MSM5832RS

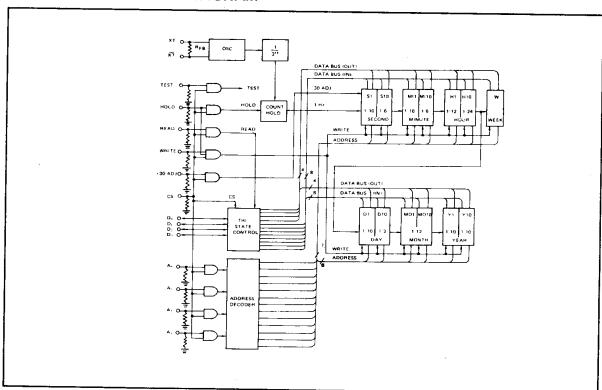
REAL TIME CLOCK/CALENDAR

GENERAL DESCRIPTION

The MSM5832RS is a metal-gate CMOS Real Time Clock/Calendar for use in bus-oriented microprocessor applications. The on-chip 32.768Hz crystal controlled oscillator time base is divided to provide addressable 4-bit I/O data of SECONDS, MINUTES, HOURS, DAY-OF-WEEK, DATE, MONTH, and YEAR. Data access is controlled by 4-bit address, chip select, read, write and hold inputs. Other functions include 12H/24H format selection, leap year identification and manual ± 30 second correction.

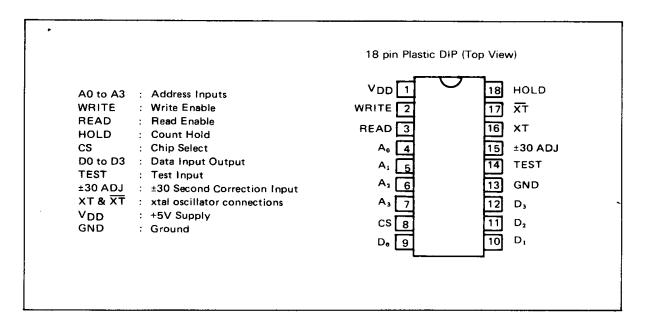
The MSM5832RS normally operates from a 5V ±5% supply. Battery backup operation down to 2.2V allows continuation of time keeping when main power is off. The MSM5832RS is offered in an 18-lead dual-in-line plastic (RS suffix) package.

FEATURES


- *7 Function SECOND, MINUTE, HOUR, DAY, DAY-OF-WEEK, MONTH, YEAR
- Automatic leap year calendar
- 12 or 24 hour format
- * ±30 second error correction
- 4-BIT DATA BUS
- 4-BIT ADDRESS
- * READ, WRITE, HOLD, and CHIP SELECT inputs
- Reference signal outputs 1024, 1, 1/60, 1/3600Hz
- * 32.768kHz crystal controlled operation
- Single 5V power supply
- Back-up battery operation to V_{DD} = 2.2V
- · Low power dissipation

90 μW Max. at V_{DD} = 3V

2.5 mW Max. at $V_{DD} = 5V$


· 18 pin plastic DIP (DIP18-P-300)

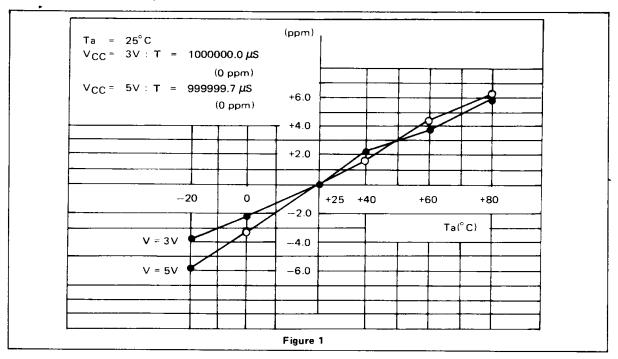
FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

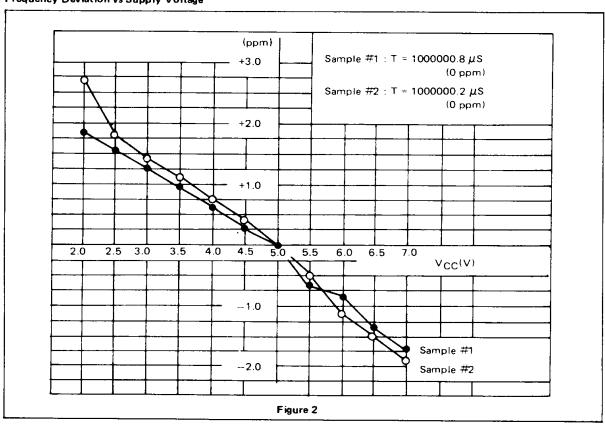
REGISTER TABLE

	Address Input			Register	Data	a Inp	ut/O	utput	Data	Remarks	
A ₀	Aı	A ₂	A ₃	Name	D ₀	D_1	D ₂	D₃	Limit	Helilajks	
0	0	0	0	S1	*	*	*	*	0 ~ 9	S1 or S10 are reset to zero irrespective of input data D0-D3 when write	
1	0	0	0	S10	*	*	*		0 ~ 5	instruction is executed with address selection.	
0	1	0	o	MI1	*	*	*	*	0 ~ 9		
1	1	0	0	MI10	*	*	*		0 ~ 5		
0	0	1	0	H1	*	*	*	*	0~9		
1	О	1	0	H10	*	*	†	†	0~1	D2 = "1" for PM D3 = "1" for 24 hour format D2 = "0" for AM D3 = "0" for 12 hour format	
0	1	1	0	W	*	*	*		0 ~ 6		
1	1	1	0	D1	*	*	*	*	0~9		
0	0	0	1	D10	*	*	t		0 ~ 3	D2 = "1" for 29 days in month 2 D2 = "0" for 28 days in month 2 (2)	
1	0	0	1	MO1	*	*	*	*	0~9		
0	1	0	1	MO10	*				0 ~ 1		
1	1	0	1	Y1	*	*	*	*	0~9		
0	0	1	1	Y10	*	*	*	*	0~9		

(1) *data valid as "0" or "1".


Blank does not exist (unrecognized during a write and held at "0" during a read) †data bits used for AM/PM, 12/24 HOUR and leap year.

(2) If D2 previously set to "1", upon completion of month 2 day 29, D2 will be internally reset to "0".


Table 1

OSCILLATOR FREQUENCY DEVIATIONS

Frequency Deviation vs Temperature

Frequency Deviation vs Supply Voltage

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply voltage	VDD	−0.3 ~ 7.0	V
Input voltage	VI	-0.3 ~ V _{DD} + 0.3	V
Data I/O voltage	٧٥	-0.3 ∼ V _{DD} + 0.3	V
Storage Temperature	Tstg	-55 ~ 150	°c

OPERATING CONDITIONS

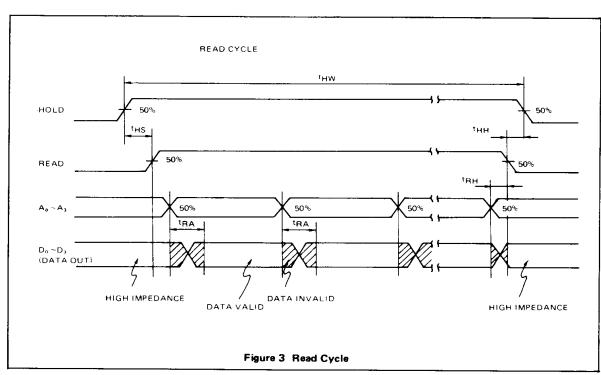
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V _{DD}	4.5	5	7	V	
Standby Supply Voltage	VDH	2.2	_	7	V	
	VIH	3.6	_	VDD	V	V _{DD} = 5V ± 5%
Input Signal Level	VIL	-0.3	_	8.0	٧	Respect to GND
Crystal Oscillator Freq.	f(XT)	_	32.768	-	kHz	
Operating Temperature	TOP	-30	-	+85	°C	

DC CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%; T_A = -30 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Min,	Тур.	Max.	Unit	Conditions
(.)	lін	10	25	50	μΑ	V _{IN} =5V, V _{DD} =5V
Input Current (1)	†IL	_	_	-1	μΑ	V _{IN} = 0V
Data I/O Leakage Current	ILD	-10	_	10	μΑ	V _{I/O} = 0 to V _{DD}
Output Low Voltage	VoL	_		0.4	V	I _O = 1.6 mA, CS = "1", READ = "1"
Output Low Current	lOL	1.6	_	_	mA	V _O = 0.4V, CS = "1", READ = "1"
	IDDS	_	15	30	μΑ	V _{CC} = 3V, Ta = 25°C
Operating Supply Current	۵۵۱	_	100	500	μΑ	V _{CC} = 5V, Ta = 25°C

(1) XT, \overline{XT} and $D_0 \sim D_3$ excluded.



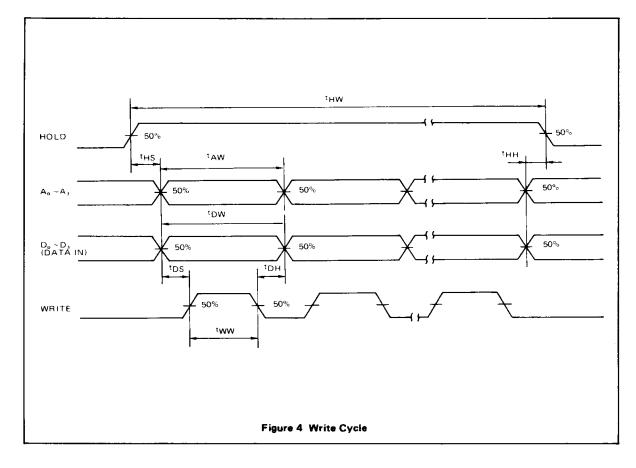
SWITCHING CHARACTERISTICS

(1) READ mode

(V _{DD}	=	5V	±5%,	Ta	=	25°	C)
------------------	---	----	------	----	---	-----	----

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
HOLD Set-up Time	tHS		150	_	_	μs
HOLD Hold Time	thh		0		_	μs
HOLD Pulse Width	thw		_	_	990	ms
HOLD "L" Hold Time	tHL		130	_		μs
READ Hold Time	tRH		0	-	_	μs
READ Set-up Time	tRS		0	_	_	μs
READ Access Time	^t RA	R _{PULL} . _{UP} = 5KΩ C _L = 15pF	_		6	μς
ADDRESS Set-up Time	†AS		3		_	μs
ADDRESS Hold Time	tAH		0.2	_	-	μς
READ Pulse Width	†RW	R _{PULL-UP} = 5KΩ C _L = 15pF	2	_	_	μs
DARA Access Time	†AC	R _{PULL-UP} = 5KΩ C _L = 15pF	-	-	0.6	μς
OUTPUT Disable Time	toff	RPULL-UP = $5K\Omega$ C _L = $15 pF$	_	-	0.6	μs
CS Enable Delay Time	tCS1		_	_	0.6	μs
CS Disable Delay Time	tCS2		_		0.6	μs

Notes: 1. A Read occurs during the overlap of a high CS and a high READ.


2. CS may be a permanent "1", or may be coincident with HOLD pulse.

SWITCHING CHARACTERISTICS

(2) WRITE mode

 $(V_{DD} = 5V \pm 5\%, Ta = 25^{\circ}C)$

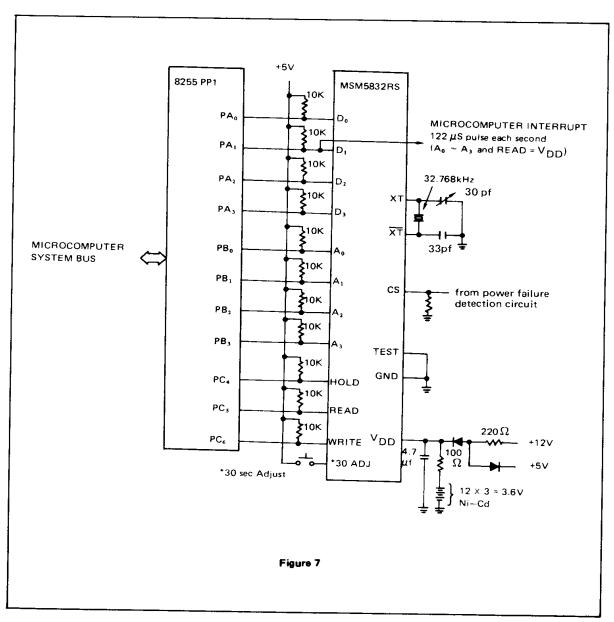
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
HOLD Set-up Time	tHS		150	_	-	μs
HOLD Bold Time	tнн		0			μs
HOLD Pulse Width	thw				990	ms
HOLD "L" Hold Time	tHL		130	_	_	μs
ADDRESS Pulse Width	tAW		1.7	_	_	μs
Data Pulse Width	tDW		1.7	_	_	μs
DATA Set-up Time	t _{DS}		0.5	-	_	μs
DATA Hold Time	toh		0.2	_	_	μs
WRITE Pulse Width	tww		1.0	_	_	μs
CS Enable Delay Time	tCS1		-	-	0.6	μs
CS Disoble Delay Time	tCS2		_	_	0.6	μs

- Notes: 1. A WRITE occurs during the overlap of a high CS, a high HOLD and a high WRITE.
 - 2. CS may be permanent "1", or may be coincident with HOLD pulse.

Powerec Downloaded from Elcodis.com Well of Conference Stributor

PIN DESCRIPTION

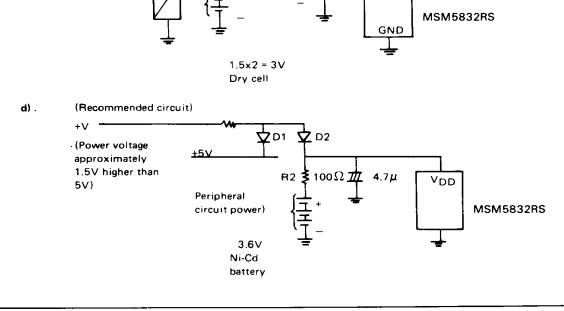
Name	Pin No.	Description				
V _{DD}	1	Power supply pin. Application circuits for power supply are described in Figure 9.				
WRITE	2	Data write pin. Data write cycle is described in Figure 4.				
READ	3	Data read pin. Data read cycle is described in Figure 3.				
A ₀ ~ A ₃	4 ~ 7	Address input pins used to select internal counters for read/write operations. The address is specified by 4-bit binary code as shown in Table 1.				
c s	8	Chip slect pin which is required to interface with the external circuit. HOLD, WRITE, READ, ± 30 ADJ, TEST, D ₀ \sim D ₃ and A ₀ \sim A ₃ pins are activated if CS is set at H level, while all of these pins are disabled if CS is set at L level.				
$D_0 \sim D_3$	9 ~ 12	Data input/output pins (bidirectional bus). As shown in Figure 5, external pull-up registers of 4.7 k $\Omega\sim10$ k Ω are required by the open-drain NMOS output. D ₃ is the MSB, while D ₀ is the LSB				
		+5V D ₀ D ₁₀				
		+5V Do,				
		C S. READ MSM5832RS				
		Figure 5				


Name	Pin No.	Description				
GND,	13	Ground pin.				
TEST	14	Test pin. Normally this pin should be left open or should be set at ground level. With CS at V_{DD} , pulses to V_{DD} on the TEST input will directly clock the S_1 , MI_{10} , W , D_1 and Y_1 counters, depending on which counter is addressed (W and D_1 are selected by D_1 address in this mode only). Roll-over to next counter is enabled in this mode.				
±30ADJ	15	This pin is used to adjust the time within the extent of \pm 30 seconds. If this pin is set at H level when the seconds digits are 0 \sim 29, the seconds digits are cleared to 0. If this pin is set at H level when the seconds digits are 30 \sim 59, the second digits will be cleared to 0 and the minutes digits will be increased by +1. To enable this function, 31.25 ms or more width's pulse should be input to this pin.				
XT	16	Oscillator pin. 32.768 kHz crystal, capacitor and trimmer condensor for f quency adjustment connected to these pins. See Figure 6. As for oscillat				
хт	17	frequency deviation, refer to Figure 1 and Figure 2. If an external clock is to be used for the MSM5832RS's oscillation source, the external clock is to be input to XT, and XT should be left open.				
		GND or VDD C ₁ XT RFB RS MSM5832RS				
		Figure 6				
HOLD	18	Switching this input to V_{DD} inhibits the internal 1 Hz clock to the S1 counter. After the specified HOLD set-up time (150 μ s), all counters will be in a static state, thus allowing error-free read or write operations. So long as th HOLD pulse width is less than 990 ms, real time accuracy will be undisturbed. Pull-down to GND is provided by an internal resistor.				

REFERENCE SIGNAL OUTPUT PIN

 Condition 	Output	Reference Frequency	Pulse Width
HOLD = L	D ₀ (1)	1024 Hz	duty 50%
READ = H	D ₁	1 Hz	122.1 μS
CS = H	D ₂	1/60 Hz	122.1 µS
$A_0 \sim A_3 = H$	D ₃	1/3600 Hz	122.1 µS

^{(1) 1024} Hz signal at D_{θ} not dependent on HOLD input level.


APPLICATION EXAMPLE

Open or ground unused pins (pins other than the XT, XT, D0-D3, and BUSY pins).

 $V_F = 0.69V$ 1S1588 Ripple K +5.7V 100\$ 20 mV P-P Operating state ∇_{DD} a) 0 mV Backup C372 GND MSM5832RS 1.2x3 = 3.6VF= 0.69 Ni-Cd battery VCE(Sat) = 0.1VRipple A495 20 mV P-P Operating state 51K 10K √//4.7µ 100Ω Backup 0 mV V_{DD} **b)** . 10K 4 GND MSM5832RS 1.2x3 = 3.6VNi-Cd battery RL 100 Ω +5V RLc) . v_{DD}

Note: Use the same diodes for D1 and D2 to reduce the level difference between +5V and VDD of the MSM5832RS.