ML7005

DTMF Transceiver

GENERAL DESCRIPTION

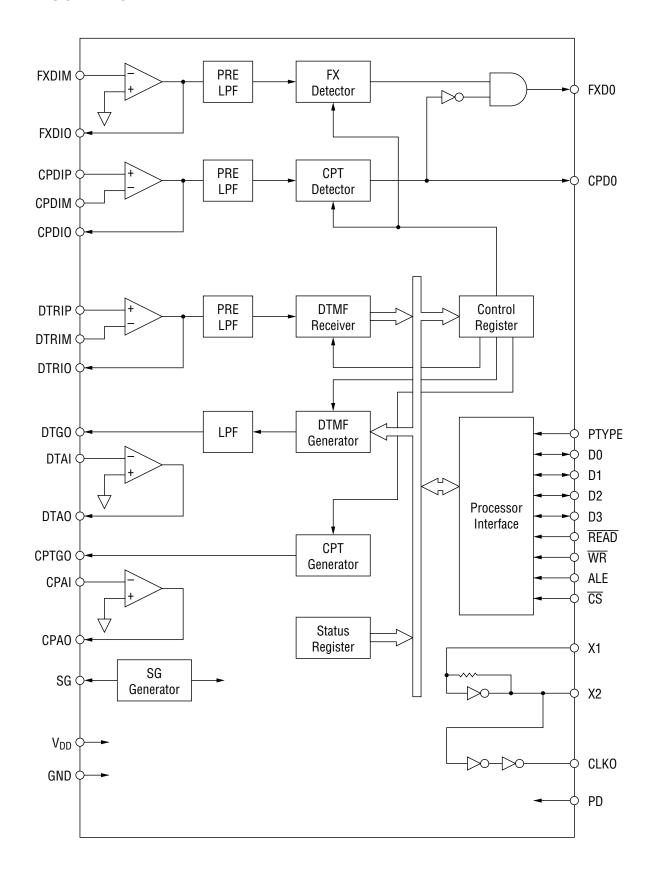
The ML7005 is a multi-functional DTMF transceiver LSI with built-in a DTMF signal generator, a DTMF signal receiver, a call progress tone generator, a call progress tone detector, and a FAX (FX) signal detector.

This version: May 1999

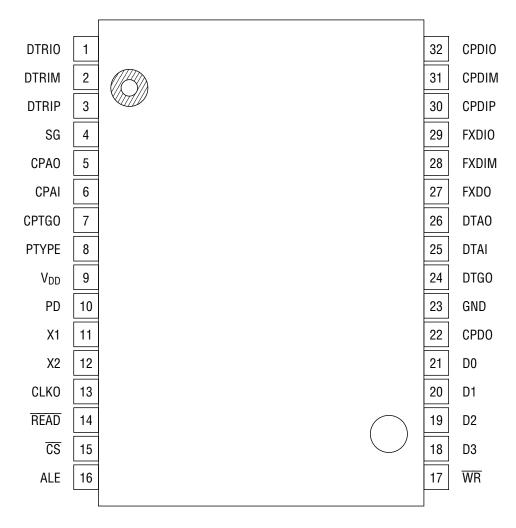
Each functional block can be controlled by an external MCU via a 4-bit processor interface. The ML7005 does not contains a modem. However, the DTMF system data transmission is possible at less than 66 bps by setting the DTMF receiver to the high-speed detection mode. The ML7005 operates with low-power consumption and is suitable for remote control systems, especially for ACR (Automatic Cost Routing) controllers.

FEATURES

- Wide range of power supply voltage: +2.7 V to +5.5 V
- Low power consumption


Operating mode : $4.0 \text{ mA} \text{ (V}_{DD} = 3 \text{ V) Typ.}$ Operating mode : $5.0 \text{ mA} \text{ (V}_{DD} = 5 \text{ V) Typ.}$

Power down mode : 1 µA Typ.


- The 4-bit processor interface supports both the Intel processor mode in which a read signal and a write signal are used independently of each other, and the Motorola processor mode in which a read signal and a write signal are used in common.
- The DTMF receiver can select either the high-speed detection mode (signal repeat time: more than 60 ms) or the normal detection mode (signal repeat time: more than 90 ms).
- Built-in call progress tone generator
- Built-in FAX signal (FX: 1300 Hz) detector
- The DTMF signal generator, DTMF signal detector, call progress tone generator, and call progress tone detector can operate concurrently.
- Built-in 3.579545 MHz crystal oscillator circuit
- Package:

32-pin plastic SSOP (SSOP32-P-430-1.00-K) (Product name: ML7005MB)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

32-Pin Plastic SSOP

PIN DESCRIPTION

Pin	Symbol	Туре	Description
1	DTRIO	0	Output pin for DTMF signal receiver input amplifier. See the figure 8 for adjusting the receive signal level. See the figure 10 when the DTMF signal receiver is not used.
2	DTRIM	I	Inverting input pin for DTMF signal receiver input amplifier.
3	DTRIP	I	Non-inverting input pin for DTMF signal receiver input amplifier.
4	SG	0	Output pin for signal ground. The output voltage is half of V_{DD} . Connect SG and GND by a 1 μF capacitor. This pin goes to a high impedance state when in power down mode.
5	CPAO	0	Output pin for amplifier used for adjusting the transmit output level of CPT (Call Progress Tone) signal generator. The non-inverting input of this amplifier is internally connected to SG. See the figure 11 for adjusting the transmit signal level. When this amplifier is not used, the CPAO pin should be shorted to the CPAI pin.
6	CPAI	I	Inverting input pin for amplifier used to adjust the transmit level of the CPT signal generator.
7	CPTGO	0	Analog output pin for CPT signal generator. The tone amplitude is approximately - 3 dBm. The transmit signal level can be changed by using the CPAO and CPAI pins. See the figure 11 for adjusting the transmit signal level. Control the ON/OFF of CPT transmission by using CPGC of the control register.
8	PTYPE	I	Input pin for selecting the processor mode. This selection determines the functions of READ, CS, ALE, WR, D1 and D0 pins. When this pin is "1", the Intel processor mode is selected. When this pin is "0", the Motorola processor mode (MSM7524-compatible) is selected. This pin should be fixed at "0" or "1".
9	V _{DD}	_	Power supply pin.
10	PD		Input pin for controlling the power down mode. When this pin is set to "1", the entire LSI enters the power down mode and each functional operation stops. The DC level of the analog output pin becomes undefined. The digital output pins (FXD0, CPD0) and status register indicate a non-detection state. At that time, the control register CR and DTMF transmit register DTMFT are cleared. ("0" is written) The internal circuits (timer, etc. for each detector) also are reset. After turning on the power, set this pin to "1" to reset the LSI before using this LSI. When this pin is set to "0", the normal operation starts.
11	X1	I	X1 and X2 are connected to a 3.579545 MHz crystal.
12	X2	0	See "Oscillation Circuit" of the FUNCTIONAL DESCRIPTION for reference.
13	CLK0	0	3.579545 MHz clock output pin. This pin can drive one ML7005 device.

Pin	Symbol	Туре	Description
14	READ	_	Input pin for processor interface. When PTYPE is "1" (Intel processor mode): This pin is the read control input pin. When this pin is set to "0", data in the specified register is output to the bus lines (D3 to D0). At that time, $\overline{\text{CS}}$ must be "0". See the figure 4 for processor interface timing. When PTYPE is "0" (Motorola processor mode): This pin is the clock input pin (equivalent to SCLK of the MSM7524). When in Write mode, data in D3 to D0 is written to the specified register at the falling edge of the $\overline{\text{READ}}$ signal. When in Read mode, data in the specified register is output to D3 to D0 when the $\overline{\text{READ}}$ signal is "1", and D3 to D0 should be open when the $\overline{\text{READ}}$ signal is not necessarily a periodical signal. See the figure 5 for processor interface timing.
15	CS	I	Chip select input pin for processor interface. When the $\overline{\text{CS}}$ signal is "0", read and write operations are possible. When the $\overline{\text{CS}}$ signal is "1", read and write operations are impossible.
16	ALE	I	Input pin for processor interface. When PTYPE is "1" (Intel processor mode): This pin is the address latch enable input pin. The register address data in D1 to D0 is latched at the falling edge of ALE. When PTYPE is "0" (Motorola processor mode): This pin is the address data input pin (equivalent to AD0 of the MSM7524). When this pin is "1", data can be written to the control register (CR) and data can be read from the status register (STR). When this pin is "0", data can be written to the DTMF transmit register (DTMFT) and data can be read from the DTMF receive register (DTMFR).
17	WR	I	Input pin for processor interface. When PTYPE is "1" (Intel processor mode): This pin is the Write control input. Data in the data bus lines (D3 to D0) is written to the specified register. At that time \$\overline{CS}\$ must be "0". When PTYPE is "0" (Motorola processor mode): This is the signal input pin for controlling the Read and Write modes (equivalent to R/\overline{W}\$ of the MSM7524). When this pin is "1", the LSI enters the Read mode. When this pin is "0", the LSI enters the Write mode.
18 - 21	D3 - D0	I/O	4-bit data bus I/O pins for processor interface. When PTYPE is "1" (Intel processor mode), D1 and D0 are also used for addressing.
22	CPD0	0	Digital output pin for CPT detector. When a 400 Hz signal is input to the CPDIP and CPDIM pins, this pin is "1". When the DOEN register is "0", this pin is fixed at "0".
23	GND		Ground pin.
24	DTGO	0	Analog output pin for DTMF signal generator. The tone amplitude is approximately - 9.0 dBm for a low group and approximately - 7.0 dBm for a high group. The transmit signal level can be changed by using the DTAI and DTAO pins. See the figure 11 for adjusting the transmit signal level. Control the ON/OFF of signal transmission by using MFC of the control register.

Pin	Symbol	Туре	Description
25	DTAI	I	Inverting input pin for operational amplifier used for adjusting the transmit output level of the DTMF signal generator. The non-inverting input of this amplifier is internally connected to SG. See the figure 11 for adjusting the transmit signal level. When this amplifier is not used, the DTAO pin should be shorted to the DTAI pin.
26	DTAO	0	Output pin for operational amplifier used for adjusting the transmit output level of the DTMF signal generator.
27	FXD0	0	Digital output pin for FAX signal (FX) detector. When a 1300 Hz signal is input to the FXDIM, this pin is "1". When a call progress tone (CPT) is received (CPD0="1"), this pin is forced to be "0". When the DOEN register is "0", this pin is fixed at "0".
28	FXDIM	I	Inverting input pin for input amplifier used for detecting the FAX signal (FX). See the figure 9 for adjusting the receive signal level. When the FX detector is not used, the FXDIM pin should be shorted to the FXIO pin.
29	FXDI0	0	Output pin for input amplifier used for detecting the FAX signal (FX).
30	CPDIP	I	Non-inverting input pin for input amplifier used for detecting the CPT. See the figure 8 for adjusting the receive signal level. When the CPT detector is not used, see the figure 10.
31	CPDIM	I	Inverting input pin for input amplifier used for detecting the CPT.
32	CPDI0	0	Output pin for input amplifier used for detecting the CPT.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V_{DD}	Ta = 25°C	-0.3 to +7.0	W
Input Voltage	VI	With respect to GND	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{stg}	-	-55 to +150	°C
Output Short Current	I _{SHT}	Short to V _{DD} or GND	35	mA
Power Dissipation	P _D	_	100	mW

RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Po	wer supply voltage	V_{DD}	_	2.7	3.6	5.5	V
Ор	erating Temperature Range	T _{OP}	_	-30	_	+85	°C
Inp	ut Clock Frequency Deviation	f _{CLK}	An external clock is applied to	-0.1	_	+0.1	%
Inp	ut Clock duty	DUTY	X1	40	_	60	%
X1	, X2 Load Capacitance	C1, C2	_	18	20	22	pF
SG	Bypass Capacitance	C3	SG - GND	1	_	_	
V_{DI}	D Bypass Capacitance	C4	V _{DD} - GND	10	_	_	μF
		C5		0.1	_	_	
Dig	jital Input Rise Time	T _{IR}	PD, READ, CS,	_	_	50	
Dig	jital Input Fall Time	T _{IF}	ALE, WR, C3 to D0	_	_	50	ns
Dig	jital Ouput Load Capacitance	C _{DL1}	FCDO, CPDO, D3 to D0	_		40	"F
		C _{DL2}	CLKO	_	_	20	pF
	Frequency Deviation	_	+25°C ±5°C	-100	_	+100	
stal	Temperature Characteristics	_	-30°C to +85°C	-100	_	+100	ppm
Crystal	Equivalent Series Resistance	_	-	_	_	90	Ω
	Load Capacitance				16		pF

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition or A	Min.	Тур.	Max.	Unit	
	I _{DD1}	V _{DD} = 2	.7 to 5.5 V	_	_	9.0	
Dower Cumply Current		Operating Mode	$V_{DD} = 3 V$	_	4.0	_	mA
Power Supply Current			V _{DD} = 5 V	_	5.0	_	
	I _{DD2}	Power Down M	ode		1	40	μΑ
Digital Input Voltage	V _{IH}			0.7 V _{DD}	_	V_{DD}	W
	V _{IL}		_	0.0	_	$0.3V_{DD}$	V
Digital Input Current	I _{IH}	$V_I = V_{DD}$		-10	0	+10	^
	I _{IL}	$V_I = 0 V$		-10	0	+10	μΑ
Digital Output Voltage	V _{OH}	Other than	$I_{OH} = -100 \mu A$	$V_{DD} - 0.2$	$V_{DD} - 0.06$	V_{DD}	
	V _{OL}	CLK0	$I_{0L} = -100 \mu A$	0.0	0.06	0.2	V
	V _{OHCK}	CLKO, CL ≤ 20p	\E	$V_{DD} - 0.5$	_	V_{DD}	V
	V _{OLCK}	$CLKO, GL \leq 20\mu$)F	0.0	_	0.5	
Analog Input Resistance	R _{IN}	*1			10	_	$M\Omega$
Analog Output DC Potential	V_{SG}	SG		V _{DD} /2-0.1	V _{DD} /2	V _{DD} /2-0.1	V
	V _{AO}	*2			V _{DD} /2		V
Analog Output Load Resistance	R _{OUT}	*3		20	_	_	$K\Omega$

^{*1} DTRIM, DTRIP, CPAI, DTAI, FXDIM, CPDIP, CPDIM

AC CHARACTERISTICS

AC Characteristics 1 DTMF Signal Generator

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$

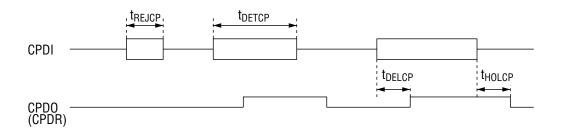
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
DTMF Tone Transmit Amplitude	V_{DTTL}		Low Group Tone	-10.5	-9.0	-7.5	dDm
	V_{DTTH}		High Group Tone	-8.5	-7.0	-5.5	dBm *1
Tone Transmit Amplitude Ratio	V_{DTDF}	⊣ Measured at ⊢	V _{DTTH} – V _{DTTL}	1.0	2.0	3.0	dB
Tone Frequency Accuracy	f	DTGO	To Nominal	-1.5	.5 —	+1.5	%
	f _{DDT}	Dido	Frequency	-1.5			/0
Total Harmonic Distortion	TUD		Harmonics -		_40	-23	dB
	THD _{DT}		Fundamental		-4 0	-23	ив
	V _{S1}	With respect to	4kHz to 8kHz		P-51	P-20	
Out-of-Band Spurious	V_{S2}	output signal	8kHz to 12kHz	_	P-60	P-40	dB
Out-or-band Spunous	V_{S3}	level measured	12 kHz to each		P-75	P-60	ub
		at DTGO	4 kHz band		F-73	F-00	

^{*1 0}dBm = 0.775 Vrms (For all AC characteristics)

^{*2} DTRIO, CPAO, CPTGO, DTGO, DTAO, FXDIO, CPDIO

^{*3} DTRIO, CPAO, CPTGO, DTGO, DTAO, FXDIO, CPDIO, SG

AC Characteristics 2 Call Progress Tone (CPT) Generator


 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Ta = -30 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Tone Transmit Amplitude	V_{CPT}	_	-4	-2.5	-1	dBm
Output Frequency	f _{CPT}	_	380	400	420	Hz
Total Harmonic Distortion	THD _{CPT}	Harmonics - Fundamental	_	-39	-23	dB

AC Characteristics 3 Call Progress Tone (CPT) Detector

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CDT Datast Amplituda	V	$2.7~V \leq V_{DD} \leq 5.5~V$	-46	_	-6	
CPT Detect Amplitude	V _{DETCP}	$4.5~V \leq V_{DD} \leq 5.5~V$	-46		0	dBm
CPT Non-detect Amplitude	V_{REJCP}	f _{in} = 350 to 450 Hz at CPDIO	_	_	-60	
Time to Detect	t _{DETCP}	Detect	30			ma
Time to Reject	t _{REJCP}	Non-detect	_		10	ms
CPT Detect Delay Time	t _{DELCP}	See Figure 1.	10	18	30	me
CPT Detect Hold Time	t _{HOLCP}	See rigure 1.	10	18	30	ms
CPT Detect Frequency	f _{DETCP}	_	350		450	Hz
CPT Non-detect Frequency	f		530	_	_	Hz
GFT NOTIFUELEGE FREQUENCY	f _{RETCP}	_	_	_	290	ПΖ

Figure 1 CPT Detect Timing

AC Characteristics 4 FAX Signal (FX) Detector

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Cond	Min.	Тур.	Max.	Unit	
FX Detect Amplitude	V	2.7 V ≤	$2.7~V \leq V_{DD} \leq 5.5~V$		_	-6	
- Detect Amplitude	V _{DETFX}	4.5 V ≤	$V_{DD} \leq 5.5 \ V$	-40	_	0	dBm
FX Non-detect Amplitude	V _{REJFX}	f _{in} = 1280 to 1320 Hz at FXDIO		_	_	-60	
Time to Detect	t _{DETFX}		Detect	65	_	_	
Time to Reject	t _{REJFX}		Non-detect	_	_	30	ma
FX Detect Delay Time	t _{DELFX}	Soo Eir	auro O	35	50	65	ms
FX Detect Hold Time	t _{HOLFX}	See Fi	gure 2.	35	50	65	
FX Detect Frequency	f _{DETFX}	_	_	1280		1320	Hz
EV Non datast Fraguency	f			1380	_	_	Шэ
FX Non-detect Frequency	f _{REJFX}	_	_		_	1200	Hz

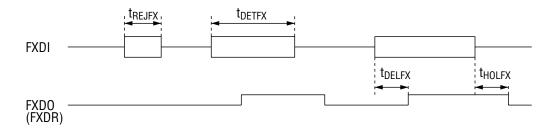


Figure 2 FX Detect Timing

AC Characteristics 5 DTMF Receiver

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$

	(VDD = 2.7	10 0.0 V,	1α - 00	10 +00 0)				
Parameter	Symbol		Cond	dition	Min.	Тур.	Max.	Unit
DTMC Detect Amplitude	V _{DETDT1}		2.7 V ≤	$V_{DD} \leq 5.5 \text{ V}$	-44	_	-10	
DTMF Detect Amplitude	V _{DETDT2}		4.5 V ≤	$V_{DD} \le 5.5 \text{ V}$	-44	_	0	dBm
DTMF Non-detect Amplitude	V _{REJDT}		Per Frequer	T —	_	-60		
Detect Frequency	f _{DETDT}				-1.8	_	+1.8	
Non detect Frequency	f		To Nomina	l Frequency	3.8	_	_	%
Non-detect Frequency	f _{REJDT}				_	_	-3.8	
Level Twist	V _{TWIST}		V _{High} Group	- V _{Low} Group	-6.0	_	+6.0	
Noise to Signal Ratio	V _{N/S}		N/S (N: 0.3	3 to 3.4 kHz)	_	-12	_	dB
Dial Tone Rejection Ratio	V _{REJDT}		360 to	440 Hz	_	45	_	
Cianal Danatition Time	t _{CYCDT0}			DTTIM = "1"	60	_	_	
Signal Repetition Time	t _{CYCDT1}			DTTIM = "0"	90	_	_	
Time to Detect	t _{RETDT0}		Datast	DTTIM = "1"	35	_	_	
Time to Detect	t _{RETDT1}		Detect	DTTIM = "0"	49	_	_	
Time to Deject	t _{REJDT0}		Non datast	DTTIM = "1"	_	_	10	
Time to Reject	t _{REJDT1}		Non-detect	DTTIM = "0"	_	_	24	
Interdigit Dayse Time	t _{POSDT0}			DTTIM = "1"	21	_	_	
Interdigit Pause Time	t _{POSDT1}	*1		DTTIM = "0"	30	_	_	
	t _{BRKDT10}]	SP = "1"	DTTIM = "1"	_	_	0.4	ms
Accontable Dran Out Time	t _{BRKDT11}		(Before output)	DTTIM = "0"	_	_	0.4	
Acceptable Drop Out Time	t _{BRKDT20}		SP = "0"	DTTIM = "1"	_	_	3	
	t _{BRKDT21}		(During output)	DTTIM = "0"	_	_	10	
Detect Delevi Times	t _{DELDT0}			DTTIM = "1"	12	26	37	
Detect Delay Time	t _{DELDT1}			DTTIM = "0"	24	41	49	
Detect Hold Time	t _{HOLDTO}			DTTIM = "1"	15	20	27	
Detect Hold Tillle	t _{HOLDT1}			DTTIM = "0"	24	28	35	
SP Delay Time	t _{SP}		DT	TIM = "1", "0"	0.2	0.6	1.0	

^{*1} See the figure 3 for timing.

The input level includes the entire range indicated in $V_{\mbox{DETDT1}}$ and $V_{\mbox{DETDT2}}$.

The input frequency includes the entire range indicated in f_{DETDT}.

Timing When DTMF is received

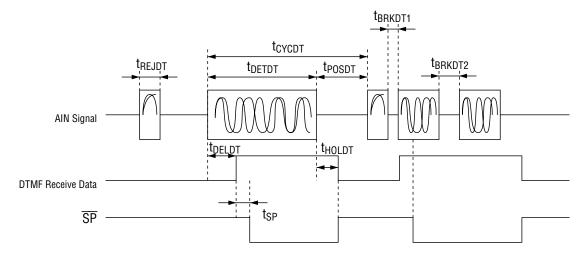


Figure 3 Timing When DTMF is Received

 t_{DETDT} : Time to Detect

When Time to Detect is the specified value of t_{DETDT} or more, the DTMF signal is normally received.

t_{REIDT}: Time to Reject

When Time to Reject is the specified value of t_{REJDT} or less, the input signal is ignored and the \overline{SP} and DTMF receive data are not output.

t_{POSDT}: Interdigit Pause

When there is no input signal for the period of t_{POSDT} or more, the DTMF receive data and \overline{SP} are reset. Even if the receive data is changed, when Interdigit Pause Time is the value of t_{POSDT} or less (including the change without Drop Out), \overline{SP} remains at "0" and the DTMF receive data may maintain its initial value.

t_{BRKDT1}: Acceptable Drop Out Time 1

Acceptable Drop Out Time 1 is applied between when the input signal comes and when \overline{SP} becomes "0". Even if there is no input signal for the period of t_{BRKDT1} or less, the \overline{SP} and DTMF receive data are normally output.

t_{BRKDT2}: Acceptable Drop Out Time 2

Acceptable Drop Out Time 2 is applied when \overline{SP} is "0" (when receive data is output). Even if there is no input signal during signal reception for the period of t_{BRKDT2} or less, \overline{SP} and DTMF receive data are not reset.

t_{CYCDT}: Signal Repetition Time

Signal Repetition Time should be the specified value of t_{CYCDT} or more so that a signal is normally received.

t_{DELDT}: Detect Delay Time

The DTMF receive data is output with a delay of the specified value of t_{DELDT} after the input signal appears.

 t_{HOLDT} : Detect Hold Time The \overline{SP} and DTMF receive data outputs stop with a delay of the specified value of t_{HOLDT} after the input signal disappears.

t_{SP}: SP Delay Time

The \overline{SP} data is output with a delay of the specified value of t_{SP} after the DTMF receive data is output. The DTMF receive data should be latched after detecting the fall of \overline{SP} .

Processor Interface Charactceristics (Intel Processor Mode) (V_{DD} = 2.7 to 5.5 V, Ta = -30 to +85°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Address Data Setup Time	t _{AL}	_	80		_	ns
Address Data Hold Time	t _{LA}		30			ns
ALE Signal Time	t _{LL}	_	80			ns
Chip Select Setup Time before Read	t _{CRS}	_	30			ns
Chip Select Hold Time after Read	t _{CRH}	_	30			ns
READ Data Output Delay Time	t _{RD}	$V_{OL} \le 0.4 \text{ V}, V_{OH} \ge V_{DD} - 0.4 \text{ V}$	0	90	180	ns
Data Float Time after Read	t _{RDF}	_	5	37	60	ns
READ Signal Time	t _{RW}	_	200			ns
Chip Select Setup Time before Write	t _{CWS}	_	30			ns
Chip Select Hold Time after Write	t _{CWH}	_	30			ns
WR Signal Time	t _{WW}	_	140	_	_	ns
Data Setup Time before Write	t _{DW}	_	80			ns
Data Hold Time	t _{WD}	_	30	_	_	ns

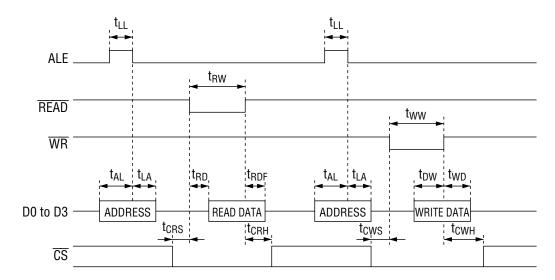


Figure 4 Processor Interface Timing (Intel Processor Mode: PTYPE="1")

Processor Interface Characteristics (Motorola Processor Mode)

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Ta = -30 \text{ to } +85^{\circ}\text{C})$

Parameter		Symbol		Condition	Min.	Тур.	Max.	Unit	
READ Signal Period		t _{CYC}		_	1			μs	
DEAD Cional Dulas Midtl		t _{HI}		"H" period	200	_	_		
READ Signal Pulse Width		t _{L0}		"L" period	200	_	_		
SETUP Time		t _{AS}		$ALE \rightarrow \overline{READ}$	80		_		
ALE	HOLD Time	t _{AH}		$\overline{READ} \to ALE$	20	_			
CS	SETUP Time	t _{CS}		$\overline{\text{CS}} \to \overline{\text{READ}}$	80	_	_		
65	HOLD Time	t _{CH}		$\overline{READ} \to \overline{CS}$	20	_	_		
WR	SETUP Time	t _{WRS}	See	$\overline{\text{WR}} \to \overline{\text{READ}}$	80	_	_	ns	
WK	HOLD Time	t _{WRH}	Figure 5	$\overline{READ} \to \overline{WR}$	20		_		
D3 to D0	SETUP Time	t _{DWS}		D3 to D0 \rightarrow READ	80	_	_		
(Write) HOLD Time		t _{DWH}		$\overline{\text{READ}} \rightarrow \text{D3 to D0}$	30	_	_		
				$\overline{\text{READ}} \rightarrow \text{D3 to D0}$					
D3 to D0	Delay Time	t _{DRD}		$V_{OL} \leq 0.4 V$,	0	90	180		
(Read)				$V_{OH} \ge V_{DD} - 0.4 \text{ V}$					
	Hold Time	t _{DRH}		D3 to D0 \rightarrow READ	5	37	60		

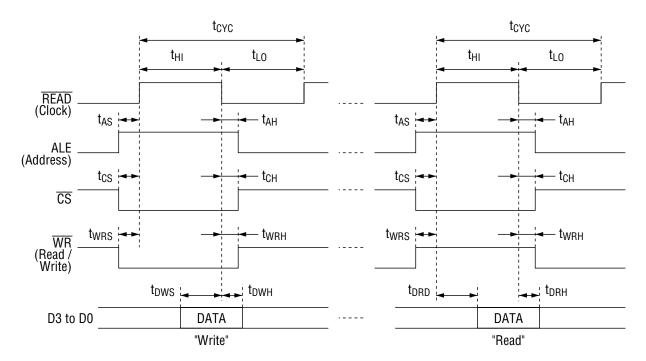


Figure 5 Processor Interface Timing (Motorola Processor Mode)

REGISTER DESCRIPTION

Register Interface Description

The ML7005 contains a 4-bit DTMF transmit data register (DTMFT), a 4-bit DTMF receive data register (DTMFR), a 4-bit control register (CR), and a 4-bit status register (STR). The DTMFT and CR registers are for Write-only and the DTMFR and STR registers are for Read-only. When the PTYPE pin is "1", accessing the registers is possible in the Intel processor mode. When the PTYPE pin is "0", accessing the registers is possible in the Motorola processor mode. In the Intel processor mode (PTYPE="1"), when CS is "0", data can be written to the DTMFT and CR registers by fetching data from D3 to D0 at the rising edge of the \overline{WR} signal. When \overline{CS} is "0", the contents of DTMFR and STR can be transferred to D3 to D0 by setting READ to "0". In the Motorola processor mode (PTYPE="0"), when CS and WR are "0", data can be written to the DTMFT and CR registers by fetching D3 to D0 data and ALE at the falling edge of READ. When $\overline{\text{CS}}$ is "0" and $\overline{\text{WR}}$ is "1", the contents of DTMFR and STR are transferred to D3 to D0 by latching ALE at the rising edge of READ.

When the PD pin is set to "1" the DTMFT and CR registers are reset.

Accessing in

Accessing (address) in Intel Motorola Register **Description** processor mode processor mode name $\overline{\mathsf{WR}}$ D1 D₀ **ALE DTMFT** 0 0 0 0 Writing to DTMFT 1 **DTMFR** 0 1 0 Reading from DTMFR CR 1 0 1 0 Writing to CR 1 1 1 STR 1 Reading from STR

Table 1 Outline of Registers

Note: The contents of the DTMFT and CR registers cannot be read.

Table 2 Register Names

Register name	D3	D2	D1	D0
DTMFT	DTMFT DTT3 DTT2		DTT1	DTT0
DTMFR	DTR3	DTR2	DTR1	DTR0
CR	CPGC	DTTIM	DOEN	MFC
STR	SP	FXDR	CPDR	DETF

DTMFT and DTMFR Registers

16 kinds of DTMF transmit signals can be determined by setting the DTMFT register.

16 kinds of DTMF receive signals can be monitored from the DTMFR register.

The table 3 shows the DTMF signal codes.

Even if the DTMF transmit code is changed while the DTMF signal is being transmitted (MFC="1"), the output frequency is not changed.

Table 3 DTMF Signal Code List

DTT3	DTT2	DTT1	DTT0	DIGIT	Low group	High group
DTR3	DTR2	DTR1	DTR0	Digit	signal (Hz)	signal (Hz)
0	0	0	1	1	697	1209
0	0	1	0	2	697	1336
0	0	1	1	3	697	1477
0	1	0	0	4	770	1209
0	1	0	1	5	770	1336
0	1	1	0	6	770	1477
0	1	1	1	7	852	1209
1	0	0	0	8	852	1336
1	0	0	1	9	852	1477
1	0	1	0	0	941	1336
1	0	1	1	*	941	1209
1	1	0	0	#	941	1477
1	1	0	1	А	697	1633
1	1	1	0	В	770	1633
1	1	1	1	С	852	1633
0	0	0	0	D	941	1633

Control Register CR

D3	D3 D2		D0		
CPGC	DTTIM	DOEN	MFC		

Bit No.	Name	Description
D3	CPGC	This bit is used to control the ON/OFF of call progress tone transmitting. "0": The GPTGO output is OFF and the SG level is output. "1": The GPTGO output is ON and CPT is output.
D2	DTTIM	This bit is used to control the detect time of DTMF receiver. "0": Normal detect "1": High-speed detect When there is enough time, set to the normal detect mode (DTTIM = "0") because the high-speed detect mode sometimes causes erroneous detection by noise or voice signal.
D1	DOEN	This bit is used to control the call progress tone detector and FX detector. "0": The CPDO and FXDO output pins and CPDR and FXDR registers are fixed to "0". "1": The CPDO and FXDO output pins and CPDR and FXDR registers become valid.
D0	MFC	This bit is used to control the ON/OFF of DTMF transmit output. "0": The DTGO output is OFF and the SG level is output. "1": The DTGO output is ON and the DTMF signal is output.

Status Register STR

D3	D2	D1	D0		
SP	FXDR	CPDR	DETF		

Bit No.	Name	Description
D3	SP	This bit is used to indicate whether the DTMF receive signal is being received. "0": Indicates that the valid DTMF signal is being received. "1": Indicates that the DTMF signal is not being received.
D2	FXDR	This bit is used to indicate whether the FAX signal (FX) is being received. "0": Indicates that the FAX signal (FX) is not being received. "1": Indicates that the valid FAX signal (FX: 1300 Hz) is being received. When a call progress tone is received (CPDO="1"), this bit is forced to be "0". When the DOEN register is "0", this bit also is fixed at "0". This bit has the same function as that of the FXDO.
D1	CPDR	This bit is used to indicate whether the call progress tone is being received. "0": Indicates that the call progress tone is not being received. "1": Indicates that the valid call progress tone (400 Hz) is being received. When the DOEN register is "0", this bit is fixed at "0". This bit has the same function as that of the CPDO pin.
DO	DETF	This is a flag to indicate that a detector has changed its status from a non-detect state to a detect state. This bit is "1" when: (1) SP is changed from "1" to "0", (2) FXDR is changed from "0" to "1", or (3) CPDR is changed from "0" to "1". This bit remains "0" even if a 1300 Hz or 400 Hz signal is input, because the FXDR and CPDR are fixed at "0" when the DOEN regsiter is "0". When the processor has read the status register, this bit is reset to "0". When the processor does not read the status register after a signal is detected, this bit is "0" after the detected signal disappears.

FUNCTIONAL DESCRIPTION

Oscillation Circuit

Characteristics.

The X1 and X2 should be connected by a 3.579545 MHz crystal.

When the load capacitance of the crystal is 16pF, X1 and GND should be connected by a 20 pF capacitor, and X2 and GND also should be connected by a 20 pF capacitor.

If necessary, an external clock should be input to X1 via a 1000 pF capacitor, and X2 should be left open.

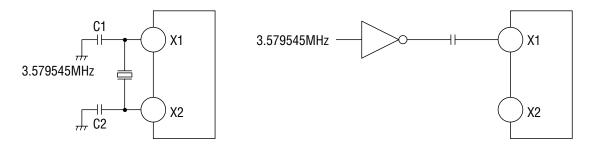


Figure 6 Crystal Connection

Figure 7 External Clock Connection

DTMF Receiver, CPT Detector Input Level Adjustment

Adjust the input level according to the method shown in the figure 8. Determine the value of a usable resistor so that the levels of the outputs (DTIO, CPDIO) of each amplifier at a maximum input level are less than the maximum detect level described in the AC

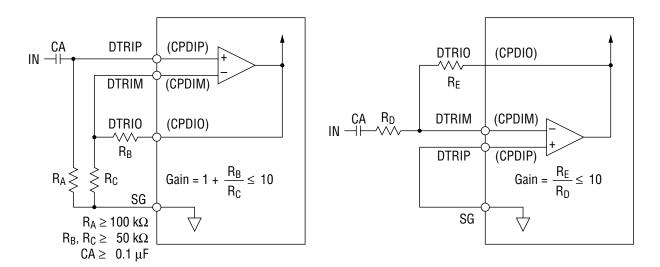


Figure 8 DTMF, CPT Input Level Adjustment

FX Detector Input Level Adjustment

Adjust the input level according to the method shown in the figure 9.

Determine the value of a usable resistor so that the output level of FXDIO is less than the maximum detect level described in the AC Characteristics.

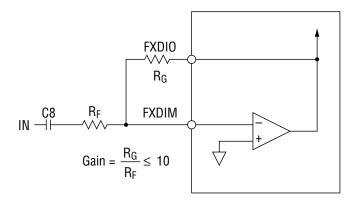


Figure 9 FX Input Level Adjustment

Processing the Input Pin when the DTMF Receiver and CPT Detector are not Used

Process the Input pin according to the method shown in the figure 10.

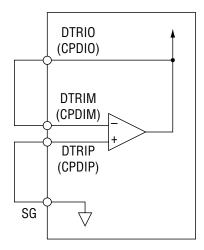


Figure 10 Processing the Unused Input Pin

Adjusting the Analog Output Level

Adjust the analog output level according to the method shown in the figure 11.

 $R_I/R_H \le 1.6$ is always required when $V_{DD} \ge 4.5$ V.

In the case of $R_I/R_H > 1$, if $R_I/R_H = A$, the maximum analog output load resistance is 20^*A (k Ω). If V_{DD} is less than 4.5 V, $R_I/R_H \le 1$ is required.

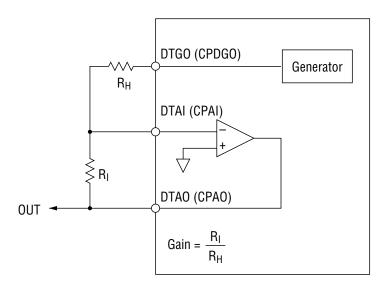
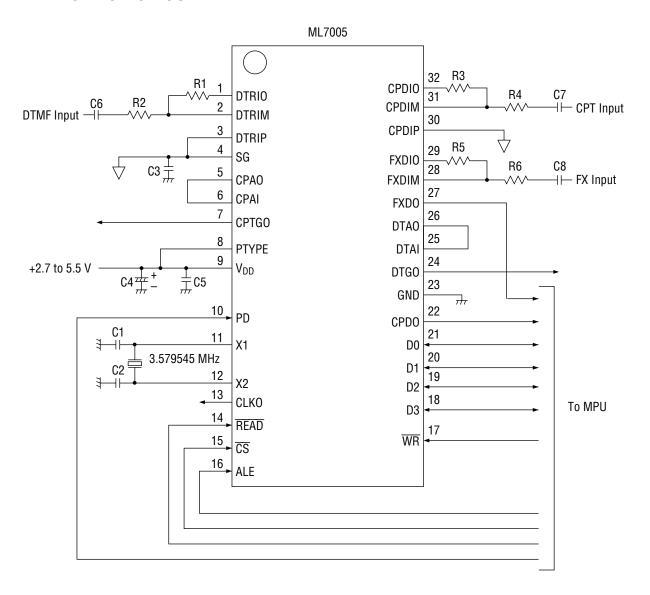


Figure 11 Analog Output Level Adjustment

Concurrent Operation of 4 Functions

The DTMF signal generator, DTMF signal detector, call progress tone generator, and call progress tone detector can operate concurrently.

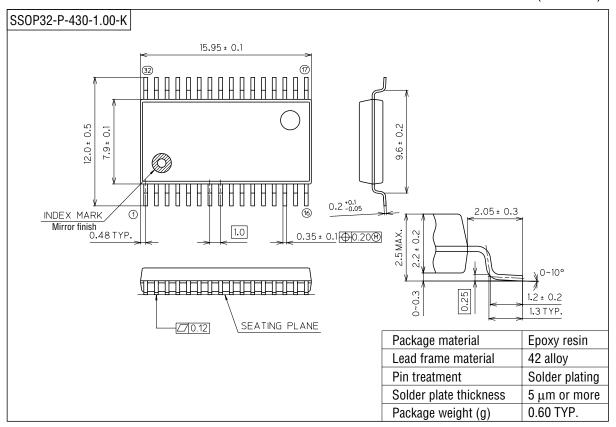
When both the DTMF signal generator and call progress tone generator operate concurrently, the DTMF signal sometimes cannot be detected if the receive level of the DTMF signal is less than -36 dBm.


Register Settings for Each Mode

An example of register settings for each mode is shown below.

Table 4 Register Setting

Mode	Description	Address in Intel processor mode Motorola processor mode		D3	D2	D1	D0	Active register	
		D1, D0	ALE	WR					
Power ON	(1) Wait until power supply is								
	stabilized		_		_	_	_	_	_
	(2) PD pin = "1"			_					_
	(internal circuit is reset)								
	(3) Wait 200 μs or more	_	_	_	_	_	_	_	_
	(4) PD pin = "0"	_	_	_	_	_	_	_	_
	(5) CR setting	10	1	0	Χ	Х	Х	Х	CR
DTMF Detect	(1) Detect timing setting	10	1	0	0	1	0	0	CR
(High Speed)	(2) STR monitoring	44	4	4	4				STR
	(when not detected)	11	1	1	1	0	0	0	
	(3) STR monitoring	44		_	0	0		1	STR
	(when detected)	11	1	1	0		0		
	(4) DTMF receive data reading	01	0	1	Χ	Х	Χ	Х	DTMFR
	(5) STR monitoring (when	44	1	1	0	0	0	0	STR
	detected and after reading STR)	11							
	(6) STR monitoring (after	44	1	1	1	0	0	0	STR
	making the input signal OFF)	11							
CPT Detect	(1) CPT detect enable setting	10	1	0	0	0	1	0	CR
	(2) STR monitoring	44	1	1	1	0	0	0	STR
	(when not detected)	11							
	(3) STR monitoring	44	1	1	1	0	1	1	STR
	(when detected)	11							
	(4) STR monitoring (when	44	_	4	1	0	1	_	0.75
	detected and after reading STR)	11	1	1				0	STR
DTMF	(1) DTMF transmit data setting	00	0	0	Χ	Х	Х	Х	DTMFT
Transmit	(2) DTMF transmit ON	10	1	0	0	0	0	1	CR
	(3) Wait transmit ON time	_	_	_	_	_	_	_	_
	(4) DTMF transmit OFF	10	1	0	0	0	0	0	CR
	(5) Wait transmit OFF time	_	_	_	_	_	_	_	_
	(6) To transmit next data,								
	return to (1)	_	_	_	_	_	_	_	_
CPT Transmit	(1) CPT transmit ON	10	1	0	1	0	0	0	CR
	(2) Wait transmit ON time	_	_	_	_	_	_	_	_
	(3) CPT transmit OFF	10	1	0	0	0	0	0	CR


APPLICATION CIRCUIT EXAMPLE

Note: $\sqrt{}$ indicates connection to the SG pin.

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents cotained herein may be reprinted or reproduced without our prior permission.
- 9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

Printed in Japan