Rev.11.26.07 rfb300/350 1 of 6

RFB300/350 Series Single Output

Total Power: 300 - 350W Input Voltage: 18 - 36 Vdc # of Outputs:

36 - 75 Vdc Single

Special Features

- High efficiency topology
- Wide temperature range, -40 °C to +100 °C @ full power
- High power density $(160 \text{ W/in}^3 \text{ in } 0.4^{\circ} \text{ tall version})$
- Înput voltage range: 18-36 Vdc or 36-75 Vdc
- Output voltage range: 7.2-13.2 Vdc or 16.8-29.4 Vdc
- Remote ON/OFF
- **Operational insulation system**
- Available RoHS compliant 2 Year Warranty

Safety

UL/cUL CAN/CSA 22.2 No. 60950 File No. E135734

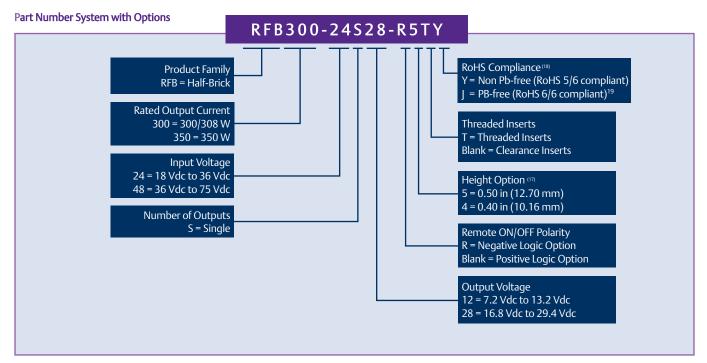
VDE0805/EN60950/IEC950 File No. 10401-3336-0198 Licence No. 40005395

RFB300/350 series is a high efficiency, enclosed, isolated dc-dc converter series in an industry standard half-brick package that provides up to 350 W of output power. The series delivers very high usable output power for today's high performance RF power amplifier and similar applications. The four models in the series feature an input voltage range of 18 Vdc to 36 Vdc and 36 Vdc to 75 Vdc and an output voltage of 12 V and 28 V. The output voltage is adjustable from 7.2 Vdc to 13.2 Vdc or 16.8 Vdc to 29.4 Vdc (not to exceed 308 W for the RFB300 [300 W for the RFB300-24S12] and 350 W for the RFB350). The series also has a remote ON/OFF capability. Overcurrent, overvoltage and overtemperature protection features are included as standard. Negative logic remote ON/OFF and other options are also available. Full international safety approval including EN/IEC60950 VDE and UL/cUL60950 reduces compliance costs and time to market.

Specifications

All specifications are typical at nominal input, full load at 25 °C unless otherwise stated. External output capacitance required (See Note 4).

-0.5-50 Vdc -0.5-100 Vdc
-0.5-100 Vac
-0.5-40 Vdc -0.5-80 Vdc
-0.5-12 Vdc
7.2-13.2 Vdc 16.8-29.4 Vdc
0/25 A, 0/29.2 A 0/11 A, 0/12.5 A
470 μF to 4,700 μF 330 μF to 3,300 μF
5 ms typ.
23.8 A max. @ lo max. 11.2 A max. @ lo max. 13 A max. @ lo max.
12 mA (pk-pk) del 42 mA (pk-pk) del 28 mA (pk-pk)
20 - F
39 μF 13 μF


EMC CHARACTERISTICS		
Conducted emissions Radiated emissions	EN55022 EN55022	See Application Note 167 See Application Note 167
GENERAL SPECIFICATIONS	5	
Efficiency	24 Vin 12 V mod	
Vin = Vin (nom), Iout (max.)	24 Vin 28 V moo 48 Vin 12 V moo 48 Vin 28 V moo	del 88%
Approvals and standards		VDE IEC60950 IECEE CB, UL/cUL60950
Material Flammability		UL94V-0
Weight	0.5 inch tall vers	ion 110 g (3.88 oz.)
MTBF @ 55 °C Telcordia SR-332 Issue 1	12 V model 28 V model	1,900,000 hours min. 2,400,000 hours min.
ENVIRONMENTAL SPECIFI	CATIONS	
Thermal performance	Operating basep temperature	olate, -40 °C to +100 °C -40 °C to +100 °C
	Non-operating	-40 C to +100 C
RC PIN ELECTRICAL INTER	FACE	
Open collector compatible	(See AN 167 for	remote ON/OFF)
RC: ON voltage Open circuit voltage	(See Note 13)	5 V min. 5 V min, 11 V typ 13 V max.
High level leakage current OFF voltage Low level input current	(See Note 14) (See Note 15) (See Note 16)	-25 μA max. 1.2 V max. -250 μA max.

Ordering Information

OUTPUT POWER	INPUT	OUTPUT	OUTPUT CURRENT	OUTPUT CURRENT EFFICIENCY	REGUL	ATION	MODEL	
(MAX.)	VOLTAGE	VOLTAGE	(MIN.)	(MAX.)	(TYP.)	LINE	LOAD	NUMBER (^{18,20})
300 W	18-36 Vdc	7.2-13.2 Vdc	0 A	25 A	86%	±0.15%	±0.2%	RFB300-24S12Y
308 W	18-36 Vdc	16.8-29.4 Vdc	0 A	11 A	90%	±0.15%	±0.2%	RFB300-24S28Y
308 W	36-75 Vdc	16.8-29.4 Vdc	0 A	11 A	91%	±0.15%	±0.2%	RFB300-48S28Y
350 W	36-75 Vdc	7.2-13.2 Vdc	0 A	29.2 A	88%	±0.15%	±0.2%	RFB350-48S12Y ⁽¹⁷⁾
350 W	36-75 Vdc	16.8-29.4 Vdc	0 A	12.5 A	91%	±0.15%	±0.2%	RFB350-48S28Y

Rev.11.26.07 rfb300/350 2 of 6

Rev.11.26.07 rfb300/350 3 of 6

Notes

- 1 Measurement Bandwidth: 20 MHz; Measured with 1 μF ceramic and a 330 μF (470 μF for 12 V output model) aluminum or solid tantalum capacitor across the output terminals.
- 2 Di/dt = 1 A/ μ s; Δl_{out} = ±25% lout (max); Vin = Vnom; lout = Inom. Tested with a 1 μ F ceramic and a 330 μ F (470 μ F for 12 V output model) aluminum electrolytic capacitor across the output.
- 3 External input fusing required. Use a fast acting fuse: 40 A (24 V model), 15 A (48 V, 350 W model).
- 4 lout = lout (max) Measured with the input capacitor, Cbypass = 330 μ F, and 6 μ H inductor in series with the power source. Frequencies >100 kHz.
- 5 Signal line assumed <3 m in length.
- 6 This product is only for inclusion by professional installers within other equipment and must not be operated as a stand-alone product.
- 7 Negative remote ON/OFF option also available. Add suffix '-R' to part number, for example see part numbering system.
- 8 With the enable signal asserted, this is the time from when the input current reaches 10 % of the final steady state value until the output voltage reaches 10 % of the nominal output value. Start-up into resistive load.
- 9 With Vin > Vin (min.) applied for a minimum of 1 second, this is the time from when the primary ON/OFF signal is activated until the output voltage reaches 10 % of the nominal output voltage.
- 10 Minimum effective ESR is 1 m Ω . Minimum phase margin is 35°.
- 11 Measured per ETSI 300 132-2 Section 4.7.2.
- 12 From 10% to 90% of Vout (nom). Full resistive load. 1 μF ceramic and 330 μF
- (470 µF for 12 V model) electrolytic capacitors across the output.
- 10 Minimum effective ESR is $1 \text{ m}\Omega$. Minimum phase margin is 35° .

- 11 Measured per ETSI 300 132-2 Section 4.7.2.
- 12 From 10% to 90% of Vout (nom). Full resistive load. 1 μF ceramic and 330 μF
- (470 μF for 12 V model) electrolytic capacitors across the output.
- 13 Converter guaranteed ON for positive option.
- 14 Maximum driver leakage to insure converter is ON.
- 15 Converter guaranteed OFF for positive option.
- 16 Driver sink current @ Vrc \leq 1.2 V.
- 17 0.40 in height option is not available on the 12 V output model.18 The'Y' suffix indicates that these parts are TSE ToHS 5/6 (non-Pb-free)
- compliant 19 New RoHS 6/6 codes coming soon: RFB300-48S28-R5J; RFB350-48S12-R5J.
- 20 Notice: Some models do not support all options. Please contact your local sales representative.

PROTECTION		
Short-circuit (Brickwall current limiting)	12 V model RFB300 12 V model RFB350 28 V model RFB300 28 V model RFB350	29.4 A 34.4 A 12.9 A 14.7 A
Overvoltage protection (Output shutdown)	12 V model 28 V model	15 V 33.2 V
Overtemperature shutdown	(midpoint of baseplate)	110°C

Rev.11.26.07

rfb300/350 4 of 6

Specifications Contd.

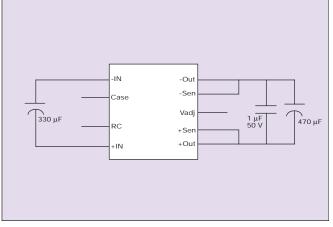


Figure 2 - Standard Application - 12 V Models

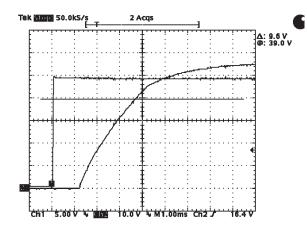


Figure 4 - Typical Turn-on Delay and Risetime RFB350-48S28Y Channel 1: Output Voltage, Channel 2: Input Voltage

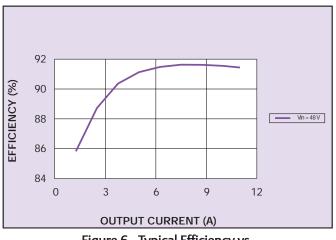


Figure 6 - Typical Efficiency vs. Output Current – RFB300-48S28Y

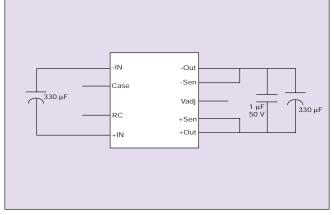


Figure 1 - Standard Application - 28 V Models

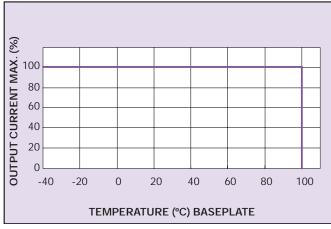


Figure 3 - Derating Curve - All Models

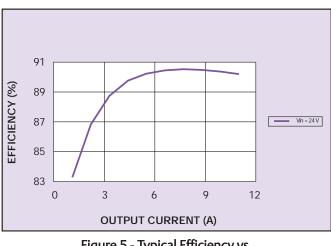


Figure 5 - Typical Efficiency vs. Output Current – RFB300-24S28Y

Specifications Contd.

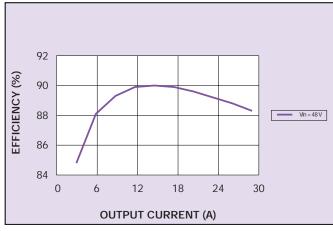


Figure 8 - Typical Efficiency vs. Output Current – RFB350-48S12Y

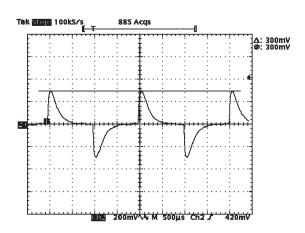


Figure 10 - RFB350-48S28Y Transient Response Load 6.25-9.38 A

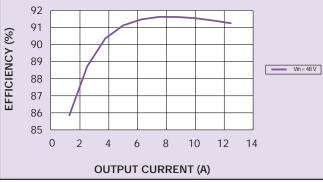


Figure 7 - Typical Efficiency vs. Output Current – RFB350-48S28Y

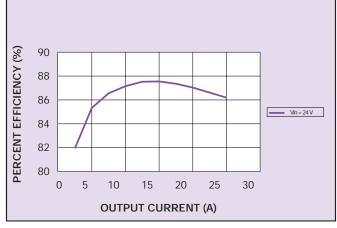
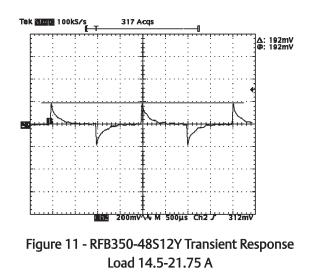
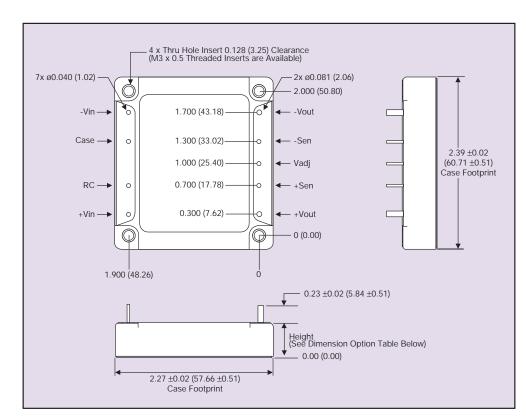




Figure 9 - Typical Efficiency vs. Output Current – RFB300-24S12Y

Rev.11.26.07 rfb300/350 6 of 6

Figure 12 - Mechanical Drawing, Dimension Options and Pin-Out Table

Dimension Options		
Option	Height	
5	0.50 ±0.02 (12.70 0.51)	
4	0.40 ±0.02 (10.16 ±0.51)	

PIN CONNECTIONS		
PIN NUMBER	FUNCTION	
-Vin	Negative Input Terminal	
Case		
RC	ON/OFF Control Terminal	
+Vin	Positive Input Terminal	
+Vout	Positive Output Terminal	
+Sen	Positive Remote Sense	
Vadj	Output Adjustment Trim Pin	
-Sen	Negative Remote Sense	
-Vout	Negative Output Terminal	

Americas

5810 Van Allen Way Carlsbad, CA 92008 USA Telephone: +1 760 930 4600 Facsimile: +1 760 930 0698

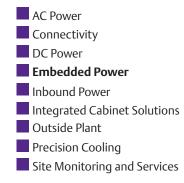
Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom Telephone: +44 (0) 1384 842 211 Facsimile: +44 (0) 1384 843 355

Asia (HK)

16th - 17th Floors, Lu Plaza 2 Wing Yip Street, Kwun Tong Kowloon, Hong Kong Telephone: +852 2176 3333 Facsimile: +852 2176 3888

For global contact, visit:


www.powerconversion.com

technicalsupport@powerconversion.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.

The global leader in enabling business-critical continuity.

EmersonNetworkPower. com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2007 Emerson Electric Co.