DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM4565 integrated circuit is a high-gain, wide-bandwidth, dual low noise operational amplifier capable of driving 20V peak-to-peak into 400 Ω load. The NJM4565 is good characteristics compared to the NJM4560.

■ FEATURES

Operating Voltage

 $(\pm 4V \sim \pm 18V)$

Wide Gain Bandwidth Product

(4MHz typ.)

Slew Rate

(4V/ μs typ.)

Package Outline

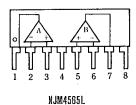
DIP8, DMP8, SSOP8, SIP8

Bipolar Technology

■ PACKAGE OUTLINE

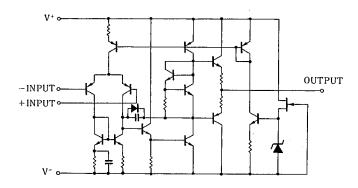
NJM4565D

NJM4565M


NJM4565L

NJM4565V

■ PIN CONFIGURATION



PIN FUNCTION
1. A OUTPUT
2. A-INPUT

- 3. A+INPUT
- 5. B+INPUT
- 6. B-INPUT 7. B OUTPUT
- 8. V

■ EQUIVALENT CIRCUIT (1/2 Shown)

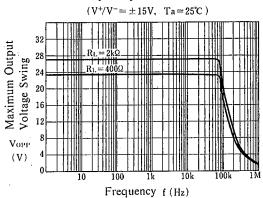
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

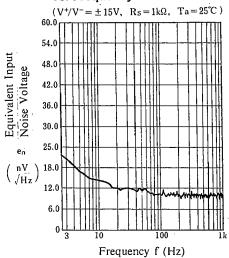
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±18	V
Differential Input Voltage	V _{ID}	±30	V
Input Voltage	V _{1C}	±15 (note)	V
Power Dissipation		(DIP8) 500	mW
		(DMP8) 300	mW
	P _D	(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	Торг	-20~+75	r
Storage Temperature Range	Tstg	-40~+125	°C

(note) For supply voltage less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

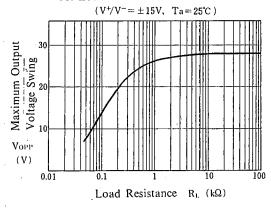
■ ELECTRICAL CHARACTERISTICS

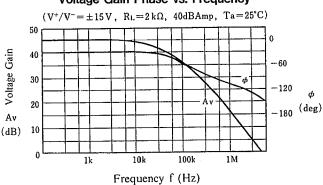

 $(Ta=25^{\circ}C, V^{*}/V^{-}=\pm 15V)$

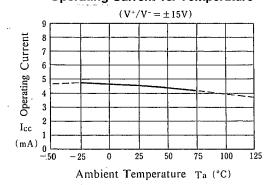
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≦10kΩ	_	0.5	3.0	mV
Input Offset Current	I _{IO}	_	_	2	50	nΑ
Input Bias Current	I _B		_	50	200	пΑ
Input Resistance	R _{IN}		0.3	5	_	МΩ
Large Signal Voltage Gain	Av	$R_1 \ge 2k\Omega$, $V_0 = \pm 10V$	86	100	_	dΒı
Maximum Output Voltage Swing 1	V _{OM1}	$R_1 \ge 2k\Omega$	±12	±14	-	v
Maximum Output Voltage Swing 2	V _{OM2}	I _O =25mA	±10	±11.5		V
Input Common Mode Voltage Range	V _{ICM}		±12	±14	_	v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	90	_	dB
Supply Voltage Rejection Ratio	SVR	R _s ≤10kΩ	76.5	90	-	dB'
Operating Current	I _{CC}		_	4.5	7	mA
Slew Rate	SR		_	4	l —	V/μs
Gain Bandwidth Product	GB		_	10	_	MHz
Equivalent Input Noise Voltage	V _{NI}	RIAA, R _S =2.2k Ω , 30kHz LPF	_	1.2	-	μVrms

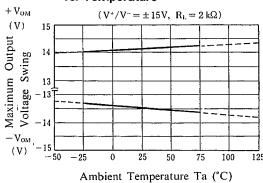

4

■ TYPICAL CHARACTERISTICS

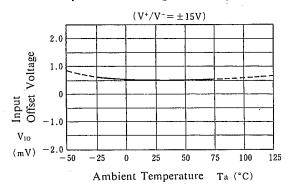

Maximum Output Voltage Swing vs. Frequency


Equivalent Input Noise Voltage vs. Frequency

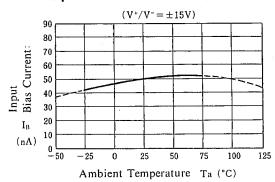

Maximum Output Voltage Swing vs. Load Resistance


Voltage Gain Phase vs. Frequency

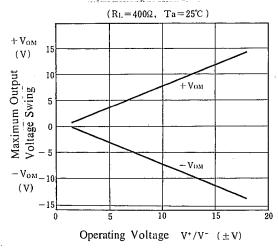
Operating Current vs. Temperature

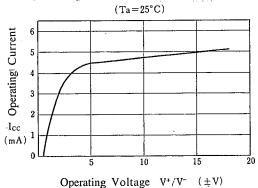


Maximum Output Voltage Swing vs. Temperature



■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature

Maximum Output Voltage Swing vs. Operating Voltage

Operating Current vs. Operating Voltage

NJ	M	45	65
----	---	----	----

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.