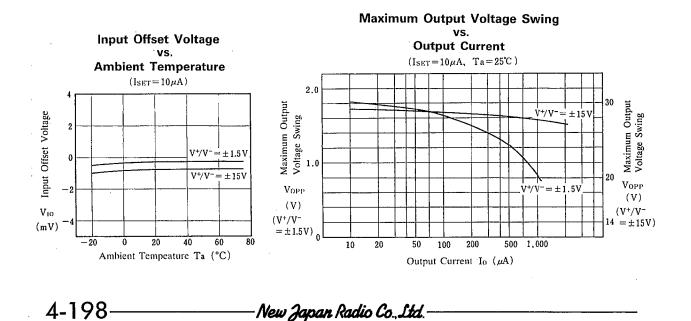
PARAMETER		TEST CONDITION	Iset=1 µA		ISET=10 µA		
	SYMBOL		MIN.	MAX.	MIN.	MAX.	UNIT
Input Offset Voltage 1	V ₁₀ 1	R _s ≦100kΩ	_	5	_	6	mV
Input Offset Voltage 2	V ₁₀ 2	$V^+/V^- = \pm 1.5V, R_s \le 100 k\Omega$		5	_	6	mV
Input Offset Current	Ito		_	6	_	20	nA
Input Bias Current 1	Ів 1		_	10		75	nA
Input Bias Current 2	IB 2	$V^{+}/V^{-} = \pm 1.5V$	-	10	-	75	nA
Large Signal Voltage Gain 1	Av 1	$V_0 = \pm 10V, R_1 \ge 100k\Omega$	96				dB
Large Signal Voltage Gain 2	Av 2	$V_0 = \pm 10V, R_L \ge 10k\Omega$	_		96		dB
Operating Current 1	I _{CC} 1		·	11		100	μA
Operating Current 2	I _{cc} 2	$V^{+}/V^{-} = \pm 1.5V$	-	8	—	90	μA
Input Common Mode Voltage Range 1	VICM 1		±13.5	-	±13.5	— ·	v
Input Common Mode Voltage Range 2	VICM 2	$V^{+}/V^{-} = \pm 1.5V$	±0.6	-	±0.6	—	v
Maximum Output Voltage Swing I	V _{ом} 1	$R_L \ge 100 k\Omega$	±12		_		v
Maximum Output Voltage Swing 2	V _{ОМ} 2	$V^+/V^- = \pm 1.5V, R_L \ge 100 k\Omega$	±0.6	—	—	—	v
Maximum Output Voltage Swing 3	V _{ОМ} 3	$R_{L} \ge 10 k\Omega$		-	±12		v
Maximum Output Voltage Swing 4	V _{ом} 4	$V^+/V^- = \pm 1.5V, R_L \ge 10k\Omega$		-	±0.6		v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	—	70	_	dB
Supply Voltage Rejection Ratio	SVR	$R_{s} \leq 10 k\Omega$	74	-	74	-	dB
					1		1

■ TYPICAL APPLICATION (ISET, VIO Adjustment)

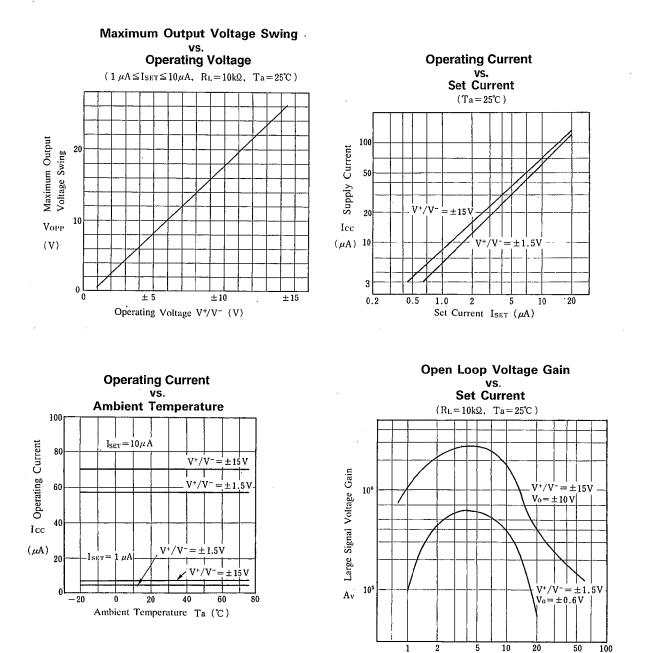



-New Japan Radio Co.,Ltd.


Downloaded from Elcodis.com electronic components distributor


NJM4250

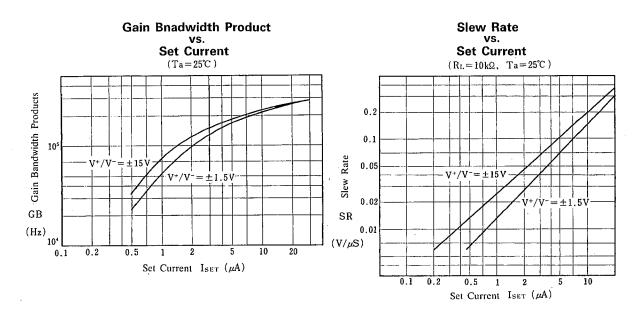
TYPICAL CHARACTERISTICS



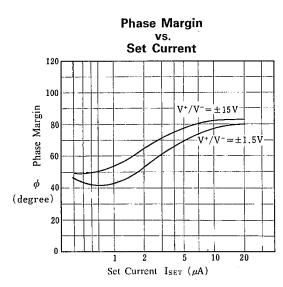
Downloaded from Elcodis.com electronic components distributor

Set Current ISET (µA)

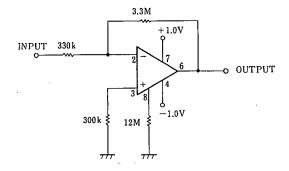
4-199


TYPICAL CHARACTERISTICS

New Japan Radio Co., Ltd.


Downloaded from <u>Elcodis.com</u> electronic components distributor

TYPICAL CHARACTERISTICS


-New Japan Radio Co.,Ltd.

4

TYPICAL APPLICATIONS

500nW 10times Inverting Amplifier

4-200

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.