524288-word × 8-bit High Speed CMOS Static RAM

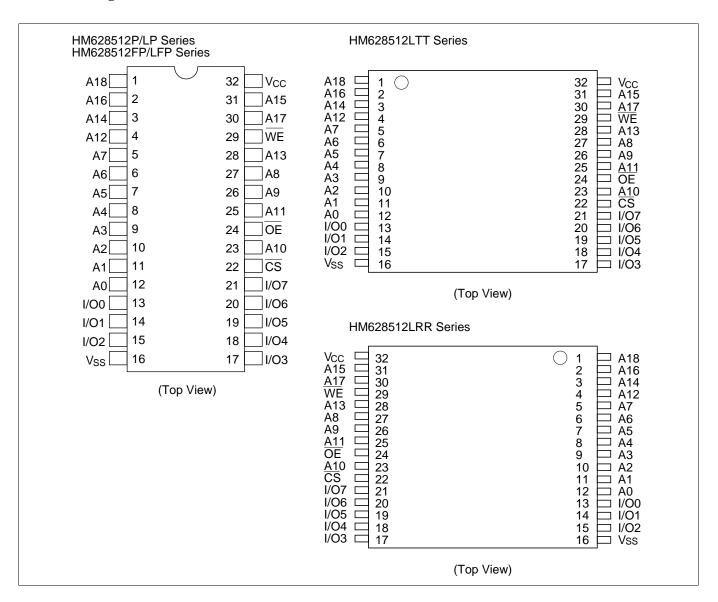
HITACHI

ADE-203-236F (Z) Rev. 6.0 Jun. 9, 1995

Description

The Hitachi HM628512 is a 4-Mbit static RAM organized 512-kword \times 8-bit. It realizes igher density, higher performance and low power consumption by employing 0.5 μ m Hi-CMOS process technology. The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II or 600-mil plastic DIP, is available for high density mounting. LP-version is suitable for battery backup system.

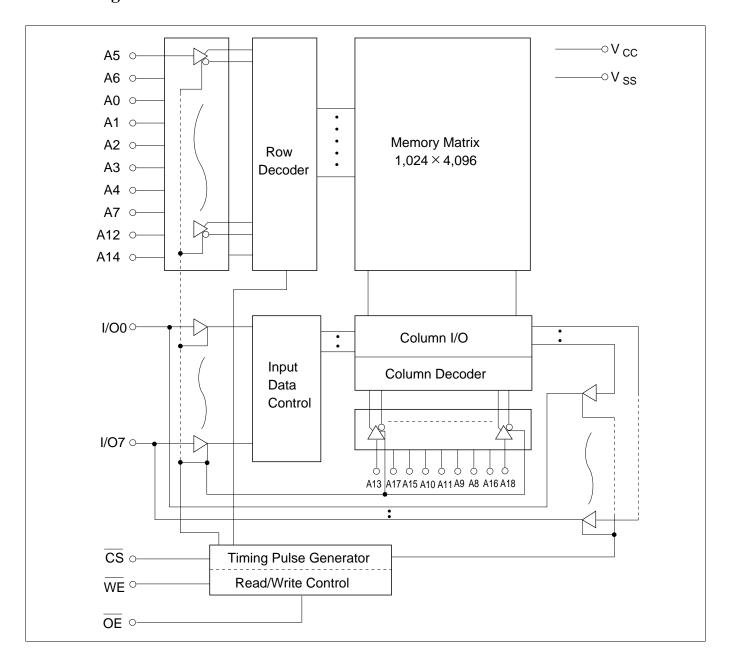
Features


- High speed: Fast access time:
 - 55/65/70 ns (max)
- Low power
 - Standby: 10 μW (typ) (L/L-SL version)
 - Operation: 75 mW (typ) (f = 1 MHz)
- Single 5 V supply
- Completely static memory

 No clock on timing strate areas:
 - No clock or timing strobe required
- Equal access and cycle times
- Common data input and output: Three state output
- Directly TTL compatible: All inputs and outputs
- Capability of battery backup operation (L/L-SL version)

Ordering Information

Type No.	Access Time	Package
HM628512P-5 HM628512P-7	55 ns 70 ns	600-mil 32-pin plastic DIP (DP-32)
HM628512LP-5 HM628512LP-7A HM628512LP-7	55 ns 65 ns 70 ns	
HM628512LP-5SL HM628512LP-7SL	55 ns 70 ns	_
HM628512FP-5 HM628512FP-7	55 ns 70 ns	525-mil 32-pin plastic SOP (FP-32D)
HM628512LFP-5 HM628512LFP-7A HM628512LFP-7	55 ns 65 ns 70 ns	
HM628512LFP-5SL HM628512LFP-7SL	55 ns 70 ns	_
HM628512LTT-5 HM628512LTT-7A HM628512LTT-7	55 ns 65 ns 70 ns	400-mil 32-pin plastic TSOP II (TTP-32D)
HM628512LTT-5SL HM628512LTT-7SL	55 ns 70 ns	_
HM628512LRR-5 HM628512LRR-7A HM628512LRR-7	55 ns 65 ns 70 ns	400-mil 32-pin plastic TSOP II reverse (TTP-32DR)
HM628512LRR-5SL HM628512LRR-7SL	55 ns 70 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 – A18	Address
I/O0 – I/O7	Input/output
CS	Chip select
ŌĒ	Output enable
WE	Write enable
V _{cc}	Power supply
V _{SS}	Ground

Block Diagram

Function Table

WE	CS	ΘĒ	Mode	V _{cc} Current	Dout Pin	Ref. Cycle
X	Н	Х	Not selected	I_{SB}, I_{SB1}	High-Z	_
Н	L	Н	Output disable	I _{cc}	High-Z	_
Н	L	L	Read	I _{cc}	Dout	Read cycle
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS} *1	V _T	-0.5 ^{*2} to +7.0	V
Power dissipation	P_{T}	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	−10 to +85	°C

Notes: 1. Relative to V_{ss}.

2. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

Recommended DC Operating Conditions ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.3 ^{*1}	_	0.8	V

Note: 1. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ±10% , V_{SS} = 0 V)

Parameter		Symbol	Min	Typ ^{*¹}	Max	Unit	Test Conditions
Input leakage current		I _{LI}	_	_	1	μΑ	Vin = V _{ss} to V _{cc}
Output leakage current		I _{LO}	_	_	1	μА	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}, \text{V}_{\text{I/O}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$
Operating power supply current: DC		I _{CC READ}	_	15	25	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \overline{\text{WE}} = \text{V}_{\text{IH}}$ others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
		I _{CC WRITE}	_	20	45	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \overline{\text{WE}} = \text{V}_{\text{IL}}$ others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
Operating power supply current	-5/7A	I _{CC1}	_	70	100	mA	Min cycle, duty = 100%
	-7	I _{CC1}	_	60	90	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{ others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}}$ $\text{I}_{\text{I/O}} = 0 \text{ mA}$
Operating power supply current		I _{CC2}	_	15	30	mA	$\begin{split} &\text{Cycle time} = 1 \; \mu\text{s}, \\ &\text{duty} = 100\% \\ &\text{I}_{\text{I/O}} = 0 \; \text{mA}, \; \overline{\text{CS}} \leq 0.2 \; \text{V} \\ &\text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V}, \; \text{V}_{\text{IL}} \leq 0.2 \; \text{V} \\ &\text{V} \end{split}$
Standby power supply current: DC		I _{SB}	_	1	3	mA	CS = V _{IH}
Standby power supply current (1): DC		I _{SB1}	_	0.02	2	mA	$Vin \ge 0 \text{ V}, \overline{CS} \ge V_{CC} - 0.2 \text{ V}$
			_	2	100*2	μΑ	
			_	2	50 ^{*3}	μΑ	
Output low voltage		V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high voltage		V_{OH}	2.4	_	_	V	$I_{OH} = -1.0 \text{ mA}$

Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and specified loading, and not guaranteed.

- 2. This characteristics is guaranteed only for L version.
- 3. This characteristics is guaranteed only for L-SL version.

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test Conditions
Input capacitance*1	Cin	_	8	pF	Vin = 0 V
Input/output capacitance*1	$C_{I/O}$	_	10	pF	$V_{I/O} = 0 V$

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, unless otherwise noted.)

Test Conditions

• Input pulse levels: 0.8 V to 2.4 V

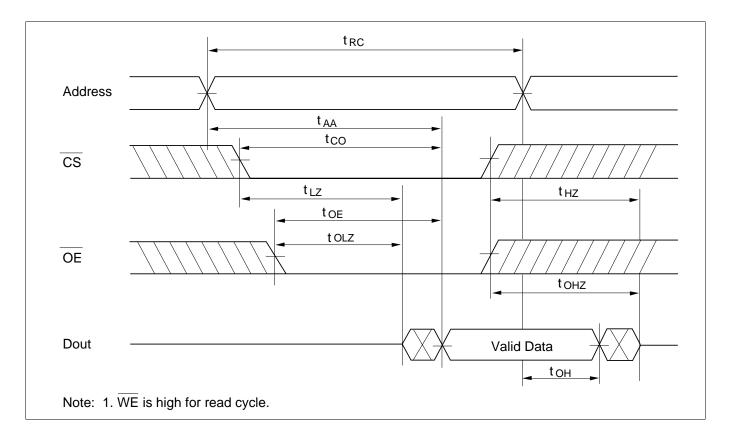
• Input rise and fall time: 5 ns

• Input and output timing reference levels: 1.5 V

• Output load: $1 \text{ TTL Gate} + C_L (100 \text{ pF}) (HM628512-7A/7)$

 $1 \text{ TTL Gate} + C_L (50 \text{ pF}) (HM628512-5)$

(Including scope & jig)


Read Cycle

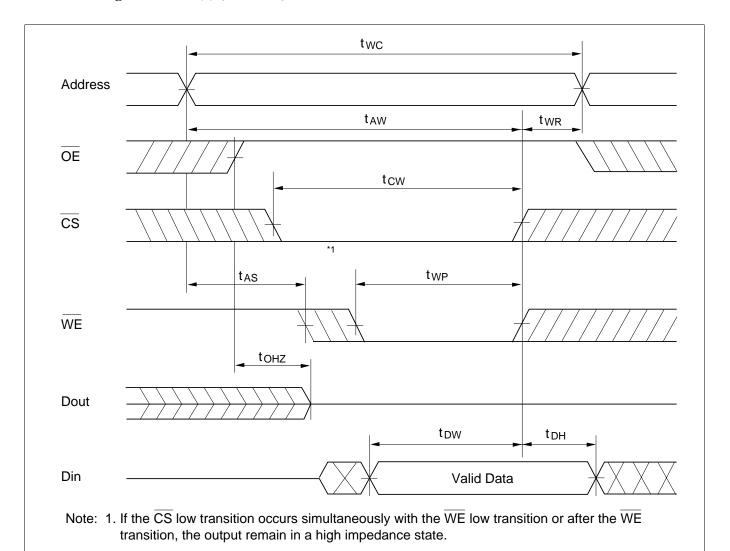
		HM628512							
		-5		-7A		-7			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	65	_	70	_	ns	
Address access time	t _{AA}	_	55	_	60	_	70	ns	
Chip select access time	t _{co}	_	55	_	65	_	70	ns	
Output enable to output valid	t _{OE}		25	_	30	_	35	ns	
Chip selection to output in low-Z	t _{LZ}	10	_	10	_	10	_	ns	2
Output enable to output in low-Z	t _{OLZ}	5	_	5	_	5	_	ns	2
Chip deselection to output in high-Z	t _{HZ}	0	20	0	20	0	25	ns	1, 2
Output disable to output in high-Z	t _{OHZ}	0	20	0	20	0	25	ns	1, 2
Output hold from address change	tou	10	_	10	_	10	_	ns	

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

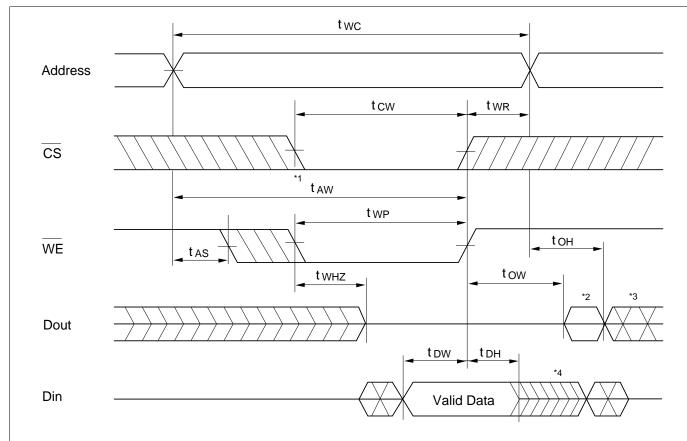
2. This parameter is sampled and not 100% tested.

Read Timing Waveform*1

Write Cycle


1	ч	RЛ	62	Ω	51	2
	п	IVI	nz	n		_

		-5		-7A		-7			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	_	55	_	70	_	ns	
Chip selection to end of write	t _{cw}	50	_	50	_	60	_	ns	2
Address setup time	t _{AS}	0	_	0	_	0	_	ns	3
Address valid to end of write	t _{AW}	50	_	50	_	60	_	ns	
Write pulse width	t _{wP}	40	_	40	_	50	_	ns	1, 8
Write recovery time	t _{wR}	5	_	5	_	5	_	ns	4
WE to output in high-Z	t_{WHZ}	0	20	0	20	0	25	ns	5, 6, 7
Data to write time overlap	t _{DW}	25	_	25	_	30	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	ns	
Output active from output in high-Z	t _{ow}	5	_	5	_	5	_	ns	6
Output disable to output in high-Z	t _{OHZ}	0	20	0	20	0	25	ns	5, 6


Notes: 1. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

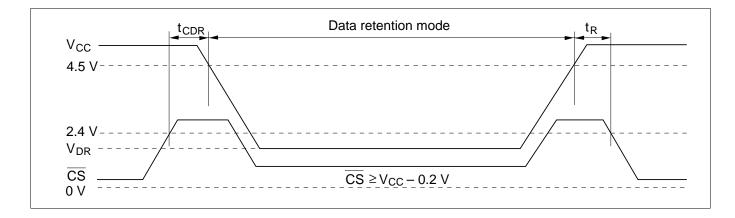
- 2. t_{cw} is measured from \overline{CS} going low to the end of write.
- 3. $t_{\mbox{\scriptsize AS}}$ is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 6. This parameter is sampled and not 100% tested.
- 7. t_{WHZ} is defined as the time at which the outputs acheive the open circuit conditons and is not referred to output voltage levels.
- 8. In the write cycle with \overline{OE} low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention. $t_{WP} \ge t_{DW}$ min + t_{WHZ} max

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)

Notes: 1. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.

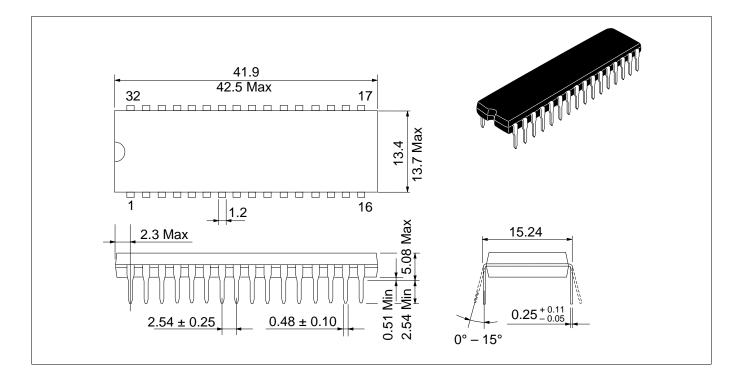
- 2. Dout is the same phase of the write data of this write cycle.
- 3. Dout is the read data of next address.
- 4. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.


Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)

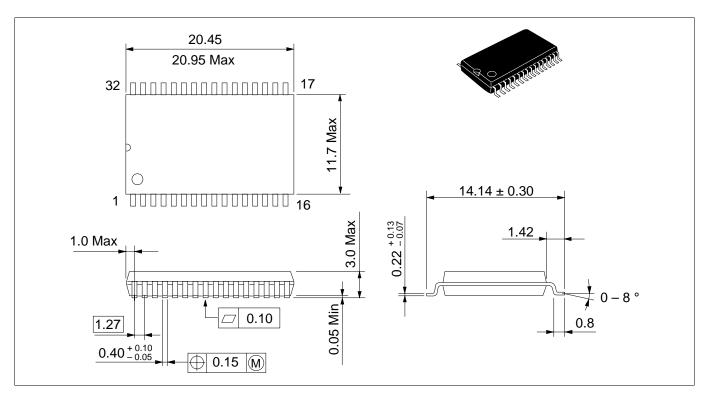
This characteristics is guaranteed only for L/L-SL version.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions*3
V _{cc} for data retention	V_{DR}	2	_	_	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V, Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}	_	1*4	50 ^{*1}	μΑ	V _{CC} = 3.0 V, Vin ≥ 0 V
		_	1*4	15 ^{*2}	μΑ	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5	_	_	ms	

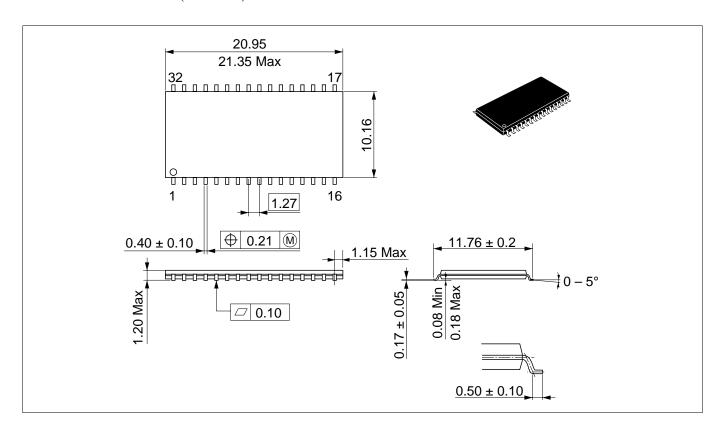
- Notes: 1. For L-version and 20 μ A (max.) at Ta = 0 to 40°C.
 - 2. For SL-version and 3 μ A (max.) at Ta = 0 to 40°C.
 - 3. $\overline{\text{CS}}$ controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. In data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , I/O) can be in the high impedance state.
 - 4. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and specified loading, and not guaranteed.


Low V_{CC} **Data Retention Timing Waveform** (\overline{CS} Controlled)

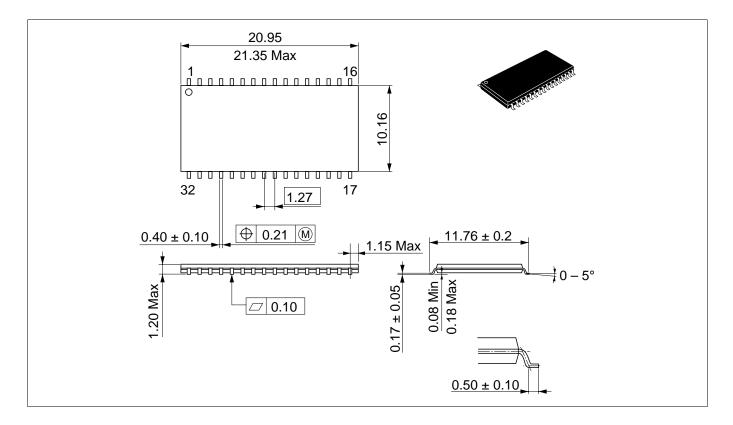
Package Dimensions


HM62851P/LP Series (DP-32)

Unit: mm


HM628512FP/LFP Series (FP-32D)

Unit: mm


HM628512LTT Series (TTP-32D)

Unit: mm

HM628512LRR Series (TTP-32DR)

Unit: mm

