8M-Word $\times 32$-Bit or 16 M -Word $\times 16$-Bit Page Mode P2ROM

FEATURES

-8,388,608-word $\times 32$-bit/ $16,777,216$-word $\times 16$-bit electrically switchable configuration
-Page size of 8 -word x 32 -Bit or 16 -word x 16 -Bit -3.0 V to 3.6 V power supply
-Random Access time 120 ns MAX
-Page Access time $\quad 35 \mathrm{~ns}$ MAX

- Operating current 100 mA MAX
- Standby current $\quad 50 \mu \mathrm{~A}$ MAX
- Input/Output TTL compatible
- Three-state output

PACKAGES

- MR26V25655J-xxxMB
70-pin plastic SSOP (P-SSOP70-500-0.80-K-MC)

PIN CONFIGURATION (TOP VIEW)	
A0 1	70
A0 1	70 A22
A1 2	69 A21
A2 3	68 A20
A3 4	67 WORD\#
A4 5	66 OE\#
A5 6	65 CE\#
Vcc 7	64 Vss
D0 8	63 D31/A-1
D16 9	62 D15
D1 10	61 D30/A-1
D17 11	60 D14
Vss 12	59 Vss
Vcc 13	58 Vcc
D2 14	57.129
D18 15	56. D13
$\text { D3 } 16$	55 D28
D19 17	54 D12
D4 18	53 D27
$\mathrm { D } 2 0 \longdiv { 1 9 }$	52 D11
$\text { D5 } 20$	51 D26
D21 21	50 D10
$\text { Vss } 22$	
Vss 22	
Vcc 23	48 Vcc
D6 24	47 D25
D22 25	46 D 9
D7 26	45 D 24
D23 27	44 D8
Vss 28	43 Vcc
A6 29	42 A19
A7 30	
A7 3	
A8 31	40 A17
A9 32	39 A16
A10 33	38 A15
A11 34	37 A14
A12 35	36 A13

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin name	Functions
D31 / A-1,D30/A-1	Data output / Address input
A0 to A22	Address inputs
D0 to D29	Data outputs
CE\#	Chip enable input
OE\#	Output enable input
WORD\#	Word -Byte select input
$V_{\text {CC }}$	Power supply voltage
$V_{\text {SS }}$	Ground

FUNCTION TABLE

Mode	CE\#	OE\#	WORD\#	V_{CC}	D0 to D15	D16 to D29	D30/A-1,D31/A-1
Read (32-Bit)	L	L	H	3.3 V	Dout		
Read (16Bit)	L	L	L		Dout	Hi-Z	L/H
Output disable	L	H	H		Hi-Z		
			L				*
Standby	H	*	H		Hi-Z		
			L				*

*: Don't Care (H or L)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Operating temperature under bias	Ta	-	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to 125	${ }^{\circ} \mathrm{C}$
Input voltage	V_{1}	relative to $\mathrm{V}_{\text {Ss }}$	-0.5 to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V
Output voltage	V_{0}		-0.5 to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V
Power supply voltage	V_{CC}		-0.5 to 5	V
Power dissipation per package	P_{D}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1.0	W
Output short circuit current	los	-	10	mA

RECOMMENDED OPERATING CONDITIONS

($\mathrm{Ta}=0$ to $70^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
V_{CC} power supply voltage	V_{CC}	$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V	3.0	-	3.6	V
Input "H" level	V_{IH}		2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.5 *$	V
Input "L" level	$\mathrm{V}_{\text {IL }}$		-0.5**	-	0.6	V

Voltage is relative to V_{SS}.

* : Vcc+1.5V(Max.) when pulse width of overshoot is less than 10 ns .
**: -1.5 V (Min.) when pulse width of undershoot is less than 10 ns .

PIN CAPACITANCE

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Input	$\mathrm{C}_{\mathrm{IN} 1}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	-	-	30	pF
WORD\#	$\mathrm{C}_{\mathrm{I} 2}$		-	-	400	
Output	Cout	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-	-	20	

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Ta}=0\right.$ to $70^{\circ} \mathrm{C}$							
Parameter	Symbol		dition	Min.	Typ.	Max.	Unit
Input leakage current	l_{LI}	$\mathrm{V}_{1}=0$	to $\mathrm{V}_{C C}$	-	-	20	$\mu \mathrm{A}$
Output leakage current	ILO	$\mathrm{V}_{\mathrm{O}}=$	to $\mathrm{V}_{C C}$	-	-	20	$\mu \mathrm{A}$
V_{CC} power supply current (Standby)	ICcsc	CE\#	$=\mathrm{V}_{\mathrm{CC}}$	-	-	50	$\mu \mathrm{A}$
	ICCST	CE\#	$=\mathrm{V}_{\text {IH }}$	-	-	1	mA
V_{CC} power supply current (Read)	ICCA1	$\begin{aligned} & \mathrm{CE} \mathrm{\#}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{OE} \mathrm{\#}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	tc $=200 \mathrm{~ns}$	-	-	100	mA
Input "H" level	V_{IH}		-	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.5 *$	V
Input "L" level	$\mathrm{V}_{\text {IL }}$		-	-0.5**	-	0.6	V
Output "H" level	V_{OH}	$\mathrm{IOH}=$	-2 mA	2.4	-	-	V
Output "L" level	Vol	loL	2 mA	-	-	0.4	V

Voltage is relative to V_{SS}.

* : Vcc+1.5V(Max.) when pulse width of overshoot is less than 10 ns .
**: -1.5 V (Min.) when pulse width of undershoot is less than 10 ns .

AC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Ta}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Condition	Min.	Max.	Unit
Address cycle time	t_{C}	-	120	-	ns
Address access time	$\mathrm{t}_{\text {ACC }}$	$C E \#=O E \#=V_{\text {IL }}$	-	120	ns
Page cycle time	tpC	-	35	-	ns
Page access time	$\mathrm{t}_{\text {PAC }}$	$C E \#=O E \#=V_{\text {IL }}$	-	35	ns
CE\# access time	tce	OE\# = $\mathrm{V}_{\text {IL }}$	-	120	ns
OE\# access time	toe	$C E \#=V_{\text {IL }}$	-	30	ns
utput disable time	$\mathrm{t}_{\text {chz }}$	$\mathrm{OE} \#=\mathrm{V}_{\text {IL }}$	0	20	ns
Output disable time	tohz	CE\# = $\mathrm{V}_{\text {IL }}$	0	20	ns
Output hold time	tor	CE\# = OE\# = $\mathrm{V}_{\text {IL }}$	0	-	ns

Measurement conditions
Input signal level $0 \mathrm{~V} / 3 \mathrm{~V}$
Input timing reference level ------------------1/2Vcc
Output load --10 50 pF
Output timing reference level---------------- 1/2Vcc
Output load

TIMING CHART (READ CYCLE)

Random Access Mode Read Cycle

Page Access Mode Read Cycle

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Document No.	Date	Page		Description
		Previous Edition	Current Edition	
FEDR26V25655J-02-01	May. 2003	-	-	Final edition 1
FEDR26V25655J-02-02	Jun., 2003	1, 4	1, 4	Change t ${ }_{\text {PAC }}$ to 30ns from 35ns
		4	4	Change V_{OH} Condition to $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
		4	4	Change toe, tchz to 30ns from 40ns
		4	4	Change tohz, to 25ns from 35ns
		5	5	Change Timing Chart description
FEDR26V25655J-02-03	Jan.15, 2004	4	4	Change tchz, tohz to 20ns
FEDR26V25655J-02-04	Mar.26, 2004	1, 4	1, 4	Change tpc, tPAC to 35ns
FEDR26V25655J-02-05	Jun. 8, 2004	3	3	Change $\mathrm{C}_{\mathrm{IN} 1}$, Cout to $30 \mathrm{pF}, 20 \mathrm{pF}$
FEDR26V25655J-02-06	Jul. 9, 2004	3	3	Add P_{D} condition and $\mathrm{los}=10 \mathrm{~mA}$

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by Oki, authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.
