NJM2904V

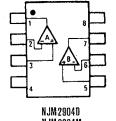
SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The NJM2904 consists of two independent, high gain, internally frequency compensated operation amplifiers which were designed specifically to operate from a single power suppply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

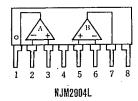
Application areas include transducer amplifiers, DC gain blocks, and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the NJM2904 can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional \pm 15V power supplies.

FEATURES


- Single Supply
- Operating Voltage
- Low Operating Current
- Slew Rate
- Bipolar Technology
- Package Outline

 $(+3V \sim +32V)$ (0.7mA typ.)

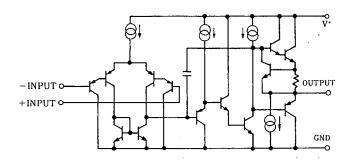
 $(0.5V/ \mu s typ.)$


DIP8, DMP8, SIP8, SSOP8

PIN CONFIGURATION

NJM:2904M NJM12904V

PIN FUNCTION 1. A OUTPUT A-INPUT 3. A+INPUT 4. GND 5. B+INPUT 6. B-INPUT 7. B OUTPUT



■ PACKAGE OUTLINE

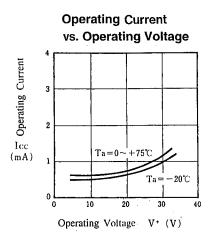
NJM2904D

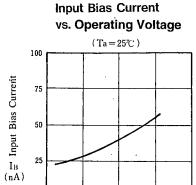
NJM2904 L

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

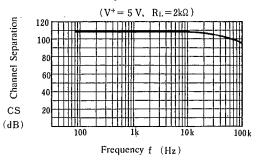

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+(V+/V-)	32(or ±16)	V	
Differential Input Voltage	V _{ID}	32	V	
Input Voltage	V _{iC}	-0.3~+32	V	
Power Dissipation		(DIP8) 500	mW	
	PD	(DMP8) 300	mW	
		(SSOP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-50~+125	r	

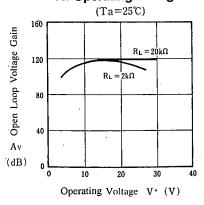

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C V⁺=5V)

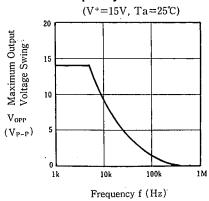
PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=0\Omega$	_	2	7	mV
Input Offset Current	I _{IO}		-	- 5	50	nΑ
Input Bias Current	I_{B}		-	25	250	nΑ
Large Signal Voltage Gain	Av	R _L ≧2kΩ	_	100	—	dB
Maximum Output Voltage Swing	Vom	$R_L=2k\Omega$	3.5	l —	—	V
Input Common Mode Voltage Range	V _{ICM}		0~3.5	-		V
Common Mode Rejection Ratio	CMR		-	85	_	dВ
Supply Voltage Rejection Ratio	SVR		—	100		dB
Output Source Current	ISOURCE	$V_{1N}^{+}=1V, V_{1N}^{-}=0V$	20	30	_	mA
Output Sink Current	ISINK	$V_{1N}^{+}=0V, V_{1N}^{-}=1V$	8	20	_	mA
Channel Separation	CS	f=1k~20kHz, Input Referred		120	_	dB
Operating Current	Icc	R _L =∞	-	0.7	1.2	mA
Slew Rate	SR	$V^{+}/V^{-} = \pm 15V$		0.5	i —	V/μs
Unity Gain Bandwidth	f_T	$V^{+}/V^{-}=\pm 15V$		0.2	-	MHz

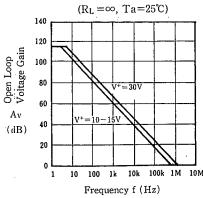
■ TYPICAL CHARACTERISTICS



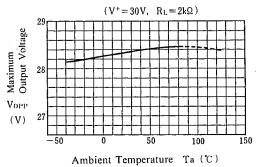

25

Operating Voltage V+ (V)

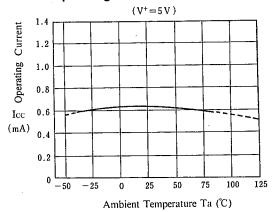

Channel Separation vs. Frequency


Voltage Gain vs. Operating Voltage

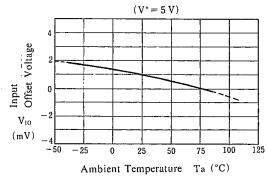
Maximum Output Voltage Swing vs. Frequency

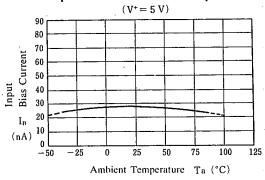


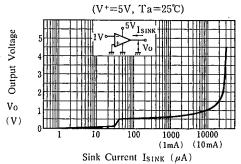
Open Loop Voltage Gain vs. Frequency

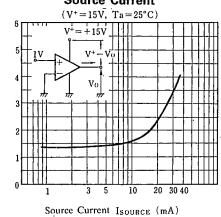


TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Temperatute

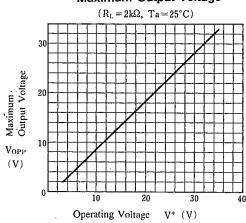

Operating Current vs. Temperature


Input Offset Voltage vs. Temperature

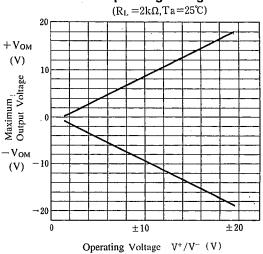

Input Bias Current vs. Temperature

Output Voltage vs. Sink Current

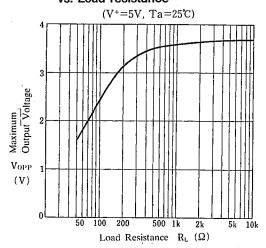
Source Current

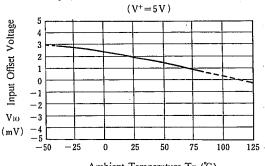

Output Voltage from Operating Voltage

 $V^+ - V_0$

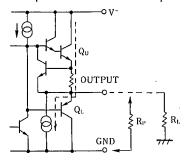

(V)

■ TYPICAL CHARACTERISTICS


Maximum Output Voltage


Maximum Output Voltage vs. Operating Voltage

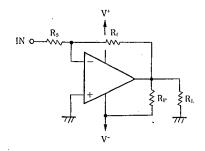
Maximum Output Voltage Swing vs. Load resistance

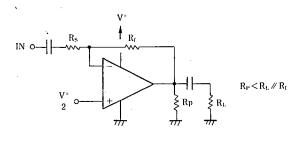


Input Offset Voltage vs. Temperature

APPLICATION

• Improvement of Cross-over Distortion Equivalent circuit at the output stage




NJM2904, in its static state (No in and output condition) when design, Q_U being biassed by constant current (breake down beam) yet, Q_L stays OFF.

While using with both power soure mode, the cross-over distortion might occure instantly when Q_L ON.

There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.

It is aduisable especially when using both power soure mode, constantly to use with higher current on Qu than the load current (including feedback current), and then connect the pull-down resister RP at the part between output and GND pins.

				^	_	4
N.	IJ	VI	2	9	U	4

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.