GRAPHICS LCD CONTROLLER

- DESCRIPTION

The SED1351F is a graphics LCD controller capable of controlling medium to large resolution displays. It transfers data from MPU to external frame buffer RAM and converts this data to display signals for LCD drivers. The SED1351F can display images with 4 gray shades and support display duty cycle as high as $1 /$ 1024.

The SED1351F is designed to achieve high efficiency and data throughput to the LCD. It has a cycle steal mode which allows MPU to access frame buffer RAM without interfering with the display operation. The SED1351F can directly interface with up to eight 64K-bit SRAMs or two 256K-bit SRAMs.

The SED1351F can operate with either 5 V or 3 V power supply. The 5 V version chip is the SED1351F0A and the $3 V$ version chip is the SED1351FLB.

FEATURES

- Low-power CMOS technology
- 8 -bit or 16 -bit MPU data interface
- Direct interface with $80 x x$, Z80 and $68 x x x$ MPU
- 4- or 8-bit panel data bus for single panel and 4-bit bus for dual panel
- Support logical OR of layers and panel division
- Smooth vertical scrolling
- Virtual screen display up to 1024
- Binary mode (on/off only) generates black \& white images
- Gray mode (on/off and two gray steps) generates images with 4 gray shades
- Maximum number of rows

Binary mode
\qquad
2048
Gray mode
1024

- Maximum number of rows:

Single panel 1024
Dual pane! 2048

- Maximumdisplaysizeswhen64K-byteSRAMs are used:

Binary mode $2048 \times 256 / 1024 \times 512$
Gray mode $1024 \times 256 / 512 \times 512$

- Available models:

SED1351Fon 5V, QFP5-100 pin
SED1351FL. 3V,QFP15-100 pin

SYSTEM BLOCK DIAGRAM

- INTERFACE WITH 8-BIT MPU (Z-80) AND 64K-BIT SRAM (8 of $8 \mathrm{~K} \times 8$)

Note: Example implementation, actual may vary.
－INTERFACE WITH 16－BIT MPU（8086）AND 64K－BIT SRAM（8 of 8K x 8 ）

Note：Example implementation，actual may vary．
－INTERFACE WITH 16 －BIT MPU（68000）AND 256K－BIT SRAM（2 of $32 \mathrm{~K} \times 8$ ）

Note：Example implementation，actual may vary．

- SUPPORTED RESOLUTIONS

BLOCK DIAGRAM

－ELECTRICAL CHARACTERISTICS
 －SED1351F0A

－Absolute Maximum Ratings
（Ks＝OV）

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{DD}	$\mathrm{VSs}-0.3$ to 7.0	V
Input voltage	V_{1}	$\mathrm{Vss}-0.3$ to $\mathrm{VDD}+0.3$	V
Output voltage	Vo	$\mathrm{Vss}-0.3$ to $\mathrm{VDD}+0.3$	V
Output current／pin	o	± 10	mA
Power dissipation	PD	200	mW
Supply current	$100 / \mathrm{Iss}$	± 40	mA
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldering temperature and time	Tsol	$260^{\circ} \mathrm{C}, 10 \mathrm{~s}$（at lead）	-

－Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply voltage	VD		4.5	5.0	5.5	V
Input voltage	VI		VSS_{2}	-	VDD^{2}	V
Operating temperature	Top		-20	-	75	${ }^{\circ} \mathrm{C}$

－DC Characterlstics（FOA）
（ $\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ ）

Note：
Type 1．$\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{\overline{O W R}}, \overline{O R D}, M P U C L K, A B 0 \sim A B 15, \overline{B H E}, M P U S E L, ~ R E S E T, ~ O S C$
Type 2．$\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{I O W R}, \overline{I O R D}, M P U C L K, A B 0$－AB15，$\overline{B H E}, \mathrm{DBO}$～DB15，VDO～VD15
Type 3．MPUSEL，RESET
 LCDENB

- SED1351FLA
- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage	VDD	Vss-0.3 to 7.0	V
Input voltage	V	Vss-0.3 to Vod+0.5	V
Output voltage	Vo	VSS-0.3 to VOD +0.5	V
Output current/pin	10	± 24	mA
Power dissipation	PD	200	mW
Supply current	ldi/lss	± 40	mA
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

- Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply voltage	VDO		2.7	-	3.6	\checkmark
Input voltage	V		Vss	-	VDD	\checkmark
Operating temperature	Topr		-20	-	75	${ }^{\circ} \mathrm{C}$

- DC Characteristics (FLB)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Static current	leos	$\begin{gathered} \mathrm{V}_{1 N}=V_{O O} \text { or } V_{S S}, \\ V_{D D}=M A X, l_{O H}=l_{0 L}=0 \end{gathered}$	-	-	30	$\mu \mathrm{A}$
Input leakage current (Type 1)	h	$\begin{aligned} V_{D O} & =\mathrm{MAX}, \\ V_{H H} & =V_{D D}, \\ V_{I L} & =V_{S S} \end{aligned}$	-1	-	1	$\mu \mathrm{A}$
High level input voltage 1 (OSC1)	V_{HH}	$V_{D D}=M A X$	0.7VDD	-	-	V
Low level input voltage 1 (OSC1)	$\mathrm{V}_{\text {L1 }}$	$V_{D D}=M I N$	-	-	$0.2 \mathrm{~V}_{\text {D }}$	V
High level input voltage 2 (Type 2)	V_{1+2}	$\mathrm{V}_{\text {DD }}=\mathrm{MAX}$	$0.7 \mathrm{~V}_{\text {DD }}$	-	-	V
Low level input voltage 2 (Type 2)	V12	$V_{D D}=$ MIN	-	-	$0.2 V_{D D}$	V
High level input voltage 3 (Type 3)	$\mathrm{V}_{\mathrm{r}+}$	$\mathrm{V}_{\text {DD }}=\mathrm{MAX}$	0.8VDD	-	-	V
Low level input voltage 3 (Type 3)	V_{T-}	$V_{\text {OD }}=$ MIN	-	-	0.2V80	V
Hysteresis voltage (Type 3)	V_{H}	$V_{D O}=$ TYP	0.3	-	-	V
High level output voltage 1 (Type 4)	Vort	$\begin{gathered} \mathrm{VDD}=\mathrm{MIN} \\ \mathrm{IOH}=-1.5 \mathrm{~mA} \end{gathered}$	$\begin{array}{\|c\|} \hline V_{00} \\ -0.3 \\ \hline \end{array}$	-	-	V
Low level output voltage 1 (Type 4)	VoL1	$\mathrm{lot}=3 \mathrm{~mA}$	-	-	$\begin{gathered} V_{\text {ss }} \\ +0.3 \\ \hline \end{gathered}$	V
High level output voltage 2 (OSC2)	Vore	$\begin{aligned} & V_{D D}=\mathrm{MIN} \\ & \mathrm{IOH}^{2}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{\|c\|} \hline V_{00} \\ -0.4 \\ \hline \end{array}$	-	-	V
Low level output voltage 2 (OSC2)	Volz	$\mathrm{loc}=50 \mu \mathrm{~A}$	-	-	$\begin{aligned} & \text { Vss } \\ & +0.4 \end{aligned}$	V

Note:
Type 1. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{O C S}, \overline{O W R}, \overline{I O R D}$, MPUCLK, ABO - AB15, $\overline{B H E}$, MPUSEL, RESET, OSC
Type 2. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{1 O W R}, \overline{O R D}$, MPUCLK, ABO ~ AB15, $\overline{B H E}, \overline{D B O}$ ~ DB15, VDO ~VD15
Type 3. MPUSEL, RESET
 LCDENB
－PIN CONFIGURATION（FOA）

－PIN CONFIGURATION（FLB）

- PIN DESCRIPTION

1. System Connector Terminals (at MPU)

Pin Name	Type	FOA Pin No.	FLB Pin No.	Drv	Description
DB0 to DB15	1/O	30 to 45	28 to 43		These pins are interfaced with the MPU data bus. When using an 8 -bit MPU, connect DB8 to DB15 to VDD.
AB0 to AB15	I	14 to 29	12 to 27		These pins are interfaced with the MPU address bus. If multiplexed address signals are used, connect them via latch circuits. A control register is selected by $A B O$ to AB3. Correspondence of the MPU address bus to the VRAM address bus is such that $\mathrm{ABi}=\mathrm{VAi}$ (where i is a pin number).
$\overline{\mathrm{BHE}}$	I	13	11		This signal is a bus high enable signal where a 16 -bit MPU is used. It goes "L" (low) when an odd address is encountered. When using an 8 -bit MPU configuration, connect the BHE pin to VDD.
$\overline{\text { IOCS }}$	1	3	1		This pin selects a control register contained in the SED1351. It is " L " active, and must be assigned to MPU I/O space.
$\overline{\text { IOWR }}$	I	4	2		This signal is used for writing data into a control register contained in the SED1351. It is " L " active, and must go "L" when it encounters an OUT instruction from the MPU.
$\overline{\text { ORD }}$	1	5	3		This signal is used for reading data from a control register contained in the SED1351. It is " L " active, and must go "L" when it encounters an IN instruction from the MPU.
$\overline{\text { MEMCS }}$	1	6	4		This signal is used for selecting VRAM. It is " L " active, and must be assigned to MPU memory space.
MEMWR	I	7	5		This signal is used for writing data to the VRAM. It is "L." active, and must go "L" when it encounters a memory write instruction from the MPU.
MEMRD	1	8	6		This signal is used for reading data from the VRAM. It is " L " active, and must go " L " when it encounters a memory read instruction from the MPU.
READY	0	9	7		This signal requests the MPU to wait. It goes " L " by the falling edge of IOCS or MEMCS. It goes " H " by the rising edge of MPUCLK after completion of the SED1351 internal processing. Since READY is not a tri-state pin, it needed not be pulled up and must be connected directly to the READY (WAIT) terminal of the MPU.
MPUCLK	I	10	8		This pin accepts an MPU clock. The MPU wait state is cleared by the rising edge of MPUCLK.
MPUSEL	I	12	10		This signal is connected to either VDD or VSS for selection of an MPU. $\begin{aligned} & \text { MPUSEL }=\text { Vss } 8 \text {-bitMPU(e.g., Z80, V20, i8088) } \\ & \text { MPUSEL }=\text { Vod } 16 \text {-bit MPU (e.g., V30, i8086) } \end{aligned}$
RESET	1	11	9		The MPU reset signal comes to this pin. It is " H " active, and initializes a control register.

Combinations of Control Pins

$\overline{\text { INCS }}$	$\overline{\text { IOWA }}$	$\overline{\text { ORD }}$	$\overline{\text { MEMES }}$	$\overline{\text { MEMWR }}$	$\overline{\text { MEMRD }}$	Operation
1	$*$	\star	1	$*$	$*$	Invalid
0	0	1	1	1	1	Write to control register
0	1	0	1	1	1	Read from control register
1	1	1	0	0	1	Write to VRAM
1	1	1	0	1	0	Read from VRAM

Note: Any combination other than those listed above will cause a system error.
$1=$ " H^{\prime} (high)
$0={ }^{\prime} L^{\prime \prime}$ (low)

* = Don't care

2. VRAM Connector Terminals

3. Oscillator Terminals

Pin Name	Type	FDA Pin No.	FLD Pin No.	Dr	Description
OSC1	1	99	97		The OSC1 (input) and OSC2 (output) pins gener- ate clocks for internal operation. They allow crystal oscillation and external clock input.
OSC2	0	100	98		

4. Power Terminals

5. LCD Connector Terminals

Pin Name	Type	$\begin{gathered} \text { FOA } \\ \text { Pin No. } \end{gathered}$	$\begin{gathered} \hline \text { FLB } \\ \text { Pin No. } \end{gathered}$	Drv	Description
UD0 to UD3	1/0	91 to 94	89 to 92		LC
LDO/UD4 to LD3/UD7	0	95 to 98	93 to 96		display data in the signal panel or double panel drive panel mode. LDO/UD4 to LD3/UD7 are the lower panel display data in the double panel drive mode. UD0 to UD3, and LDO/UD4 to LD3/UD7 are used for 8bit data transfer in the single panel drive mode.
XSCL	0	87	85		This single is a shift clock for display data transfer. Take the UDO to UD3, LDO/UD4 to LD3/UD7 display data into LCDs by the falling edge of XSCL.
LP	0	88	86		This pin provides both a display data latch pulse and a scan signal transferclock. Upon completion of transferring the LCD data on one line, display data can be latched or a scan signal transferred by the falling edge of LP.
WF	0	89	87		This pin provides a frame signal used for LCD AC driving.
YD	0	90	88		This pin provides a scanning line start pulse. The signal is " H " active. Allow the scanning line drive IC to take in YD by the falling edge of LP. The SED1351 has two lines of retracing; if two scanning line drive ICs are cascade-connected for the upper and lower panels in the double panel drive mode, two lines must be provided between the upper and lower scanning line drive outputs.
LCDENB	0	86	84		This pin provides the data which is set in bit 1 (D1) of the mode register (R 1). LCDENB goes " L " when the system is reset; it can be effectively used for LCD power control.

Illustrated below are the display data which are output from the UDO to UD3，LDO／UD4 to LD3／UD7 and the display on the panel：

■ LCD PANEL PIXELS

- monochrome lCd panel interface

- MONOCHROME LCD PANEL INTERFACE

8-Bit Single Monochrome Panel (ie. 640×480)

PACKAGE DIMENSIONS

－SED1351F0A

－SED1351FLB

SED1351F ${ }_{0 A / L B}$ Graphics LCD Controller (GLC) Technical Manual

Table of Contents

THIS PAGE INTENTIONALLY BLANK

Table of Contents

CONTENTS

1.0 SED1351F GRAPHICS LCD CONTROLLER DATA SHEET 7
2.0 PIN DESCRIPTION 31
2.1 SED1351FoA 31
2.1.1 Pinout Diagram 31
2.1.2 SED1351FoA Pin Description Table 32
2.2 SED1351FLB 33
2.2.1 Package Layout 33
2.2.2 SED1351F ${ }_{\text {LB }}$ Pin Description Table 34
2.3 System Interface 35
2.4 VRAM Interface 35
2.5 LCD Interface 36
2.6 Oscillator 36
3.0 ELECTRICAL CHARACTERISTICS 41
3.1 SED1351FoA 41
3.1.1 SED1351Foa Absolute Maximum Ratings 41
3.1.2 Recommended Operating Conditions 41
3.1.3 SED1351FOA DC Characteristics 42
3.1.4 SED1351FoA AC Characteristics 43
3.1.4.1 IOWR Timing (MPU Write Data to Control Register) 43
3.1.4.2 IORD Timing (MPU Read Data from Control Register) 44
3.1.4.3 MEMWR Timing (MPU Write Data to Video Memory) 45
3.1.4.4 MEMRD Timing (MPU Read Data from Video Memory) 46
3.1.4.5 VRAM Interface Timing 47
3.1.4.5.1 Write Data to VRAM 47
3.1.4.5.2 Read Data From VRAM 47
3.1.4.5.3 Timing 48

Table of Contents

3．1．4．6 LCD Interface Timing 49
3．1．4．6．1 Mode 1 （4－Bit transfer） 49
3．1．4．6．2 Mode 1 （8－bit transfer），Mode 2，Mode 3 （4－bit transfer），Mode 5 50
3．1．4．6．3 Mode 3 （8－bit transfer，Mode 4，Mode 6 51
3．1．4．6．4 Sync Timing 52
3．2 SED1351FLв 53
3．2．1 SED1351F 18 Absolute Maximum Ratings 53
3．2．2 Recommended Operating Conditions 53
3．2．3 SED1351F ${ }_{L 8}$ DC Characteristics 54
3．2．4 SED1351FLв AC Characteristics 55
3．2．4．1 IOWR Timing（Write to the Control Register） 55
3．2．4．2 IORD Timing（Read from Control Register） 56
3．2．4．3 MEMWR Timing（Write to the VRAM） 57
3．2．4．4 MEMRD Timing（Read from the VRAM） 58
3．2．4．5 Timing of Interface with VRAM 59
3．2．4．5．1 Write to the VRAM 59
3．2．4．5．2 Read from the VRAM 59
3．2．4．5．3 Timing 60
3．2．4．6 LCD Interface Timing 61
3．2．4．6．1 Mode 1 （4－Bit transfer） 61
3．2．4．6．2 Mode 1 （8－bit transfer），Mode 2，Mode 3 （4－bit transfer），Mode 5 62
3．2．4．6．3 Mode 3 （6－bit transfer），Mode 4，Mode 6 63
3．2．4．6．4 Sync Timing 64
4．0 INTERNAL REGISTERS 67
4．1 Summary 67
4．2 Register Description 68
4．2．1 R1 Mode Register 68
4．2．2 R2 Line Byte Count Register 70
4．2．3 R3 Horizontal Sync Pulse Width Register 70
4．2．4 R4，R5 Total Display Line Count Registers 70
4．2．5 R6，R7 Screen 1 Display Start Address Registers 71
4．2．6 R8，R9 Screen 2 Display Start Address Registers 71

Table of Contents

4.2.7 R10, R11 Screen 1 Display Line Count Registers 72
4.2.8 R13 Address Pitch Adjustment Register 72
4.2.9 R14, R15 Gray-Scale Conversion Registers 73
5.0 DISPLAY MODES 77
5.1 Mode 1 77
5.2 Mode 2 80
5.3 Mode 3 82
5.4 Mode 4 85
5.5 Mode 5 87
6.0 MPU INTERFACE 95
6.1 8-bit MPU Interface 95
6.2 16-bit MPU Interface 96
7.0 VIDEO MEMORY INTERFACE 99
7.1 64 Kbit SRAM/8-bit MPU 99
$7.2 \quad 256$ Kbit SRAM/8-bit MPU 101
7.3 64 Kbit SRAM/16-bit MPU 103
7.4 256 Kbit SRAM/16-bit MPU 105
8.0 LCD INTERFACE 109
8.1 DC Protection 109
8.2 Y-Drivers in Dual-LCD Panel Mode 109
8.3 Output Data Format 110
8.3.1 Single LCD/4-bit data 110
8.3.2 Single LCD/8-bit data 111
8.3.3 Dual LCD 112
9.0 PACKAGE DIMENSIONS 115
9.1 SED1351FoA 115
9.2 SED1351FLb 116

Table of Contents

THIS PAGE INTENTIONALLY BLANK

1.0

Data Sheet

THIS PAGE INTENTIONALLY BLANK

1.0 DATA SHEET

E DESCRIPTION

The SED1351F is a graphics LCD controller capable of controlling medium to large resolution displays. It transfers data from MPU to external frame buffer RAM and converts this data to display signals for LCD drivers. The SED1351F can display images with 4 gray shades and support display duty cycle as high as 1/1024.
The SED1351F is designed to achieve high efficiency and data throughput to the LCD. It has a cycle steal mode which allows MPU to access frame buffer RAM without interfering with the display operation. The SED1351F can directly interface with up to eight 64K-bit SRAMs or two 256 K -bit SRAMs.

The SED1351F can operate with either 5 V or 3 V power supply. The 5 V version chip is the SED1351FOA and the $3 V$ version chip is the SED1351FLB.

- FEATURES

- Low-power CMOS technology
- 8 -bit or 16 -bit MPU data interface
- Direct interface with $80 x x$, Z80 and $68 x x x$ MPU
- 4- or 8-bit panel data bus for single panel and 4-bit bus for dual panel
- Support logical OR of layers and panel division
- Smooth vertical scrolling
- Virtual screen display up to 1024
- Binary mode (on/off only) generates black \& white images
- Gray mode (on/off and two gray steps) generates images with 4 gray shades
- Maximum number of rows

Binary mode. 2048
Gray mode \qquad 1024

- Maximum number of rows:

Single panel
1024
Dual panel 2048

- Maximumdisplaysizeswhen64K-byteSRAMs are used:

Binary mode $2048 \times 256 / 1024 \times 512$
Gray mode $1024 \times 256 / 512 \times 512$

- Available models:

SED1351FOA 5V, QFP5-100 pin
SED1351FLB 3V, QFP15-100 pin

SYSTEM BLOCK DIAGRAM

INTERFACE WITH 8－BIT MPU（Z－80）AND 64K－BIT SRAM（8 of 8K x 8）

Note：Example implementation，actual may vary．

INTERFACE WITH 16－BIT MPU（8086）AND 64K－BIT SRAM（8 of 8K x 8）

Note：Example implementation，actual may vary．

INTERFACE WITH 16-BIT MPU (68000) AND 256K-BIT SRAM (2 of 32K x 8)

Note: Example implementation, actual may vary.

SUPPORTED RESOLUTIONS

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

- SED1351F0A
- Absolute Maximum Ratings (FOA)
(Vss = 0 V)

Parameter	Symbol	Ratings	Unit
Supply voltage	VdD	Vss -0.3 to 7.0	
Input voltage	VI	Vss -0.3 to VDD +0.3	V
Output voltage	Vo	Vss -0.3 to VDD +0.3	V
Output current/pin	10	± 10	mA
Power dissipation	Pd	200	mW
Supply current	ldo/lss	± 40	mA
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldering temperature and time	Tsol	$260^{\circ} \mathrm{C}, 10 \mathrm{~s}$ (at lead)	-

- Recommended Operating Conditions (FOA)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
Input voltage	VI		Vss	-	VDD^{\prime}	V
Operating temperature	Topr		-20	-	75	${ }^{\circ} \mathrm{C}$

- DC Characteristics (FOA)
($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Static current	IdDS	$\begin{gathered} \mathrm{VIN}=\mathrm{VDD}, \mathrm{VDD}=\mathrm{Max}, \\ \mathrm{VSS}, \mathrm{IOH}=\mathrm{IOL}=0 \end{gathered}$	-	-	100	$\mu \mathrm{A}$
Input leakage current (Type 1)	lLI	$\begin{aligned} \mathrm{VDD} & =5.5 \mathrm{~V}, \\ \mathrm{VIH} & =\mathrm{VDD}, \\ \mathrm{VIL} & =V_{S S} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$
High level input voltage 1 (OSC1) Low level input voltage 1 (OSC1)	$\begin{aligned} & \mathrm{V}_{\mathrm{H} 1} \\ & \mathrm{~V}_{\mathrm{LL} 1} \end{aligned}$	$\begin{aligned} & V D D=5.5 \mathrm{~V} \\ & V D D=4.5 \mathrm{~V} \end{aligned}$	3.5	-	- 1.0	
High level input voltage 2 (Type 2) Low level input voltage 2 (Type 2)	$\mathrm{V}_{\mathrm{H}} \mathrm{H}$ VIL2	$\begin{aligned} & V D D=5.5 \mathrm{~V} \\ & \mathrm{VDD}=4.5 \mathrm{~V} \end{aligned}$		-	0.8	
High level input voltage 3 (Type 3) Low level input voltage 3 (Type 3) Hysteresis voltage (Type 3)	$\begin{aligned} & V_{T+} \\ & V_{T-} \\ & V_{H} \end{aligned}$	$\begin{gathered} V_{D D}=5.5 \mathrm{~V} \\ V_{D D}=4.5 \mathrm{~V} \\ V_{D D}=5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.0 \\ - \\ 0.3 \end{gathered}$	-	- 0.8	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
High level output voltage 1 (Type 4)	Voh1	$V D D=4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{VDD} \\ -0.4 \end{gathered}$	-	-	V
Low level output voitage 1 (Type 4)	Vol1	$\mathrm{lOL}=6 \mathrm{~mA}$	-	-	$\begin{gathered} \hline \text { Vss } \\ +0.4 \\ \hline \end{gathered}$	V
High level output voltage 2 (OSC2)	Voh2	$\begin{aligned} & \mathrm{VDD}=4.5 \mathrm{~V} \\ & \mathrm{IOH}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{VDD} \\ -0.4 \\ \hline \end{gathered}$	-	-	V
Low level output voltage 2 (OSC2)	Vol2	$\mathrm{lOL}=50 \mu \mathrm{~A}$	-	-	$\begin{gathered} \text { Vss } \\ +0.4 \end{gathered}$	V

Note:

Type 1. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{I O W R}, \overline{I O R D}$, MPUCLK, ABO - AB15, $\overline{B H E}$, MPUSEL, RESET, OSC
Type 2. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{I O W R}, \overline{\text { IORD, MPUCLK, AB0 ~ AB15, } \overline{B H E}, \text { DBO ~ DB15, VDO ~ VD15 }}$
Type 3. MPUSEL, RESET
Type 4. DBO ~DB15, READY, VAO ~VA15, $\overline{V C S O} \sim \overline{V C S 4}, ~ V D 0 ~ V D 15, ~ \overline{V W E}, X S C L, ~ L P, W F, Y D, ~ U D O ~ ~ U D 3, ~ L D 0 ~ ~ ~ L D 3, ~$ LCDENB

■ ELECTRICAL CHARACTERISTICS

- SED1351FLB
- Absolute Maximum Ratings (FLB)

Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Supply voltage	VDD	Vss -0.3 to 7.0	
Input voltage	Vis	Vss -0.3 to VDD +0.5	V
Output voltage	VouT	Vss -0.3 to VDD +0.5	V
Output current/pin	lout	± 24	mA
Power dissipation	PD	200	mW
Supply current	$\mathrm{IDD} / \mathrm{lss}$	± 40	mA
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

- Recommended Operating Conditions (FLB)
$\mathrm{Vss}=\mathrm{OV}$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply voltage	VDD		2.7	-	3.6	V
Input voltage	VIN		VSS	-	VDD^{\prime}	V
Operating temperature	Topr		-20	-	75	${ }^{\circ} \mathrm{C}$

- DC Characteristics (FLB)
($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Static current	ldDs	$\begin{gathered} \text { VIN = VDD or VSS } \\ V D D=M A X \\ I O H=I O L=0 \end{gathered}$	-	-	30	$\mu \mathrm{A}$
Input leakage current (Type 1)	IL	$\begin{aligned} V_{D D} & =M A X \\ V_{I H} & =V_{D D} \\ V_{I L} & =V_{S S} \end{aligned}$	-1	-	1	$\mu \mathrm{A}$
" H " level input voltage (OSC1) "L" level input voltage (OSC1)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{H} 1} \\ & \mathrm{~V}_{\mathrm{ILI}} \end{aligned}$	$\begin{aligned} & V D D=M A X \\ & V D D=M I N \end{aligned}$	$\begin{gathered} \hline 0.7 \mathrm{VDD} \\ - \\ \hline \end{gathered}$	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
"H" level input voltage (Type 2) "L" level input voltage (Type 2)	$\mathrm{V}_{1 \mathrm{H} 2}$ VIL2	$\begin{aligned} & V D D=M A X \\ & V D D=M I N \end{aligned}$	0.7 VDD	-	$0 . \overline{2 V} \mathrm{DD}$	$\begin{aligned} & V \\ & v \end{aligned}$
"H" level input voltage (Type 3) "L" level input voltage (Type 3) Hysteresis voltage (Type 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{T}+} \\ & \mathrm{V}_{\mathrm{T}-} \\ & \mathrm{V}_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & V D D=M A X \\ & V D D=M I N \\ & V D D=T Y P \end{aligned}$	$\begin{array}{\|c\|} \hline 0.8 \mathrm{VDD} \\ - \\ \hline 0.3 \\ \hline \end{array}$	二	$0.2 \mathrm{~V}_{\text {do }}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
"H" level output voltage (Type 4)	Voh1	VDD $=$ MIN	VDD-0.3	-	-	V
"L" level output voltage (Type 4)	Vol1	$\mathrm{IOL}=3 \mathrm{~mA}$	-	-	Vss +0.3	V
" H " level output voltage (OSC2)	Voh2	$\mathrm{VDD}=\mathrm{MIN}$	VDD-0.4	-	-	V
"L" level output voltage (OSC2)	Vol2	$\begin{gathered} \mathrm{lOH}=-50 \mu \mathrm{~A} \\ \mathrm{IOL}=50 \mu \mathrm{~A} \end{gathered}$	-	-	$V_{s s}+0.4$	V

Note:

Type 1. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{\text { IOCS }}, \overline{I O W R}, \overline{I O R D}, M P U C L K, A B O \sim A B 15, \overline{B H E}, M P U S E L, ~ R E S E T, ~ O S C$
Type 2. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{I O W R}, \overline{I O R D}$, MPUCLK, AB0 ~ AB15, $\overline{B H E}$, DB0 ~ DB15, VD0 ~ VD15
Type 3. MPUSEL, RESET
Type 4. DBO ~ DB15, READY, VAO ~ VA15, $\overline{\text { VCSO }} \sim \overline{\mathrm{VCS}} 4$, VDO ~ VD15, $\overline{\text { VWE }}, \mathrm{XSCL}, \mathrm{LP}, \mathrm{WF}, \mathrm{YD}$, UDO ~ UD3, LDO ~ LD3, LCDENB

PIN CONFIGURATION (FOA)

- PIN CONFIGURATION (FLB)

PIN DESCRIPTION

1. System Connector Terminals (at MPU)

Pin Name	Type	$\begin{gathered} \text { FOA } \\ \text { Pin No. } \end{gathered}$	$\begin{gathered} \text { FLB } \\ \text { Pin No. } \end{gathered}$	Drv	Description
DB0 to DB15	1/0	30 to 45	28 to 43		These pins are interfaced with the MPU data bus. When using an 8-bit MPU, connect DB8 to DB15 to VDD.
AB0 to AB15	1	14 to 29	12 to 27		These pins are interfaced with the MPU address bus. If multiplexed address signals are used, connect them via latch circuits. A control register is selected by AB0 to AB3. Correspondence of the MPU address bus to the VRAM address bus is such that $\mathrm{ABi}=\mathrm{VAi}$ (where i is a pin number).
$\overline{\text { BHE }}$	1	13	11		This signal is a bus high enable signal where a 16bit MPU is used. It goes "L" (low) when an odd address is encountered. When using an 8-bit MPU configuration, connect the BHE pin to VDD.
IOCS	1	3	1		This pin selects a control register contained in the SED1351. It is "L" active, and must be assigned to MPU I/O space.
IOWR	1	4	2		This signal is used for writing data into a control register contained in the SED1351. It is " L " active, and must go "L" when it encounters an OUT instruction from the MPU.
$\overline{\text { IORD }}$	1	5	3		This signal is used for reading data from a control register contained in the SED1351. It is " L " active, and must go " L " when it encounters an IN instruction from the MPU.
MEMCS	1	6	4		This signal is used for selecting VRAM. It is "L" active, and must be assigned to MPU memory space.
MEMWR	1	7	5		This signal is used for writing data to the VRAM. It is "L" active, and must go " L " when it encounters a memory write instruction from the MPU.
MEMRD	1	8	6		This signal is used for reading data from the VRAM. It is "L" active, and must go " L " when it encounters a memory read instruction from the MPU.

1. System Connector Terminals (at MPU) (continued)

Pin Name	Type	FOA Pin No.	FLB Pin No.	Drv	Description
READY	0	9	7		This signal requests the MPU to wait. It goes "L" by the falling edge of IOCS or MEMCS. It goes " H^{\prime} by the rising edge of MPUCLK after completion of the SED1351 internal processing. Since READY is not a tri-state pin, it needed not be pulled up and must be connected directly to the READY (WAIT) terminal of the MPU.
MPUCLK	1	10	8		This pin accepts an MPU clock. The MPU wait state is cleared by the rising edge of MPUCLK.
MPUSEL	1	12	10		This signal is connected to either VDD or VSS for selection of an MPU. MPUSEL = VSS 8 -bit MPU (e.g., z80, V20, i8088) MPUSEL = VDD 16-bit MPU (e.g., V30, i8086)
RESET	1	11	9		The MPU reset signal comes to this pin. It is "H" active, and initializes a control register.

Combinations of Control Pins

$\overline{\text { IOCS }}$	$\overline{\text { IOWR }}$	$\overline{\text { IORD }}$	$\overline{\text { MEMCS }}$	$\overline{\text { MEMWR }}$	$\overline{\text { MEMRD }}$	Operation
1	$*$	$*$	1	$*$	$*$	Invalid
0	0	1	1	1	1	Write to control register
0	1	0	1	1	1	Read from control register
1	1	1	0	0	1	Write to VRAM
1	1	1	0	1	0	Read from VRAM

Note: Any combination other than those listed above will cause a system error.
$1=" H "$ (high)
$0=$ "L" (low)

* $=$ Don't care

2. VRAM Connector Terminals

Pin Name	Type	F0A Pin No.	FLB Pin No.	Drv	Description
VD0 to VD15	I/O	68 to 78, 81 to 85	68 to 83		These pins are interfaced with the VRAM data bus. For a 16-bit MPU configuration, VD0 to VD7 must be connected to even addresses, and VD8 to VD15 to oddaddresses. For an 8-bit configuration, VD8 to VD15 must be connected to VDD.
VA0 to VA12	O	47 to 59	45 to 49, 52 to 59		These pins are interfaced with the VRAM address bus and chip select pins. The SED1351 has chip select pins that can directly control eight 64K SRAMs (8K bytes each) or two 256K SRAMs (32K bytes) in the 64K VRAM space. See Technical Manual for details.
VA13/ $\overline{\text { VCS7 }}$ to VA15/VCS5	O	60 to 62	60 to 62		
$\overline{\text { VCS0 to VCS4 }}$	O	67 to 63	67 to 63		This signal is used for writing data to the VRAM. It is "L" active, and must be connected to the WE pin of the VRAM.
$\overline{\text { VWE }}$	O	46	44		

3. Oscillator Terminals

Pin Name	Type	FOA Pin No.	FLB Pin No.	Drv	Description
OSC1	1	99	97		The OSC1 (input) and OSC2 (output) pins gener- ate clocks for internal operation. They allow crystal oscillation and external clock input.
OSC2	O	100	98		

4. Power Terminals

Pin Name	Type	F0A Pin No.	FLB Pin No.	Drv	Description
VDD	-	2,79	51,100		The power supply pins include two Vods and two Vsss. Apply +5 V or +3 V to Vod and OV to Vss. A capacitor (4.7 μ F or more) must be connected near each pair of Vod/Vss pins.
Vss	-	1,80	50,99		

5．LCD Connector Terminals

Pin Name	Type	F0A Pin No．	FLB Pin No．	Drv	Description
UD0 to UD3	I／O	91 to 94	89 to 92		LCD display data．UD0 to UD3 are the upper panel display data in the signal panel or double panel drive panel mode．LD0／UD4 to LD3／UD7 are the lower panel display data in the double panel drive mode．UD0 to UD3，and LDO／UD4 to LD3／UD7 are used for 8－bit data transfer in the single panel drive mode．
LD0／UD4 to LD3／UD7	O	95 to 98	93 to 96		
XSCL	O	87	85		This single is a shift clock for display data transfer． Take the UD0 to UD3，LD0／UD4 to LD3／UD7 display datainto LCDs bythe falling edge of XSCL．
LP	O	88	86		This pin provides both a display data latch pulse and a scan signal transfer clock．Upon completion of transferring the LCD data on one line，display data can be latched or a scan signal transferred by the falling edge of LP．
WF	O	89	87	This pin provides a frame signal used for LCD AC driving．	
YD	90	88	This pin provides a scanning line start pulse．The signalis＂H＂active．Allow the scanning line drive IC to take in YD by the falling edge of LP． The SED1351 has two lines of retracing；if two scanning line drive ICs are cascade－connected for		
the upper and lower panels in the double panel					
drive mode，two lines must be provided between					
the upper and lower scanning line drive outputs．					

Illustrated below are the display data which are output from the UD0 to UD3, LD0/UD4 to LD3/UD7 and the display on the panel:

LCD PANEL PIXELS

MONOCHROME LCD PANEL INTERFACE

8-Bit Dual Monochrome Panel (i.e. 640×480)

■ MONOCHROME LCD PANEL INTERFACE

8-Bit Single Monochrome Panel (i.e. 640×480)

- PACKAGE DIMENSIONS
- SED1351F0A

- SED1351FLB

271-0.2 S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 •Tel: (408) 922-0200 • Fax: (408) 922-0238

THIS PAGE INTENTIONALLY BLANK

2.0
 Pin Description

THIS PAGE INTENTIONALLY BLANK

2.0 PIN DESCRIPTION

2.1 SED1351FoA

2.1.1 Pinout Diagram

2.1.2 SED1351F ${ }_{0 A}$ Pin Description Table

Pin	Pin Name	I/O
1	Vss (GND)	-
2	Vod	-
3	$\overline{\text { OCS }}$	I
4	OWR	1
5	$\overline{\text { ORD }}$	1
6	MEMCS	1
7	MEMWR	1
8	MEMRD	1
9	READY	0
10	MPUCLK	1
11	RESET	1
12	MPUSEL	1
13	$\overline{\text { BHE }}$	1
14	AB0	1
15	AB1	1
16	AB2	1
17	AB3	1
18	AB4	1
19	AB5	1
20	AB6	1
21	AB7	1
22	AB8	I
23	AB9	1
24	AB10	1
25	AB11	1
26	AB12	1
27	AB13	1
28	AB14	1
29	AB15	1
30	DB0	I/O
31	DB1	I/O
32	DB2	I/O
33	DB3	I/O
34	DB4	I/O

Pin	Pin Name	I/O
35	DB5	I/O
36	DB6	I/O
37	DB7	I/O
38	DB8	I/O
39	DB9	I/O
40	DB10	I/O
41	DB11	I/O
42	DB12	I/O
43	DB13	I/O
44	DB14	$1 / O$
45	DB15	I/O
46	$\overline{\text { VWE }}$	O
47	VA0	O
48	VA1	O
49	VA2	O
50	VA3	O
51	VA4	O
52	VA5	O
53	VA6	O
54	VA7	O
55	VA8	O
56	VA9	O
57	VA10	O
58	VA11	O
59	VA12	O
60	VA13	O
61	VA14	O
62	VA15	O
63	$\overline{\text { VCS4 }}$	O
64	$\overline{\text { VCS3 }}$	O
65	$\overline{\text { VCS2 }}$	O
66	VCS1	O
67	$\overline{\text { VCS0 }}$	O
68	VD0	I / O

Pin	Pin Name	I/O
69	VD1	I/O
70	VD2	I/O
71	VD3	I/O
72	VD4	I/O
73	VD5	I / O
74	VD6	I / O
75	VD7	I / O
76	VD8	I / O
77	VD9	I / O
78	VD10	I / O
79	VDD	-
80	Vss (GND)	-
81	VD11	I / O
82	VD12	I / O
83	VD13	I / O
84	VD14	I / O
85	VD15	I / O
86	LCDENB	O
87	XSCL	O
88	LP	O
89	WF	O
90	YD	O
91	UD0	O
92	UD1	O
93	UD2	O
94	UD3	O
95	LD0	O
96	LD1	O
97	LD2	O
98	LD3	O
99	OSC1	I
100	$\mathrm{OSC2}$	O

2.2 SED1351FLB

2.2.1 Package Layout

2.2.2 SED1351Flb Pin Description Table

Pin	Pin Name	I/O
1	$\overline{\text { OCS }}$	1
2	IOWR	1
3	$\overline{\text { ORD }}$	1
4	MEMCS	1
5	$\overline{\text { MEMWR }}$	1
6	MEMRD	1
7	READY	0
8	MPUCLK	1
9	RESET	1
10	MPUSEL	1
11	$\overline{\text { BHE }}$	1
12	AB0	I
13	AB1	1
14	AB2	1
15	AB3	1
16	AB4	1
17	AB5	1
18	AB6	1
19	AB7	1
20	AB8	1
21	AB9	1
22	AB10	1
23	AB11	1
24	AB12	1
25	AB13	1
26	AB14	1
27	AB15	1
28	DB0	I/O
29	DB1	I/O
30	DB2	1/O
31	DB3	1/0
32	DB4	I/O
33	DB5	1/O
34	DB6	1/0

Pin	Pin Name	I/O
35	DB7	I/O
36	DB8	I/O
37	DB9	I/O
38	DB10	I/O
39	DB11	I/O
40	DB12	I/O
41	DB13	I/O
42	DB14	I/O
43	DB15	I/O
44	$\overline{\text { VWE }}$	O
45	VA0	O
46	VA1	O
47	VA2	O
48	VA3	O
49	VA4	O
50	Vss (GND)	-
51	VoD	-
52	VA5	O
53	VA6	O
54	VA7	O
55	VA8	O
56	VA9	O
57	VA10	O
58	VA11	O
59	VA12	O
60	VA13	O
61	VA14	O
62	VA15	O
63	$\overline{\text { VCS4 }}$	O
64	$\overline{\text { VCS3 }}$	O
65	$\overline{\text { VCS2 }}$	O
66	$\overline{\text { VCS1 }}$	O
67	$\overline{\text { VCS0 }}$	O
68	VD0	I / O

Pin	Pin Name	I/O
69	VD1	I/O
70	VD2	I/O
71	VD3	I / O
72	VD4	I / O
73	VD5	I / O
74	VD6	I / O
75	VD7	I / O
76	VD8	I / O
77	VD9	I / O
78	VD10	I / O
79	VD11	I / O
80	VD12	I / O
81	VD13	I / O
82	VD14	I / O
83	VD15	I / O
84	LCDENB	O
85	XSCL	O
86	LP	O
87	WF	O
88	YD	O
89	UD0	O
90	UD1	O
91	UD2	O
92	UD3	O
93	LD0	O
94	LD1	O
95	LD2	O
96	LD3	O
97	OSC1	I
98	OSC2	O
99	Vss (GND)	-
100	VoD	-

2.3 SYSTEM INTERFACE

Table 1. MPU Interface Control Signal Functions

$\overline{\text { IOCS }}$	$\overline{\text { IOWR }}$	$\overline{\text { IORD }}$	$\overline{\text { MEMCS }}$	$\overline{\text { MEMWR }}$	$\overline{\text { MEMRD }}$	Operation
1	\star	\star	1	\star	$*$	Invalid
0	0	1	1	1	1	Write to control register
0	1	0	1	1	1	Read from control register
1	1	1	0	0	1	Write to VRAM
1	1	1	0	1	0	Read from VRAM

- READY

MPU "wait" request output. It goes "L" on the falling edge of $\overline{\text { IOCS }}$ or $\overline{M E M C S}$. It goes " H " the on the rising edge of the first MPUCLK after completion of SED1351F internal processing. READY is connected directly to the READY (or WAIT) terminal of the MPU.

- MPUCLK

MPU clock input

- MPUSEL

This input selects an 8- or 16-bit MPU interface.

- MPUSEL=0: 8-bit MPU interface (Z80, V20,i8088)
- MPUSEL=1: 16-bit MPU interface (V30,i8086)
- RESET

MPU reset imput. This active high signal initializes R1, the system Mode Register.

2.4 VRAM INTERFACE

- VD0-VD15

These pins are connected to the VRAM data bus. For 16 -bit MPUs VD0-VD7 are connected to the data bus of even byte addresses and VD8-VD15 to the data bus of odd byte addresses. For 8 -bit MPUs, VD8-VD15 must be tied to VDD.

- VA0-VA12,VA13/ $\overline{\mathrm{VCS7}}-\mathrm{VA15} / \overline{\mathrm{VCS5}}, \overline{\mathrm{VCS0}}-\overline{\mathrm{VCS4}}$

These pins are connected to the VRAM address bus and chip select lines.
The SED1351F provides select signals that can directly control eight 64 Kbit SRAMs (8 Kbytes each) or two 256 Kbit SRAMs (32 Kbytes) in the 64 Kbytes VRAM space.

- VWE

This output is used for writing data to the VRAM. It is active low and is connected to the $\overline{W E}$ input of the SRAMS.

2.5-2.6

2.0 Pin Description

2.5 LCD INTERFACE

- UD0-UD3,LD0/UD4-LD3/UD7

LCD display data output lines. UDO-UD3 provide the upper panel display data in single- or dualpanel LCD modes. LD0/UD4-LD3/UD7 provide the lower panel display data in dual-panel, dualdrive LCD mode. UDO-UD3, LD0/UD4-LD3/UD7 are used for 8-bit data transfer in single-panel, single-drive LCD mode.

- XSCL

Display data shift clock output. Data is shifted into the LCD X-drivers on the falling edge of this signal.

- LP

Display data latch clock output. One line of data is latched into the LCD X-drivers on the falling edge of this signal. LP can also be used to shift the Y -drive active line down by one.

- WF

LCD AC-drive signal output.

- YD

Active high start-of-frame pulse output. If this signal is shifted through the Y-drivers by LP, it provides the Y -drive active line signal.

- LCDENB

LCD enable signal output controlled by R1:D1.

2.6 OSCILLATOR

- OSC1

External clock input or internal oscillator external feed back resistor (Rf) connection.

- OSC2

If the internal oscillator is used, connect the external feed back resistor, Rf, to this pin. If an external clock is used, leave open.
(a) Crystal Oscillator

(b) External Clock Input

Figure 2. External and Internal Oscillators.

THIS PAGE INTENTIONALLY BLANK

3.0

Electrical Characteristics

THIS PAGE INTENTIONALLY BLANK

3.0 ELECTRICAL CHARACTERISTICS

3.1 SED1351FOA

3.1.1 SED1351FoA Absolute Maximum Ratings

$$
V_{s s}=0 V
$$

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	$\mathrm{V}_{\mathrm{Ss}}-0.3$ to 7.0	
Input voltage	V_{IN}	$\mathrm{V}_{\mathrm{Ss}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	Vout	$\mathrm{V}_{\mathrm{Ss}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current/pin	lout	± 10	mA
Power dissipation	PD	200	mW
Supply current	$\mathrm{loD}_{\mathrm{IDs}}$	± 40	mA
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note: Supply current is equivalent to maximum current into or out of a particular power pin.

3.1.2 Recommended Operating Conditions

$\mathrm{Vss}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	4.5	5.0	5.5	V
Input voltage	V_{IN}	$\mathrm{VSS}_{\mathrm{SS}}$	-	V_{DD}	V
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20	-	75	${ }^{\circ} \mathrm{C}$

3.1.3 SED1351FoA DC Characteristics

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit	Pin
Static current	lods	$\begin{aligned} & V_{\mathbb{I N}}=V_{D D}, V_{S S} \\ & V_{D D}=M A X \\ & l_{O H}=l o L=0 \end{aligned}$	-	-	100	$\mu \mathrm{A}$	
Input leakage current	IL	$\begin{aligned} & V_{\mathrm{DD}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{ss}} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	Note 1
"H" level input voltage (1)	$\mathrm{V}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{MAX}$	3.5	-	-	V	OSC1
"L." level input voltage (1)	$\mathrm{V}_{\text {LL }}$	$V_{\text {od }}=$ MIN	-	-	1.0	V	
"H" level input voltage (2)	V_{1+2}	$V_{D D}=$ MAX	2.0	-	-	V	
"L" level input voltage (2)	V_{12}	$V_{D D}=$ MIN	-	-	0.8	V	Note 2
"H" level input voltage (3)	V_{T+}	$V_{D D}=$ MAX	4.0	-	-	V	
"L" level input voltage (3)	V_{T-}	$V_{D D}=\mathrm{MIN}$	-	-	0.8	V	Note 3
Hysteresis voltage	V_{H}	$V_{D D}=$ TYP	0.3	-	-	V	
" $\mathrm{H}^{\prime \prime}$ level output voltage (1)	Vori	$V_{D D}=$ MIN	VDD-0.4	-	-	V	Note 4
"L" level output voltage (1)	Vol 1	$\begin{aligned} & \mathrm{l} \mathrm{l} \mathrm{H}=1.5 \mathrm{~mA} \\ & \mathrm{loL}=3 \mathrm{~mA} \end{aligned}$	-	-	Vss +0.4	V	
" H " level output voltage (2)	Voh2	$V_{D O}=\mathrm{MIN}$	VDD-0.4	-	-	V	OSC2
"L" level output voltage (2)	Vot2	$\begin{aligned} & \text { loH }=-50 \mu \mathrm{~A} \\ & \text { loL }=50 \mu \mathrm{~A} \end{aligned}$	-	-	Vss +0.4	V	

Notes:

1. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{I O W A}, \overline{O R D}$, MPUCLK, ABO-AB15, $\overline{B H E}$, MPUSEL, RESET, OSC1
2. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{\overline{O C S}}, \overline{\text { IOWR }}, \overline{\text { IORD }}$, MPUCLK, ABO-AB15, $\overline{B H E}$, DBO-DB15, VDO-VD15
3. MPUSEL, RESET
4. DBO-DB15, READY, VAO-VA15, $\overline{\mathrm{VCSO}}, \overline{\mathrm{VCS4}}, \mathrm{VDO}-\mathrm{VD} 15, \overline{\mathrm{VWE}}, \mathrm{XSCL}, \mathrm{LP}, \mathrm{WF}, \mathrm{YD}$, UDO-UD3, LDO-LD3, LCDENB

3.1.4 SED1351F ${ }_{0 A}$ AC Characteristics

3.1.4.1 IOWR Timing (MPU Write Data to Control Register)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK	tcık	80	-	1000	n
MPUCLK "H" pulse width	thclk	20	1/2× tcLk	-	ns
MPUCLK "L" pulse width	tıclk	20	$1 / 2 \times$ tack	-	ns
$\overline{\text { IOCS }}$ address setup time	taic	0	-	-	ns
IOWR address setup time	talw	0	-	-	ns
$\overline{\text { OCS } ~} \downarrow \rightarrow \overline{\text { OWWR }} \downarrow$	ticiw	0	-	-	ns
$\overline{\text { OWR }} \downarrow \rightarrow$ data valid	two	-	-	$1.5 \times$ tosc	ns
$\overline{\text { OCSS }} \downarrow \rightarrow$ READY \downarrow	ticre	-	-	30	ns
$\overline{\text { IOWR }} \downarrow \rightarrow$ READY \uparrow	tiwrt	$2 \times$ tosc	-	$\begin{gathered} 4 \times \text { tosc } \\ + \text { tcık } \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ READY \uparrow	tcre	-	-	20	ns
READY $\uparrow \rightarrow \overline{\text { IOCS } \uparrow \text { hold time }}$	tric	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { OWR }} \uparrow$ hold time	triw	0	-	-	ns
Write data hold time	thoiw	0	-	-	ns
Address hold time	tra	0	-	-	ns

3．1．4．2 IORD Timing（MPU Read Data from Control Register）

（ $\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK	tclk	80	－	1000	ns
MPUCLK＂H＂pulse width	thclk	20	1／2×talk	－	ns
MPUCLK＂L＂pulse width	tıcle	20	$1 / 2 \times$ tclk	－	ns
$\overline{\text { IOCS }}$ address setup time	taic	0	－	－	ns
$\overline{\text { IORD address setup time }}$	tali	0	－	－	ns
$\overline{\text { OCS }} \downarrow \rightarrow \overline{\mathrm{O}} \overline{\mathrm{RD}} \downarrow$	ticir	0	－	－	ns
$\overline{\text { IOCS } ~} \downarrow \rightarrow$ READY \downarrow	ticri	－	－	30	ns
$\overline{\overline{O R D D}} \downarrow \rightarrow$ READY \uparrow	tirri	$2 \times$ tosc	－	$\begin{gathered} 4 \times \text { tosc } \\ + \text { tcLk } \end{gathered}$	ns
MPUCLK $\downarrow \rightarrow$ READY \uparrow	tcri	－	－	20	ns
$\overline{\text { ORD }} \downarrow \rightarrow$ data valid	tiroa	$2 \times$ tosc	－	$4 \times$ tosc	ns
data valid \rightarrow READY \uparrow	torir	0	－	－	ns
Read data hold time	tiroh	0	－	－	ns
READY $\uparrow \rightarrow \overline{\text { IOCS } \uparrow \text { hold time }}$	tric	0	－	－	ns
READY $\uparrow \rightarrow \overline{\mathrm{O}} \overline{\mathrm{RD}} \uparrow$ hold time	triR	0	－	－	ns
Address hold time	tra	0	－	－	ns

3.0 Electrical Characteristics

3.1.4.3 MEMWR Timing (MPU Write Data to Video Memory)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK	tcLk	80	-	1000	n
MPUCLK "H" pulse width	thclk	20	1/2 \times tcık	-	ns
MPUCLK "L" pulse width	tıcle	20	1/2×tcuk	-	ns
MEMCS address setup time	tamc	0	-	-	ns
$\overline{\text { MEMWR }}$ address setup time	tamw	0	-	-	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow$ MEMWR \downarrow	tмсмш	0	-	-	ns
$\overline{\text { MEMWR }} \downarrow \rightarrow$ data valid	tmwd	-	-	$1.5 \times$ tosc	ns
$\overline{\overline{O C O}} \downarrow \rightarrow$ READY \downarrow	tmcal	-	-	30	ns
$\overline{\text { MEMWR } \uparrow \rightarrow \text { READY } \uparrow ~}$	tmwRL	$2 \times$ tosc	-	$\begin{gathered} \hline 4 \times \operatorname{tosc}+ \\ \text { tcLK } \\ \hline \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ READY \uparrow	tcra	-	-	20	ns
READY $\uparrow \rightarrow \overline{\text { MEMCS } \uparrow \text { hold time }}$	trmc	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { MEMWR } \uparrow \text { hold time }}$	$\mathrm{t}_{\text {RMW }}$	0	-	-	ns
Write data hold time	twrmw	0	-	-	ns
Address hold time	trA	0	-	-	ns

3.1.4.4 MEMRD Timing (MPU Read Data from Video Memory)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK	telk	80	-	1000	ns
MPUCLK "H" pulse width	thclk	20	1/2× \times tclk	-	ns
MPUCLK "L" pulse width	tıcle	20	$1 / 2 \times$ tcLk	-	ns
$\overline{\text { MEMCS }}$ address setup time	tamc	0	-	-	ns
MEMRD address setup time	tamr	0	-	-	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow \overline{\text { MEMRD }} \downarrow$	tmсma	0	-	-	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow$ READY \downarrow	tmart $^{\text {che }}$	-	-	30	ns
$\overline{\text { MEMRD }} \downarrow \rightarrow$ READY \uparrow	tmprL	$2 \times$ tosc	-	$\begin{gathered} 4 \times \text { tosc } \\ + \text { tcle } \\ \hline \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ READY \uparrow	tcri	-	-	20	ns
$\overline{\text { MEMCS } ~} \downarrow \rightarrow$ data valid	$t_{\text {mRda }}$	$2 \times$ tosc	-	$4 \times$ tosc	ns
Data valid \rightarrow READY \uparrow	torme	0	-	-	ns
Read data hold time	tmRDH	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { MEMCS } \uparrow \text { hold time }}$	trmc	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { MEMRD }} \uparrow$ hold time	trmp	0	-	-	ns
Address hold time	tra	0	-	-	ns

3.1.4.5 VRAM Interface Timing

3.1.4.5.1 Write Data to VRAM

3.1.4.5.2 Read Data From VRAM

3.1.4.5.3

3.1.4.5.3 Timing

$$
\left(\mathrm{Ta}=-20 \text { to } 75^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Min	Typ	Max	Unit
OSC1	tosc	80	-	500	ns
OSC1 "H" pulse width	thosc	-	$1 / 2 \times$ tosc	-	ns
OSC1 "L" pulse width	thosc	-	$1 / 2 \times$ tosc	-	ns
VWE address setup time	tvavw	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -20 \end{gathered}$	$1 / 2 \times$ tosc	-	ns
VWE address setup time	tuwia	0	-	-	ns
VWE "L" pulse width	tuwe	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	$1 / 2 \times$ tosc	-	ns
$\overline{\text { VWE data setup time }}$	tvows	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -25 \\ \hline \end{gathered}$	1/2 \times tosc	-	ns
$\overline{\text { VWE data hold time }}$	twwon	0	-	20	ns
VRAM address cycle time	tva	tosc	-	-	ns
VRAM address access time	tacc	-	-	tosc - 20	ns
VRAM read data hold time	tvad	0	-	-	ns

3.1.4.6 LCD Interface Timing

3.1.4.6.1 Mode 1 (4-Bit transfer)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1	tosc	80	-	500	ns
OSC1 "H" pulse width	thosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
OSC1 "L" pulse width	tıosc	$\begin{gathered} \hline 1 / 2 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
XSCL	txscl1	-	-	-	ns
XSCL "H" pulse width	thxs1	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
XSCL "L" pulse width	tıxs 1	$\begin{gathered} \hline 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLp1	-10			
LP $\downarrow \rightarrow$ XSCL \uparrow	tLpxs1	tosc - 10			
Data setup time	toxs1	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns.
Data hold time	txsD1	$\begin{gathered} \hline 1 / 2 \times \text { tosc } \\ -20 \\ \hline \end{gathered}$	-	-	ns
LP "H" pulse width (Note 1)	thlpı	$\begin{gathered} (2 n-1 / 2) \times \\ \text { tosc }-20 \\ \hline \end{gathered}$	-	-	ns

Note 1: " n " is the value of LWP

3.1.4.6.2 Mode 1 (8-bit transfer), Mode 2, Mode 3 (4-bit transfer), Mode 5

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1	tosc	80	-	500	ns
OSC1 " $\mathrm{H}^{\text {" p pulse width }}$	thosc	$\begin{gathered} 1 / 2 \times \text { tose } \\ -10 \\ \hline \end{gathered}$	-	-	ns
OSC1 "L" pulse width	thosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL	txscli	$2 \times$ tosc - 20	-	-	ns
XSCL "H" pulse width	thxs2	tosc - 10	-	-	ns
XSCL "L" pulse width	tıxs2	tosc - 10	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLP2	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
LP $\downarrow \rightarrow$ XSCL \uparrow	tLpxS2	tosc - 10	-	-	ns
Data setup time	toxs2	tosc - 10	-	-	ns
Data hold time	txSD2	tosc -20	-	-	ns
LP "H" pulse width (Note 1)	thlpz	$\begin{array}{\|c} \hline(2 n-1 / 2 \times \\ \text { tosc }-20 \\ \hline \end{array}$	-	-	ns
LP "H" pulse width (Note 2)		$\begin{gathered} (4 n-1 / 2) \times \\ \text { tosc }-20 \end{gathered}$	-	-	ns

- " n " is the value of LWP

Note 1. Mode 1 (8-bit transfer) and Mode 2
Note 2. Mode 3 (4-bit transfer) and Mode 5

3.1.4.6.3 Mode 3 (8-bit transfer, Mode 4, Mode 6

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1	tosc	80	-	500	ns
OSC1 "H" pulse width	thosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
OSC1 "L" pulse width	tlose	$\begin{gathered} 1 / 2 \times \text { tose } \\ -10 \end{gathered}$	-	-	ns
XSCL	txscl4	$4 \times$ tosc - 20	-	-	ns
XSCL "H" pulse width	thxS4	$2 \times$ tosc -20	-	-	ns
XSCL "L" pulse width	tıxs4	$2 \times$ tosc -20	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLP4	$\begin{gathered} 1.5 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
LP $\downarrow \rightarrow$ XSCL \uparrow	tlpxs4	tosc - 10	-	-	ns
Data setup time	toxs4	$2 \times$ tosc - 20	-	-	ns
Data hold time	txs04	$2 \times$ tosc -20	-	-	ns
LP "H" pulse width (Note 1)	thlp4	$\begin{gathered} (4 n-1 / 2) \times \\ \text { tosc }-20 \end{gathered}$	-	-	ns

Note 1. " n " is the value of LWP.

3.1.4.6.4 Sync Timing

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter		Symbol	Min	Typ	Max	Unit
YD " H " pulse width	(Note 1)	thyo	$(m+n) 2 \times$ tosc -20	-	-	ms
	(Note 2)		$(m+n) 4 \times$ tosc -20	-	-	ms
YD $\uparrow \rightarrow \mathrm{LP} \uparrow$	(Note 1)	tyolph	$4.5 \times$ tose -20	-	-	ms
	(Note 2)		$5.5 \times$ tose -20	-	-	ms
YD $\uparrow \rightarrow \mathrm{LP} \downarrow$	(Note 1)	trolpl	$(\mathrm{n}+2) 2 \times$ tosc -20	-	-	ms
	(Note 2)		$(\mathrm{n}+5 / 4) 4 \times$ tosc -20	-	-	ms
$\mathrm{LP} \downarrow \rightarrow \mathrm{YD} \downarrow$	(Note 1)	tLpyd	(m-2) $2 \times$ tosc -20	-	-	ms
	(Note 2)		(m-5/4) 4 tosc -20	-	-	ms
LP \downarrow WF $\uparrow \downarrow$		tıpwrf	-100	-	-	ms

- "m" is the value of C / R
- " n " is the value of LPW

1. Mode 1, Mode 2
2. Mode 3, Mode 4, Mode 5, Mode 6.

3.2 SED1351FLB

3.2.1 SED1351FLb Absolute Maximum Ratings

$$
V_{s s}=0 \mathrm{~V}
$$

Parameter	Symbol	Rating	Unit
Power voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to 7.0	V
Input voltage	V_{IN}	$\mathrm{V}_{\mathrm{ss}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output voltage	Vout	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output current/pin	lout	± 24	mA
Allowable loss	PD_{D}	200	mW
Power current	lod/lss	± 40	mA
Storage temperature	TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$

Note: Power current: Allowable current input to or output from power terminal VDD or Vss.

3.2.2 Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Power voltage	$V_{\text {DD }}$	2.7	-	3.6	V
Input voltage	$V_{\text {IN }}$	$V_{s s}$	-	$V_{D D}$	V
Operating temperature	ToPR	-20	-	75	${ }^{\circ} \mathrm{C}$

3.2.3 SED1351FLB DC Characteristics

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min	Typ	Max	Unit	Pin
Static current	ldDs	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{MAX} \\ & \mathrm{loH}=\mathrm{loL}=0 \end{aligned}$	-	-	30	$\mu \mathrm{A}$	
Input leakage current	IL	$\begin{aligned} & V_{D D}=M A X \\ & V_{I H}=V_{D D} \\ & V_{I L}=V_{S S} \end{aligned}$	-1	-	1	$\mu \mathrm{A}$	Note 1
"H" level input voltage (1)	$\mathrm{V}_{\mathrm{H} 1}$	$V_{D D}=M A X$	0.7 VDD	-	-	V	OSC1
"L" level input voltage (1)	V_{12}	$V_{D D}=$ MIN	-	-	0.2 VDO	V	
"H" level input voltage (2)	$\mathrm{V}_{\mathrm{H} 2}$	$V_{D D}=M A X$	0.7 VDD	-	-	V	Note 2
"L" level input voltage (2)	V_{12}	$V_{D D}=M I N$	-	-	0.2 Vdo	V	
"H" level input voltage (3)	V_{T+}	$V_{\text {Do }}=\mathrm{MAX}$	0.8 Vod	-	-	V	
"L" level input voltage (3)	$\mathrm{V}_{\text {T- }}$	$V_{D D}=$ MIN	-	-	0.2 VDD	V	Note 3
Hysteresis voltage	V_{H}	$V_{\text {DD }}=$ TYP	0.3	-	-	V	
"H" level output voltage (1)	Vor1	$V_{D D}=\mathrm{MIN}$	$V_{D D}-0.3$	-	-	V	Note 4
" \llcorner " level output voltage (1)	Vo.l	$\begin{aligned} & \mathrm{lor}=-1.5 \mathrm{~mA} \\ & \mathrm{lot}=3 \mathrm{~mA} \end{aligned}$	-	-	Vss +0.3	V	
"H" level output voltage (2)	Voh2	$\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}$	Vod-0.4	-	-	V	OSC2
"L" level output voltage (2)	Vo42	$\begin{aligned} & \text { loн }=-50 \mu \mathrm{~A} \\ & \text { loL }=50 \mu \mathrm{~A} \end{aligned}$	-	-	Vss +0.4	V	

Notes:

1. $\overline{M E M C S}, \overline{M E M W R}, \overline{M E M R D}, \overline{I O C S}, \overline{\text { IOWR }}, \overline{I O R D}$, MPUCLK, ABO-AB15, $\overline{B H E}$, MPUSEL, RESET, OSC1

2. MPUSEL, RESET
3. DBO-DB15, READY, VAO-VA15, $\overline{\mathrm{VCSO}} \sim \overline{\mathrm{VCS}}, \mathrm{VDO}-\mathrm{VD} 15, \overline{\mathrm{VWE}}, \mathrm{XSCL}, \mathrm{LP}, \mathrm{WF}$, YD, UDO~UD3, LDO~LD3, LCDENB

3．2．4 SED1351FLB AC Characteristics

3．2．4．1 IOWR Timing（Write to the Control Register）

（ $\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK cycle	tclk	100	－	1000	ns
MPUCLK＂H＂pulse width	thelk	20	1／2×tcLk	－	ns
MPUCLK＂L＂pulse width	tıclk	20	1／2 \times tcık	－	ns
$\overline{\text { IOCS }}$ address setup time	taic	0	－	－	ns
$\overline{\text { OWR }}$ address setup time	talw	0	－	－	ns
$\overline{\text { OCS }} \downarrow \rightarrow \overline{\text { OWR }} \downarrow$	ticim	0	－	－	ns
$\overline{\text { IOWR }} \downarrow \rightarrow$ written data determination	tiwo	－	－	$1.5 \times$ tosc	ns
$\overline{\text { IOCS } \downarrow} \rightarrow$ Not Ready	tical	8	－	39	ns
$\overline{\overline{O R} D} \downarrow \rightarrow$ Not Ready period	tiwri	$\begin{gathered} 2 \times \text { tosc } \\ +17 \\ \hline \end{gathered}$	－	$\begin{gathered} 4 \times \text { tosc } \\ +85+\text { tclu } \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ READY	tcra	7	－	20	n
READY $\uparrow \rightarrow \overline{\text { OCS }}$ hold time	tric	0	－	－	ns
READY $\uparrow \rightarrow \overline{\text { OWR }}$ hold time	triw	0	－	－	ns
READY $\uparrow \rightarrow$ Written data hold time	troiw	0	－	－	ns
READY $\uparrow \rightarrow$ Address hold time	tra	0	－	－	ns

3.2.4.2 IORD Timing (Read from Control Register)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK cycle	tcle	100	-	1000	ns
MPUCLK "H" pulse width	thelk	20	1/2 \times tcık	-	ns
MPUCLK "L" pulse width	thclk	20	1/2×tcle	-	ns
$\overline{\text { IOCS }}$ address setup time	taic	0	-	-	ns
IORD address setup time	tali	0	-	-	ns
$\overline{\text { OCS }} \downarrow \rightarrow \overline{\text { IORD }} \downarrow$	ticir	0	-	-	ns
$\overline{\text { OCS }} \downarrow \rightarrow$ Not Ready	ticrl	8	-	39	ns
$\overline{\text { IORD } ~} \downarrow \rightarrow$ Not Ready period	tirri	$\begin{gathered} 2 \times \text { tosc } \\ +17 \\ \hline \end{gathered}$	-	$\begin{gathered} 4 \times \text { tosc } \\ +85+t_{\text {cLK }} \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ Ready	tcre	7	-	36	ns
$\overline{\text { ORD }} \downarrow \rightarrow$ Read data determination	tirda	$2 \times$ tosc	-	$4 \times$ tosc +50	ns
Read data determination \rightarrow READY \uparrow	torir	0	-	-	ns
$\overline{\text { ORD } ~} \downarrow \rightarrow$ Read data hold time	trinh	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { OCS }}$ hold time	tric	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { ORD }}$ hold time	triR	0	-	-	ns
READY $\uparrow \rightarrow$ Address hold time	$t_{\text {RA }}$	0	-	-	ns

3．2．4．3 MEMWR Timing（Write to the VRAM）

（ $\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK cycle	tcık	100	－	1000	ns
MPUCLK＂H＂pulse width	thclk	20	1／2 \times tcık	－	ns
MPUCLK＂L＂pulse width	tıclk	20	$1 / 2 \times$ tclk	－	ns
MEMCS address setup time	tamc	0	－	－	ns
MEMWR address setup time	tamw	0	－	－	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow \overline{\text { MEMWR }} \downarrow$	tmcmw	0	－	－	ns
$\overline{\text { MEMWR }} \downarrow \rightarrow$ Written data determination	tmwd	－	－	$1.5 \times$ tosc	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow$ Not Ready	tmCri	8	－	39	ns
$\overline{\text { MEMWR }} \downarrow \rightarrow$ Not Ready period	tmwfl	$\begin{gathered} 2 \times \text { tosc } \\ +17 \\ \hline \end{gathered}$	－	$\begin{aligned} & 4 \times \text { tosc }+ \\ & 85+\text { tcık } \end{aligned}$	ns
MPUCLK $\uparrow \rightarrow$ READY	tcrh	7	－	36	ns
READY $\uparrow \rightarrow \overline{\text { MEMCS }}$ hold time	trma	0	－	－	ns
READY $\uparrow \rightarrow$ MEMWR hold time	$\mathrm{t}_{\text {RMW }}$	0	－	－	ns
READY $\uparrow \rightarrow$ Written data hold time	tromw	0	－	－	ns
READY $\uparrow \rightarrow$ Address hold time	$t_{\text {fa }}$	0	－	－	ns

3.2.4.4 MEMRD Timing (Read from the VRAM)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
MPUCLK cycle	tcık	100	-	1000	ns
MPUCLK "H" pulse width	thelk	20	$1 / 2 \times$ tcık	-	ns
MPUCLK "L" pulse width	tıcle	20	$1 / 2 \times$ tcık	-	ns
$\overline{\text { MEMCS }}$ address setup time	tamc	0	-	-	ns
MEMRD address setup time	tamp	0	-	-	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow$ MEMRD \downarrow	тмсмв	0	-	-	ns
$\overline{\text { MEMCS }} \downarrow \rightarrow$ Not Ready	tmarl	8	-	39	ns
$\overline{\text { MEMRD }} \downarrow \rightarrow$ Not Ready period	$t_{\text {marl }}$	$\begin{gathered} 2 \times \text { tosc } \\ +17 \\ \hline \end{gathered}$	-	$\begin{gathered} 4 \times \text { tosc } \\ +85+\text { tclk } \end{gathered}$	ns
MPUCLK $\uparrow \rightarrow$ Ready	tcre	7	-	36	ns
$\overline{\text { MEMRD }} \downarrow \rightarrow$ Read data determination	$\mathrm{t}_{\text {mRda }}$	$2 \times$ tosc	-	$4 \times$ tosc +76	ns
Read data determination \rightarrow READY \uparrow	torma	0	-	-	ns
$\overline{M E M R D} \uparrow \rightarrow$ Read data hold time	tmade $^{\text {m }}$	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { MEMCS }}$ hold time	trmC	0	-	-	ns
READY $\uparrow \rightarrow \overline{\text { MEMRD }}$ hold time	$\mathrm{t}_{\text {RMR }}$	0	-	-	ns
READY $\uparrow \rightarrow$ Address hold time	tra	0	-	-	ns

3．2．4．5 Timing of Interface with VRAM

3．2．4．5．1 Write to the VRAM

3．2．4．5．2 Read from the VRAM

OSC1

3．2．4．5．3 Timing

（ $\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Min	Typ	Max	Unit
OSC1 cycle	tosc	100	-	500	ns
OSC1＂H＂pulse width	thosc	-	$1 / 2 \times$ tosc	-	ns
OSC1＂L＂pulse width	tıosc	-	$1 / 2 \times$ tosc	-	ns
$\overline{\text { VWE address setup time }}$	tvavw	$1 / 2 \times$ tosc -20	$1 / 2 \times$ tosc	-	ns
$\overline{\text { VWE address hold time }}$	twwva	0	-	-	ns
$\overline{\text { VWE＂} L \text {＂pulse width }}$	tıwe	$1 / 2 \times$ tosc -10	$1 / 2 \times$ tosc	-	ns
VWE data setup time	tvows	$1 / 2 \times$ tosc -25	$1 / 2 \times$ tosc	-	ns
$\overline{\text { VWE data hold time }}$	tuwoH	0	-	20	ns
VRAM address cycle time	tva	tosc	-	-	ns
VRAM address access time	tacc	-	-	tosc -20	ns
VRAM read data hold time	tvad	0	-	-	ns

3.0 Electrical Characteristics

3.2.4.6 LCD Interface Timing

3.2.4.6.1 Mode 1 (4-Bit transfer)

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1 clock cycle	tosc	1000	-	500	ns
OSC1 "H" pulse width	thosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
OSC1 "L" pulse width	thosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL cycle	txscli	-	-	-	ns
XSCL "H" pulse width	thxs1	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL "L" pulse width	tıxs1	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLp1	-10			
LP $\downarrow \rightarrow$ XSCL \uparrow	tlpxs1	tosc - 10			
Data determination \rightarrow XSCL \downarrow	toxst	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \end{gathered}$	-	-	ns
XSCL $\downarrow \rightarrow$ Data hold time	txsot	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -20 \\ \hline \end{gathered}$	-	-	ns
LP "H" pulse width (Note 1)	thlpı	$\begin{gathered} (2 n-1 / 2) \times \\ \text { tosc }-20 \\ \hline \end{gathered}$	-	-	ns

Note 1: " n " indicates the LPW value (unit: number of characters)

3.2.4.6.2 Mode 1 (8-bit transfer), Mode 2, Mode 3 (4-bit transfer), Mode 5

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1 clock cycle	tosc	100	-	500	ns
OSC1 "H" pulse width	thosc	$\begin{gathered} \hline 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
OSC1 "L" pulse width	tlosc	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
XSCL cycle	txscle	$2 \times$ tosc - 20	-	-	ns
XSCL " H^{\prime} pulse width	thxs2	tosc - 10	-	-	ns
XSCL "L" pulse width	tLxs2	tosc - 10	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLP2	$\begin{gathered} 1 / 2 \times \text { tosc } \\ -10 \\ \hline \end{gathered}$	-	-	ns
LP $\downarrow \rightarrow$ XSCL \uparrow	tıpxs2	tosc - 10	-	-	ns
Data determination \rightarrow XSCL \downarrow	toxs2	tosc - 10	-	-	ns
XSCL $\downarrow \rightarrow$ data hold time	txsD2	tosc - 20	-	-	ns
LP "H" pulse width (Note 1)	thlpa	$\begin{gathered} (2 n-1 / 2 x \\ \text { tosc }-20 \end{gathered}$	-	-	ns
LP "H" pulse width (Note 2)		$\begin{gathered} (4 n-1 / 2) \times \\ \text { tosc }-20 \end{gathered}$	-	-	ns

Notes 1 and 2: " n " is the LPW value (unit: number of characters).
Note 1: Applies to display mode Nos. 1 (8-bit transfer) and 2.
Note 2: Applies to display mode Nos. 3 (4-bit transfer) and 5.

3.0 Electrical Characteristics

3.2.4.6.3 Mode 3 (6-bit transfer), Mode 4, Mode 6

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
OSC1 clock cycle	tosc	100	-	500	ns
OSC1 "H" pulse width	thosc	$1 / 2 \times$ tosc -10	-	-	ns
OSC1 "L" pulse width	tLosc	$1 / 2 \times$ tosc -10	-	-	ns
XSCL cycle	txscL4	$4 \times$ tosc -20	-	-	ns
XSCL "H" pulse width	thxs4	$2 \times$ tosc -20	-	-	ns
XSCL "L" pulse width	tLxs4	$2 \times$ tosc -20	-	-	ns
XSCL $\downarrow \rightarrow$ LP \uparrow	txsLP4	$1.5 \times$ tosc -10	-	-	ns
LP $\downarrow \rightarrow$ XSCL \uparrow	tLPxS4	tosc -10	-	-	ns
Data determination \rightarrow XSCL \downarrow	toxs4	$2 \times$ tosc-20	-	-	ns
XSCL $\downarrow \rightarrow$ data hold time	txsD4	$2 \times$ tosc -20	-	-	ns
LP "H" pulse width (Note 1)	tHLP4	$(4 n-1 / 2) \times$ tosc -20	-	-	ns

Note 1. " n " indicates the LPW value (unit: number of characters).

3.2.4.6.4 Sync Timing

($\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)

Parameter		Symbol	Min	Typ	Max	Unit
YD "H" pulse width	(Note 1)	thyo	$(\mathrm{m}+\mathrm{n}) 2 \times$ tose -20	-	-	ns
	(Note 2)		$(m+n) 4 \times$ tosc -20	-	-	ns
YD $\uparrow \rightarrow \mathrm{LP} \uparrow$	(Note 1)	trolph	$4.5 \times$ tose -20	-	-	ns
	(Note 2)		$5.5 \times$ tosc - 20	-	-	ns
YD $\uparrow \rightarrow \mathrm{LP} \downarrow$	(Note 1)	trdLPL	$(\mathrm{n}+2) 2 \times$ tosc -20	-	-	ns
	(Note 2)		$(\mathrm{n}+5 / 4) 4 \times$ tosc -20	-	-	ns
$\mathrm{LP} \downarrow \rightarrow \mathrm{YD} \downarrow$	(Note 1)	tLPYD	(m-2) $2 \times$ tosc -20	-	-	ns
	(Note 2)		(m-5/4) 4 tosc - 20	-	-	ns
LP $\downarrow \rightarrow W \mathrm{~F} \uparrow \downarrow$		tLpwF	-100	-	100	ns

" m " indicates the C / R value (unit: number of characters)
" n " indicates the LPW value (unit: number of characters)

1. Applies to display mode Nos. 1 and 2.
2. Applies to display mode Nos. $3,4,5$ and 6.

4.0

Internal Registers

THIS PAGE INTENTIONALLY BLANK

66 S－MOS Systems，Inc．• 2460 North First Street • San Jose，CA 95131 • Tel：（408）922－0200 • Fax：（408）922－0238

4.0 INTERNAL REGISTERS

The SED1351F is configured and controlled via an internal 14-register set, mapped into the MPU's I/O space. The address of each register is defined by AB0-AB3.

4.1 SUMMARY

Table 3. Control Registers

271-0.2 S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238

4.2-4.2.1

4.2 REGISTER DESCRIPTION

4.2.1 R1 Mode Register

This register determines the basic configuration of the SED1351F.
Table 4. R1: Mode Register

1/O Address				Data								R/W
A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	DISP	REV	PANEL	OR	GRAY	4/8	LCDE	RAMS	W

- DISP
- DISP = 0: Display OFF
- DISP = 1: Display ON

Selects display on/off. DISP goes to 0 on RESET. If inverse video is selected (R1:D6=1) then setting the display OFF causes data 1's to be output to the LCD.

- REV
- REV = 0: Normal display
- REV = 1: Inverse display

Selects normal/inverse display. REV goes to 0 on RESET. If back lit LCDs are used in the system REV should be set to 1 .

- PANEL
- PANEL = 1: Dual LCD panel drive
- PANEL $=0$: Single LCD panel drive

Selects the LCD panel configuration. PANEL goes to 0 on RESET.

- OR
- $O R=1$: Single display of ORed data
- $O R=0$: Display split into two screens

Selects one of two display modes in a single LCD system (PANEL $=0$).
(a) The display is split into two screens, with each screen being allocated a block of data in display memory (Set by SAD1 and SAD2. See description of R6, R7, R8 and R9).
(b) A single screen is generated, made up of a bit-wise OR of the data in block 1 with that in block 2.

OR goes to 0 on RESET. If PANEL $=1$, the contents of $O R$ are ignored.

- GRAY

- GRAY = 1: Gray scale display
- GRAY = 0: "B\&W" display

Selects between 2-level "B\&W" or 4-level gray-scale display. GRAY goes to 0 on RESET.
When a gray-scale display is selected, two bits of video memory data are used for the display of each pixel, using the conversion specification set by the contents of R14 and R15.

- $\overline{4} / 8$
- $\overline{4} / 8=1: 8$ bit data transfer
- $\overline{4} / 8=0: 4$ bit data transfer

Selects between 4 - and 8 -bit display data widths for the LCD, in "B\&W", single LCD mode. Gray-scale or dual LCD modes force 4-bit data width, irrespective of the contents of 4/8. $\overline{4} / 8$ goes to 0 on RESET.

- LCDE
- $\operatorname{LCDE}=0: \operatorname{LCDENB}=\mathrm{Vss}$, and the LCD power is off.
- $\operatorname{LCDE}=1: \operatorname{LCDENB}=V_{D D}$, and the LCD power is on.

This bit sets the output of the LCD control line, LCDENB. LCDE goes to 0 on RESET. This control bit, and its associated line, are intended for use in systems that implement LCD DC voltage protection, but LCDE can ben used for other purposes if required.

- RAMS
- RAMS $=0$: Addressing for $8 \mathrm{~K} \times 8$ SRAM's
- RAMS $=1$: Addressing for $32 \mathrm{~K} \times 8$ SRAM's

Configure the video memory address lines. RAMS goes to 0 on RESET.

4.2.2 R2 Line Byte Count Register

This register sets the number of bytes per display line.
Table 5. Line Byte Count Register

R	I/O Address				Data								R/W
No.	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0	
R2	0	0	1	0	C/R								W

The contents of R 2 are given by $\mathrm{C} / \mathrm{R}=$ (No. of bytes) -1
Since the maximum value of C / R is $F F H$, the maximum number of pixels in one display line is

- $256 \times 8=2048$ in "B\&W" mode
- or $256 \times 4=1024$ in gray-scale mode

4.2.3 R3 Horizontal Sync Pulse Width Register

This register sets LPW, the width of the horizontal sync pulse (LP), which is output at the end of every line. LPW has units of "time per byte", ts, and the contents of R3 are given by LPW = (Pulsewidth) - 1. "time per byte" is $2 /$ fosc for single LCD, single screen configurations, and $4 /$ fosc for all other configurations.

Note that LPW partially determines the period of one line, and hence affects the frame period.
Table 6. Horizontal Sync Pulse Width Register

R	I/O Address				Data								R/W
No.	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0	
R3	0	0	1	0	LPW								W

4.2.4 R4, R5 Total Display Line Count Registers

This register sets the number of display lines on an LCD panel. The data is 10 bits long. The low order 8 bits are contained in R4, the high order 2 bits in R5.

Table 7. Total Display Line Count Register

R	I/O Address				Data									R/W
No.	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1		D0	
R4	0	1	0	0	SLTL									W
R5	0	1	0	1	*	*	*	*	*	*		SLTH		W

The contents of R4 and R5 are given by SLT＝（No．of lines）-1 ．Since SLT sets the number of display lines on one LCD，in dual panel mode the actual number of display lines is twice the value of（SLT）． Note that SLT partially determines the frame period，and hence affects the display duty cycle．The display duty cycle is $1 /$（SLT＋VR）where VR，the vertical retrace period，is equal to 2 ．It is during the vertical retrace period that the polarity of the LCD drive waveforms are inverted．

4．2．5 R6，R7 Screen 1 Display Start Address Registers

These registers set SAD1，the start address in video memory，of screen 1 ．The data width is 16 bits． The low－order byte is contained in R6，the high－order byte in R7．

Table 8．Screen 1 Display Start Address Registers

R	I／O Address				Data								R／W
No．	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
R6	0	1	1	0	SAD1L								R／W
R7	0	1	1	1	SAD1H								R／W

Screen 1 is the upper screen in 2－screen and dual－panel，dual－drive LCD mode，or the top layer in ORed mode．

4．2．6 R8，R9 Screen 2 Display Start Address Registers

These registers set SAD2 the start address，in video memory，of screen 2 ．The data width is 16 bits．
The low－order word is contained in R8，the high－order word in R9．
Table 9．Screen 2 Display Start Address Registers

R	I／O Address				Data								R／W
No．	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
R8	1	0	0	0	SAD2L								R／W
R8	0	1	1	1	SAD2H								R／W

Screen 2 is the lower screen in split screen and dual LCD－panel modes，or the bottom layer in ORed mode．

4.2.7-4.2.8

4.0 Internal Registers

4.2.7 R10, R11 Screen 1 Display Line Count Registers

These registers set the number of display lines on screen 1 . The data width is 10 bits. The lower 8 bits are contained in R10, the upper 2 bits in R11.

Table 10. Screen 1 Display Line Count Register

R	I/O Address				Data									R/W
No.	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1		D0	
R10	1	0	1	0	SL1L									W
R11	1	0	1	1	*	*	*	*	*	*		SL1H		W

The contents of R10 and R11 are given by SL1= (No. of lines)-1. The contents of these registers are only meaningful in single-panel, single-drive LCD mode and when R1:OR=0, beieng otherwise ignored. Note that single screen mode can be forced by setting SL1=SLT in single LCD-panel mode, as well as by setting R1:OR=1.

4.2.8 R13 Address Pitch Adjustment Register

The contents of this register set the numerical difference between the last address of a display line, and the first address in the following display line.

Table 11. Address Pitch Adjustment Register

R	1/O Address				Data								R/W
No.	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
R13	1	1	0	0	APADJ								W

If APADJ is not equal to zero, then a virtual screen with a line length of (C/R+APADJ) bytes is created, with the display reflecting the contents of a window $(\mathrm{C} / \mathrm{R}+1)$ bytes wide. The position of the window on the virtual screen is determined by SAD1 and SAD2.

4．0 Internal Registers

4．2．9 R14，R15 Gray－Scale Conversion Registers

The contents of these registers determine the two intermediate gray levels，GS1 and GS2， associated with the bit patterns（ 0,1 ）and（ 1,0 ）respectively，when the display is in 4 －level gray－scale mode．

Table 12．Gray－Scale Conversion Register

R	V／O Address				Data								R／W
No．	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0	
R14	1	1	1	0	GS1								W
R15	1	1	1	1	GS2								W

Table 13．Gray Scale Display

C1	C0	Contents of Display
0	0	Display off
0	1	Gray display based on GS1 conversion code
1	0	Gray display based on GS2 conversion code
1	1	Display on

Note that intensity differences are produced by turning off a particular pixel during selected frames in an 8 frame cycle．Each bit in GS1 and GS2 corresponds to 1 frame in this 8 frame cycle，and if the bit is zero，the pixel will be off for that frame．

Figure 3．Gray Scale Display Implementation

Table of Contents

THIS PAGE INTENTIONALLY BLANK

5.0

Display Modes

THIS PAGE INTENTIONALLY BLANK

5．0 DISPLAY MODES

The SED1351F has six basic oprational modes，Mode 1 to 6 ，which are configured by the contents of R1，the Mode Register．

Table 14．Display Modes

Mode No．	Mode Register（R1）								Configuration			
	D7	D6	D5	D4	D3	D2	D1	D0	N＝LCD＇s	Screen	Video	Output Data Width
1	＊	＊	0	0	0	0	＊	＊	1	Split	B\＆W	4 bit
	＊	＊	0	0	0	1	＊	＊				8 bit
2	＊	＊	0	0	1	X	＊	＊			Gray	4 bit
3	＊	＊	0	1	0	0	＊	＊		OR	B\＆W	4 bit
	＊	＊	0	1	0	1	＊	＊				8 bit
4	＊	＊	0	1	1	X	＊	＊			Gray	4 bit
5	＊	＊	1	X	0	X	＊	＊	2	$\begin{aligned} & 1 \text { per } \\ & \text { LCD } \end{aligned}$	B\＆W	4 bit
6	＊	＊	1	X	1	X	＊	＊			Gray	

＊：Don＇t care
X ：Ignored

5．1 MODE 1

－Single－panel，single－drive LCD
－Split display
－B\＆W display

Table 15．Display Mode 1

Mode register（R1）							
D7	D6	D5	D4	D3	D2	D1	D0
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS
$*$	\star	0	0	0	$*$	$*$	\star

An example setting for a 640 pixel $\times 200$ line LCD panel is：
－$C / R=4 F H$
－SAD2＝3E80H
－$L P W=75 \mathrm{H}$
－ $\mathrm{SL} 1=0063 \mathrm{H}$
－ $\mathrm{SLT}=00 \mathrm{C} 7 \mathrm{H}$
－ APADJ $=00 \mathrm{H}$
－SAD1 $=0000 \mathrm{H}$

Figure 4. Display vs. VRAM: Mode 1

5.0 Display Modes

Mode 1 basic timing:

Figure 5. Basic Timing: Mode 1

A basic cycle consists of two cycles of fosc; during the first cycle data is read from video memory by the controller, during the second cycle data is prepared for CPU access to VRAM.

The period of 1 horizontal line is given by $t_{H}=2 / f o s c \times(C / R+L P W)$ and the period of 1 frame is given by $\mathrm{t}_{\mathrm{FR}}=\mathrm{t}_{\mathrm{H}} \times(\mathrm{SLT}+2)$.

For example:

- $t_{\text {fr }}=16 \mathrm{msec}\left(\mathrm{fFR}_{\mathrm{F}}=62.5 \mathrm{~Hz}\right)$
- $\mathrm{fosc}=5 \mathrm{~Hz}$
then

$$
\begin{aligned}
16 \times 10^{-3} & =t_{H} \times(200+2) \\
\therefore t_{H} & =7.92 \times 10^{-5} \mathrm{~s} \\
7.92 \times 10^{-5} & =\frac{2}{5 \times 10^{6}} \times(80+\text { LPW }) \\
\therefore \text { LPW } & \approx 118 \text { characters }(75 \mathrm{H})
\end{aligned}
$$

Note that it is possible to fix LPW and then calculate $f_{\text {osc. }}$. If this is done the relationship below, between fosc and the VRAM access time, must hold.

$$
\mathrm{tacc} \leq \frac{1}{\text { fosc }(\mathrm{MHz})}-20 \mathrm{~ns}
$$

5.2 MODE 2

- Single-panel, single-drive LCD
- Split display
- Gray-scale display

Table 16. Display Mode 2

Mode register (R1)								
D7	D6	D5	D4	D3	D2	D1	D0	
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS	
\star	\star	0	0	1	\star	\star	$*$	

An example setting for a 640 pixel by 200 line LCD panel is:

- $\mathrm{C} / \mathrm{R}=9 \mathrm{FH}$
- $\mathrm{SL} 1=00 \mathrm{C} 7 \mathrm{H}$
- LPW $=19 \mathrm{H}$
- APADJ $=60 \mathrm{H}$
- $\mathrm{SLT}=00 \mathrm{C} 7$
- GS1 $=29 \mathrm{H}$
- SAD1 $=1350 \mathrm{H}$
- GS2 = DAH
- SAD2 = XXXX

Figure 6．Display vs．VRAM：Mode 2

Mode 2 basic timing：See mode 1
For example：
－$t_{F R}=12.5 \mathrm{msec}\left(\mathrm{f}_{\mathrm{FR}}=80 \mathrm{~Hz}\right)$
－ $\mathrm{fosc}=6 \mathrm{MHz}$

$$
\begin{aligned}
12.5 \times 10^{-3} & =t_{H} \times(200+2) \\
\therefore t_{H} & =6.19 \times 10^{-5} \mathrm{~s}
\end{aligned}
$$

$6.19 \times 10^{-5}=\frac{2}{6 \times 10^{6}} \times(160+$ LPW $)$
\therefore LPW ≈ 26 characters（ 19 H ）

5．3 MODE 3

－Single－panel，single－drive LCD
－ORed layer display
－B\＆W display

Table 17．Display Mode 3

Mode register（R1）								
D7	D6	D5	D4	D3	D2	D1	D0	
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS	
\star	\star	0	1	0	\star	\star	\star	

An example setting for a 640 pixel by 200 line LCD panel is：
－$C / R=4 F$
－SAD1 $=0000 \mathrm{H}$
－$L P W=12 \mathrm{H}$
－ SAD2 $=3 \mathrm{E} 80 \mathrm{H}$
－SLT $=00 \mathrm{C} 7$
－ APADJ $=00 \mathrm{H}$

Figure 7. Display vs. VRAM: Mode 3

Mode 3 basic timing：

Figure 8．Basic Timing：Mode 3

For an ORed display one gasic cycle is required for each layer，that is 4 cycles of fosc are required for 1 basic period．The period of 1 horizontal line is given by $t_{H}=(4 / \mathrm{fosc} \times(\mathrm{C} / \mathrm{R}+\mathrm{LPW})$ and the period of 1 frame by $t_{F H}=\left(f_{H}\right) \times(S L T+2)$ ．

For example：
－$t_{\text {FH }}=116 \mathrm{msec}\left(\mathrm{f}_{\mathrm{FR}}=62.5 \mathrm{~Hz}\right)$
－fosc $=5 \mathrm{MHz}$

$$
\begin{aligned}
& 16 \times 10^{-3}=t_{H} \times(200+2) \\
& \quad \therefore t_{H}=7.92 \times 10^{-5} \mathrm{~s} \\
& 7.92 \times 10^{-5}=\frac{4}{5 \times 10^{6}} \times(80+\text { LPW })
\end{aligned}
$$

$$
\therefore \mathrm{LPW} \approx 19 \text { characters }(12 \mathrm{H})
$$

5.4 MODE 4

- Single-panel, single-drive LCD
- ORed layer display
- Gray-scale display

Table 18. Display Mode 4

Mode register (R1)							
D7	D6	D5	D4	D3	D2	D1	D0
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS
\star	\star	0	1	1	\star	\star	\star

An example setting for a 640 pixel $\times 200$ line LCD panel is:

- $\mathrm{C} / \mathrm{R}=9 \mathrm{FH}$
- LPW $=18 \mathrm{HSLT}=00 \mathrm{C} 7 \mathrm{H}$
- SAD1 $=0000 \mathrm{H}$
- $\mathrm{SAD2}=7 \mathrm{DOOH}$
- APADJ $=00 \mathrm{H}$
- GS1 $=29 \mathrm{H}$
- GS2 = D5H

Figure 9. Display vs. VRAM: Mode 4

Mode 4 basic timing: See Mode 3

For example:

- $t_{\text {trR }}=14.3 \mathrm{~ms}$ (ffr $=70 \mathrm{~Hz}$
- fosc $=10 \mathrm{MHz}$

$$
\begin{aligned}
14.3 \times 10^{-3} & =t_{H} \times(200+2) \\
\therefore t_{H} & =7.08 \times 10^{-5} \mathrm{~s} \\
6.19 \times 10^{-5} & =\frac{4}{12 \times 10^{6}} \times(160+\text { LPW }) \\
\therefore \text { LPW } & \approx 17 \text { characters }(10 H)
\end{aligned}
$$

5.5 MODE 5

- Dual-panel, dual-drive LCD
- B\&W display

Table 19. Display Mode 5

Mode register (R1)								
D7	D6	D5	D4	D3	D2	D1	D0	
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS	
\star	\star	1	X	0	\times	\star	\star	

An example setting for two 640 pixel $\times 200$ line LCD panels is:

- $\mathrm{C} / \mathrm{R}=4 \mathrm{FH}$
- SAD1 $=0000 \mathrm{H}$
- LPW = 12H
- SAD2 $=3 \mathrm{E} 80 \mathrm{H}$
- $S L T=0047 \mathrm{H}$
- APADJ $=00 \mathrm{H}$

Figure 10．Display vs VRAM：Mode 5

Mode 5 basic timing:

Figure 11. Basic Timing: Mode 5

With a dual LCD-panel display chosen, one basic cycle is required for each of the panels, that is 4 fosc cycles. The line and frame periods are the same as for Mode 3.

For example:

- $\mathrm{t}_{\mathrm{frR}}=16 \mathrm{msec}(\mathrm{f} \mathrm{fr}=62.5 \mathrm{~Hz})$
- fosc $=5 \mathrm{MHz}$

$$
\begin{aligned}
16 \times 10^{-3} & =t_{H} \times(200+2) \\
\therefore t_{H} & =7.92 \times 10^{-5} \mathrm{~s} \\
7.92 \times 10^{-5} & =\frac{4}{5 \times 10^{6}} \times(80+\text { LPW }) \\
\therefore \text { LPW } & \approx 19 \text { characters }(12 H)
\end{aligned}
$$

5.6 Mode 6

- Dual-panel, dual-drive LCD
- Gray-scale display

Table 20. Display Mode 6

Mode register (R1)								
D7	D6	D5	D4	D3	D2	D1	D0	
DISP	REV	PANEL	OR	GRAY	$\overline{4} / 8$	LCDE	RAMS	
$*$	\star	1	X	1	\times	\star	\star	

An example setting for two 640 pixel $\times 200$ line LCD panels is:

- $\mathrm{C} / \mathrm{R}=9 \mathrm{FH}$
- SAD2 $=7 \mathrm{DOOH}$
- $L P W=18 \mathrm{H}$
- APADJ $=00 \mathrm{H}$
- SLT $=00 \mathrm{C} 7 \mathrm{H}$
- $G S 1=29 \mathrm{H}$
- SAD1 $=0000 \mathrm{H}$
- GS2 = D5H

5.0 Display Modes

Figure 12. Display vs. VRAM: Mode 6

Mode 6 basic timing: See Mode 5

For example:

- $\mathrm{t}_{\mathrm{FFR}}=14.3 \mathrm{msec}(\mathrm{ffr}=70 \mathrm{~Hz})$
- fosc $=10 \mathrm{MHz}$

$$
\begin{aligned}
14.3 \times 10^{-3} & =t_{H} \times(200+2) \\
\therefore t_{H} & =7.08 \times 10^{-5} \mathrm{~s} \\
6.19 \times 10^{-5} & =\frac{4}{12 \times 10^{6}} \times(160+\text { LPW }) \\
\therefore \text { LPW } & \approx 17 \text { characters }(10 \mathrm{H})
\end{aligned}
$$

6.0

MPU Interface

THIS PAGE INTENTIONALLY BLANK

6.0 MPU INTERFACE

6.1 8-BIT MPU INTERFACE

Example: Z80

Figure 13. SED1351F/Z80 Interface

6.2 16－BIT MPU INTERFACE

Example：i8086（Maximum Mode）

Figure 14．SED1351F／i8086 Interface

7.0

Video Memory Interface

THIS PAGE INTENTIONALLY BLANK

98 S-MOS Systems, Inc. $\cdot 2460$ North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
271-0.2

7.0 Video Memory Interface

7.0 VIDEO MEMORY INTERFACE

7.1 64 KBIT SRAM/8-BIT MPU

Figure 15. 8-bit MPU/64 Kbit SRAM Interface

Table 21. 8-bit MPU/64 Kbit SRAM Address Assignment

SED1351	VRAM		
	VRAM Terminals		Memory Mapping
	Address Bus	Chip Select	
VAO	AO		
VA1	A1		
VA2	A2		
VA3	A3		
VA4	A4		
VA5	A5		
VA6	A6		
VA7	A7		
VA8	A8		
VA9	A9		
VA10	A10		
VA11	A11		
VA12	A12		
VA13/ VCS7		$\overline{\text { VCS7 }}$	E000H to FFFFFH
VA14 / VCS6		VCS6	COOOH to DFFFFH
VA15 / VCS5		VCS5	A 000 H to BFFFH
$\overline{\mathrm{VCS}} 4$		$\overline{\mathrm{VCS} 4}$	8000 H to 9FFFH
$\overline{\mathrm{VCS3}}$		$\overline{\text { VCS3 }}$	6000 H to 7FFFH
VCS2		$\overline{\mathrm{VCS} 2}$	4000 H to 5FFFH
VCS1		$\overline{\text { VCS1 }}$	2000 H to 3FFFFH
$\overline{\text { VCSO }}$		$\overline{\mathrm{VCSO}}$	0000 H to 1FFFH

7.2 256 KBIT SRAM/8-BIT MPU

Figure 16. 8-bit MPU/256 Kbit SRAM Interface

Table 22．8－bit MPU／256 Kbit SRAM Address Assignment

SED1351	VRAM			
	VRAM Terminals		Memory Mapping	
	Address Bus	Chip Select		
VAO	A0			
VA1	A1			
VA2	A2			
VA3	A3			
VA4	A4			
VA5	A5			
VA6	A6			
VA7	A7			
VA8	A8			
VA9	A9			
VA10	A10			
VA11	A11			
VA12	A12			
VA13／VCS7	A13			
VA14／VCS6	A14			
VA15／VCS5				
$\overline{\mathrm{VCS} 4}$	Not used			
$\overline{\mathrm{VCS}} 3$				
$\overline{\text { VCS2 }}$				
$\overline{\mathrm{VCS1}}$		$\overline{\mathrm{VCS1}}$	8000 H to FFFFFH	
VCS0		$\overline{\mathrm{VCSO}}$	0000H to 7FFFH	

7.3 64 KBIT SRAM/16-BIT MPU

Figure 17. 16-bit MPU/64 Kbit SRAM Interface

Table 23. 16-bit MPU/64 Kbit SRAM Address Assignment

SED1351	VRAM			
	VRAM Terminals		Memory Mapping	
	Address Bus	Chip Select	Address	Odd/Even
VAO	A12			
VA1	A0			
VA2	A1			
VA3	A2			
VA4	A3			
VA5	A4			
VA6	A5			
VA7	A6			
VA8	A7			
VA9	A8			
VA10	A9			
VA11	A10			
VA12	A11			
VA13/VCS7		$\overline{\text { VCS7 }}$		Odd address
VA14 / VCS6		$\overline{\text { VCS6 }}$	COOOH to FFFFH	Even address
VA15 / $\overline{\text { CCS5 }}$		$\overline{\text { VCS5 }}$		Odd address
VA16 / $\overline{\text { VCS }}$		$\overline{\mathrm{VCS4}}$	8000 H to BFFFH	Even address
VCS3		$\overline{\text { VCS3 }}$		Odd address
$\overline{\mathrm{VCS2}}$		$\overline{\text { VCS2 }}$	4000 H to 7FFFH	Even address
VCS1		VCS1	0000 H to 3FFFH	Odd address
VCSO		$\overline{\text { VCSO }}$	0000H to 3FFFH	Even address

7．0 Video Memory Interface

7．4 256 KBIT SRAM／16－BIT MPU

Figure 18．16－bit MPU／256 Kbit SRAM Interface

Table 24. 16-bit MPU/256 Kbit SRAM Address Assignment

8.0
 LCD Interface

THIS PAGE INTENTIONALLY BLANK

8.0 LCD INTERFACE

8.1 DC PROTECTION

The LCD panels will be damaged if $V_{L C D}$ is applied to the LCD panel before $V_{D D}$ is applied. To prevent this the LCDENB line should be connected to the enable imput of the VLco control circuitry in the LCD module and the following startup procedure used.

- Set up the control register as required, with LCDE (R1:D1) set to "0".
- Set LCDE to " 1 " to apply V LCD.

When shutting down the system, set LCDENB to " 0 " to switch off $V_{L C D}$ before removing $V_{D D}$ from the LCD panel.

8.2 Y-DRIVERS IN DUAL-LCD PANEL MODE

The SED1351F has a two line vertical retrace period, so when cascaded Y drivers are used to drive two LCD panels, two lines should be left disconnected beween the upper and lower panel.

Figure 19. Cascaded Connection of Y-drivers

8．3－8．3．1

8．0 LCD Interface

8．3 OUTPUT DATA FORMAT

8．3．1 Single LCD／4－bit data

8.3.2 Single LCD/8-bit data

8.3.3 Dual LCD

9.0

Package Dimensions

THIS PAGE INTENTIONALLY BLANK

9.0 PACKAGE DIMENSIONS

9.1 SED1351FoA

Plastic QFP5-100 pin
Unit: mm

9.2 SED1351FLb

Plastic QFP15-100 pin Unit: mm

S-MOS assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent intringement or (b) direct, indirect, special or consequentlal damages. There are no warranties extended or granted by this document. The

