

LH28F128BFHED-PWTLZ8

Flash Memory 128Mbit (8Mbitx16)

(Model Number: LHF12FZ8)

Spec. Issue Date: October 26, 2004 Spec No: EL16X218

SPEC No.	ΕI	16X	218	
ISSUE:	Oct.	26,	2004	

To;		
10,		

SPECIFICATIONS

Product Type 128 M b i t Flash Memory

L H 2 8 F 1 2 8 B F H E D — P W T L Z 8

Model No. (LHF12FZ8)

If you have any objections, please contact us before issuing purchasing order.

- * This specifications contains 40 pages including the cover and appendix.
- * Refer to LH28F128BF Series Appendix (FUM00701).

CUSTOMERS ACCEPTANCE

DATE:

BY:

PRESENTED

Dept. General Manager

REVIEWED BY:

PREPARED BY:

Product Development Dept. I System-Flash Division **Integrated Circuits Group**

SHARP CORPORATION

SHARP

LHF12FZ8

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE	PAGE
48-Lead TSOP Pinout	Extended Status Register Definition
Pin Descriptions	Partition Configuration Register Definition 17
Simultaneous Operation Modes	Partition Configuration
Allowed with Eight Planes 5	1 Electrical Specifications
Memory Map 6	11 Alas La Wallas an Dadasa
Identifier Codes and OTP Address	1.1 Absolute Maximum Ratings
for Read Operation 8	1.2 Operating Conditions
Identifier Codes and OTP Address for	1.2.1 Capacitance
Read Operation on Partition Configuration 8	122 AC Innert/Output Test Conditions
OTP Block Address Map for OTP Program 9	1.2.2 AC Input/Output Test Conditions 19
1 0	1.2.3 DC Characteristics
Bus Operation	10.440.00
Commond Definitions	1.2.4 AC Characteristics
Command Definitions	- Read-Only Operations 22
Functions of Block Lock and Block Lock-Down 13	1.2.5 AC Characteristics
	- Write Operations
Block Locking State Transitions upon	
Command Write	1.2.6 Reset Operations
Block Locking State Transitions upon	1.2.7 Block Erase, Bank Erase,
WP# Transition 14	(Page Buffer) Program and
	OTP Program Performance
Status Register Definition	
	2 Related Document Information
	3 Package and packing specification 30

LH28F128BFHED-PWTLZ8 128Mbit (8Mbit×16) Page Mode Dual Work Flash MEMORY

- 128M density with 16Bit I/O Interface
 - 2 Bank Enable (BE₀#, BE₁#) Control
- High Performance Reads
 - 90/35ns 8-Word Page Mode
- Configurative 8-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer)
 Program
 - Status Register for Each Partition
- Low Power Operation
 - 2.7V Read and Write Operations
 - Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - $5\mu s$ /Word (Typ.) at $12V V_{pp}$
- Operating Temperature -40°C to +85°C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Sixteen 4K-word Parameter Blocks
 - Two-hundred and fifty-four 32K-word Main Blocks
 - Top and Bottom Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with V_{PP}≤V_{PPI K}
 - Block Erase, Bank Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 12V No Glue Logic 9μs/Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 48-Lead TSOP
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 8-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

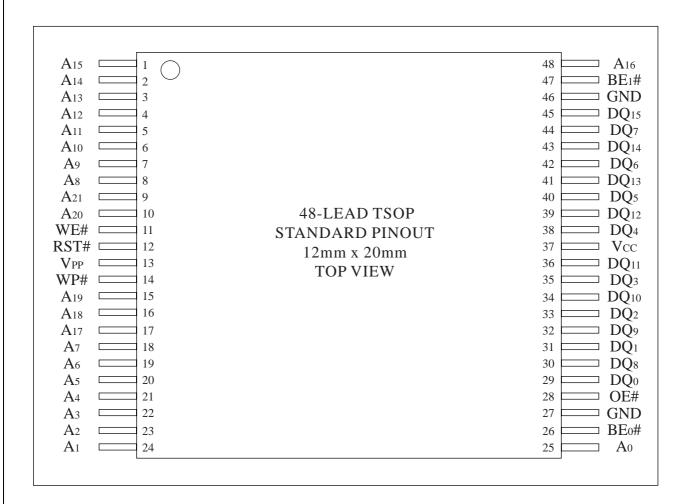


Figure 1. 48-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
A ₀ -A ₂₁	INPUT	ADDRESS INPUTS: Inputs for addresses. A ₀ -A ₂₁
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and partition configuration register code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
BE ₀ #, BE ₁ #	INPUT	BANK ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. BE_0 #-high (V_{IH}) and BE_1 #-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of BE_0 # or BE_1 # or WE # (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
V_{PP}	INPUT	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, bank erase, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum. Use of this pin at 12V beyond these limits may reduce block cycling capability or cause permanent damage.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
GND	SUPPLY	GROUND: Do not float any ground pins.

THEN THE MODES ALLOWED IN THE OTHER PARTITION IS: IF ONE Page Block Read Read Read Read Word OTP Block Bank Program PARTITION IS: Buffer Erase ID/OTP Program Erase Erase Suspend Arrav Status Query **Program** Program Suspend X Read Array X X X Read ID/OTP X X X X X X X X X X X X X Read Status X X X X X X X X X X X X X X X Read Query X X X X X Word Program Page Buffer X X X X X Program **OTP Program** X **Block Erase** X X X \mathbf{X} Bank Erase X Program X X X X X Suspend **Block Erase** X X X X X X X Suspend

Table 2. Simultaneous Operation Modes Allowed with Eight Planes^(1, 2)

NOTES:

SHARP

- 1. "X" denotes the operation available.
- 2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing.

Commands must be written to an address within the block targeted by that command.

Selected by $BE_0#=V_{II}$ (Bank 0) BLOCK NUMBER ADDRESS RANGE 3FF000H - 3FFFFFH 4K-WORD 3FE000H - 3FEFFFH 133 4K-WORD 132 4K-WORD 3FD000H - 3FDFFFH 4K-WORD 3FC000H - 3FCFFFH 3FB000H - 3FBFFFH 4K-WORD 3FA000H - 3FAFFFH 4K-WORD 129 BLOCK NUMBER ADDRESS RANGE 3F9000H - 3F9FFFH 4K-WORD 128 1F8000H - 1FFFFFH 4K-WORD 3F8000H - 3F8FFFH 32K-WORD 127 1F0000H - 1F7FFFH 3F0000H - 3F7FFFH 32K-WORD 62 32K-WORD 126 3E8000H - 3EFFFFH 1E8000H - 1EFFFFH 32K-WORD 61 32K-WORD 1E0000H - 1E7FFFH 3F0000H - 3E7FFFH 124 32K-WORD 60 32K-WORD PLANE 1D8000H - 1DFFFFH 123 32K-WORD 3D8000H - 3DFFFFH 59 32K-WORD 1D0000H - 1D7FFFH 32K-WORD 3D0000H - 3D7FFFH 58 32K-WORD 122 121 32K-WORD 3C8000H - 3CFFFFH 57 32K-WORD 1C8000H - 1CFFFFH 32K-WORD 3C0000H - 3C7FFFH 32K-WORD 1C0000H - 1C7FFFH 120 (PARAMETER 32K-WORD 3B8000H - 3BFFFFH 55 32K-WORD 1B8000H - 1BFFFFH 119 PLANE 54 3B0000H - 3B7FFFH 1B0000H - 1B7FFFH 118 32K-WORD 32K-WORD 53 1A8000H - 1AFFFFH 32K-WORD 3A8000H - 3AFFFFH 117 32K-WORD 52 51 1A0000H - 1A7FFFH 116 32K-WORD 3A0000H - 3A7FFFH 32K-WORD 32K-WORD 398000H - 39FFFFH 32K-WORD 198000H - 19FFFFH 115 114 32K-WORD 390000H - 397FFFH 50 32K-WORD 190000H - 197FFFH (UNIFORM 388000H - 38FFFFH 49 188000H - 18FFFFH 32K-WORD 32K-WORD 113 180000H - 187FFFH 32K-WORD 380000H - 387FFFH 32K-WORD 112 PLANE3 32K-WORD 378000H - 37FFFFH 47 178000H - 17FFFFH 111 32K-WORD 32K-WORD 370000H - 377FFFH 46 32K-WORD 170000H - 177FFFH 110 368000H - 36FFFFH 168000H - 16FFFFH 45 109 32K-WORD 32K-WORD 160000H - 167FFFH 108 32K-WORD 360000H - 367FFFH 44 32K-WORD PLANE1 32K-WORD 358000H - 35FFFFH 43 158000H - 15FFFFH 107 32K-WORD 32K-WORD 350000H - 357FFFH 42 150000H - 157FFFH 106 32K-WORD 105 32K-WORD 348000H - 34FFFFH 41 32K-WORD 148000H - 14FFFFH 32K-WORD 340000H - 347FFFH 140000H - 147FFFH 32K-WORD 104 338000H - 33FFFFH 39 138000H - 13FFFFH 32K-WORD 32K-WORD 103 330000H - 337FFFH 130000H - 137FFFH 32K-WORD 38 102 32K-WORD 128000H - 12FFFFH 328000H - 32FFFFH 101 32K-WORD 37 32K-WORD 100 32K-WORD 320000H - 327FFFH 36 32K-WORD 120000H - 127FFFH 32K-WORD 318000H - 31FFFFH 35 32K-WORD 118000H - 11FFFFH 99 310000H - 317FFFH 110000H - 117FFFH 32K-WORD 32K-WORD 308000H - 30FFFFH 33 97 32K-WORD 32K-WORD 108000H - 10FFFFH 32K-WORD 300000H - 307FFFH 32K-WORD 100000H - 107FFFH 2F8000H - 2FFFFFH OF8000H - OFFFFFH 32K-WORD 32K-WORD 95 2F0000H - 2F7FFFH 30 0F0000H - 0F7FFFH 94 32K-WORD 32K-WORD 2E8000H - 2EFFFFH 93 32K-WORD 29 32K-WORD 0E8000H - 0EEEEH 92 32K-WORD 2E0000H - 2E7FFFH 28 0E0000H - 0E7FFFH 32K-WORD 91 2D8000H - 2DFFFFH 27 32K-WORD 0D8000H - 0DFFFFH 32K-WORD 2D0000H - 2D7FFFH 0D0000H - 0D7FFFH 90 32K-WORD 26 32K-WORD 2C8000H - 2CFFFFH 32K-WORD 0C8000H - 0CFFFFH 32K-WORD 2C0000H - 2C7FFFH 0C0000H - 0C7FFFH 88 32K-WORD 24 32K-WORD 2B8000H - 2BFFFFH 0B8000H - 0BFFFFH 87 32K-WORD 32K-WORD 22 21 2B0000H - 2B7FFFH 0B0000H - 0B7FFFH 86 32K-WORD PLANE 32K-WORD PLANE 2A8000H - 2AFFFFH 0A8000H - 0AFFFFH 85 32K-WORD 32K-WORD 32K-WORD 2A0000H - 2A7FFFH 20 32K-WORD 0A0000H - 0A7FFFH 84 298000H - 29FFFFH 19 098000H - 09FFFFH 83 32K-WORD 32K-WORD 290000H - 297FFFH 090000H - 097FFFH 82 32K-WORD 18 32K-WORD PLANE2 (UNIFORM (UNIFORM 288000H - 28FFFFH 17 32K-WORD 088000H - 08FFFFH 81 32K-WORD 280000H - 287FFFH 080000H - 087FFFH 16 32K-WORD 80 32K-WORD 278000H - 27FFFFH 078000H - 07FFFFH 79 32K-WORD 15 32K-WORD 270000H - 277FFFH 070000H - 077FFFH 78 32K-WORD 14 32K-WORD 77 32K-WORD 268000H - 26FFFFH 13 32K-WORD 068000H - 06FFFFH 260000H - 267FFFH 12 32K-WORD 060000H - 067FFFH 76 32K-WORD ANE 75 32K-WORD 258000H - 25FFFFH 11 32K-WORD 058000H - 05FFFFH 250000H - 257FFFH 050000H - 057FFFH 10 32K-WORD 74 32K-WORD 248000H - 24FFFFH 32K-WORD 048000H - 04FFFFH 73 32K-WORD 040000H - 047FFFH 240000H - 247FFFH 72 펍 8 32K-WORD 32K-WORD 238000H - 23FFFFH 038000H - 03FFFFH 71 32K-WORD 32K-WORD 030000H - 037FFFH 230000H - 237FFFH 70 32K-WORD 6 32K-WORD 028000H - 02FFFFH 32K-WORD 228000H - 22FFFFH 32K-WORD 020000H - 027FFFH 32K-WORD 220000H - 227FFFH 4 32K-WORD 218000H - 21FFFFH 018000H - 01FFFFH 67 32K-WORD 32K-WORD 32K-WORD 210000H - 217FFFH 32K-WORD 010000H - 017FFFH 66 208000H - 20FFFFH 008000H - 00FFFFH 32K-WORD 32K-WORD 65 000000H - 007FFFH 200000H - 207FFFH 0 32K-WORD 64 32K-WORD

Figure 2.1. Memory Map (Top Parameter)

LHF12FZ8 7

Selected by BE₁#=V_{IL} (Bank 1)

SHARP

BLOCK NUMBER ADDRESS RANGE

DL	JCK NOMBER	ADDICESS KA
134	32K-WORD	3F8000H - 3FFFFFH
133	32K-WORD	3F0000H - 3F7FFFH
132	32K-WORD	3E8000H - 3EFFFFH
131	32K-WORD	3E0000H - 3E7FFFH
130	32K-WORD	3D8000H - 3DFFFFH
129	32K-WORD	3D0000H - 3D7FFFH
128	32K-WORD	3C8000H - 3CFFFFH
127	32K-WORD	3C0000H - 3C7FFFH
126	32K-WORD	3B8000H - 3BFFFFH
125	32K-WORD	3B0000H - 3B7FFFH
124	32K-WORD	3A8000H - 3AFFFFH
123	32K-WORD	3A0000H - 3A7FFFH
122	32K-WORD	398000H - 39FFFFH
121	32K-WORD	390000H - 397FFFH
120	32K-WORD	388000H - 38FFFFH
119	32K-WORD	380000H - 387FFFH
118	32K-WORD	378000H - 37FFFFH
117	32K-WORD	370000H - 377FFFH
116	32K-WORD	368000H - 36FFFFH
115	32K-WORD	360000H - 367FFFH
114	32K-WORD	358000H - 35FFFFH
113	32K-WORD	350000H - 357FFFH
112	32K-WORD	348000H - 34FFFFH
111	32K-WORD	340000H - 347FFFH
110	32K-WORD	338000H - 33FFFFH
109	32K-WORD	330000H - 337FFFH
108	32K-WORD	328000H - 32FFFFH
107	32K-WORD	320000H - 327FFFH
106	32K-WORD	318000H - 31FFFFH
105	32K-WORD	310000H - 317FFFH
104	32K-WORD	308000H - 30FFFFH
103	32K-WORD	300000H - 307FFFH
	134 133 132 131 130 129 128 127 126 125 121 122 121 120 119 118 117 116 115 111 110 109 108 105 105	133 32K-WORD 132 32K-WORD 131 32K-WORD 130 32K-WORD 130 32K-WORD 129 32K-WORD 127 32K-WORD 126 32K-WORD 127 32K-WORD 126 32K-WORD 127 32K-WORD 128 32K-WORD 129 32K-WORD 120 32K-WORD 121 32K-WORD 122 32K-WORD 123 32K-WORD 120 32K-WORD 130 32K-WORD 140 32K-WORD 150 32K-WORD 150 32K-WORD 150 32K-WORD 150 32K-WORD 150 32K-WORD 170 32K-WORD

			_
	102	32K-WORD	2F8000H - 2FFFFFH
	101	32K-WORD	2F0000H - 2F7FFFH
	100	32K-WORD	2E8000H - 2EFFFFH
	99	32K-WORD	2E0000H - 2E7FFFH
	98	32K-WORD	2D8000H - 2DFFFFH
	97	32K-WORD	2D0000H - 2D7FFFH
	96	32K-WORD	2C8000H - 2CFFFFH
	95	32K-WORD	2C0000H - 2C7FFFH
l _	94	32K-WORD	2B8000H - 2BFFFFH
Ξ	93	32K-WORD	2B0000H - 2B7FFFH
14	92	32K-WORD	2A8000H - 2AFFFFH
PLANE2 (UNIFORM PLANE	91	32K-WORD	2A0000H - 2A7FFFH
Ы	90	32K-WORD	298000H - 29FFFFH
7	89	32K-WORD	290000H - 297FFFH
2	88	32K-WORD	288000H - 28FFFFH
ΙŌ	87	32K-WORD	280000H - 287FFFH
Œ	86	32K-WORD	278000H - 27FFFFH
ΙZ	85	32K-WORD	270000H - 277FFFH
\Box	84	32K-WORD	268000H - 26FFFFH
$1 \stackrel{\sim}{\sim} 1$	83	32K-WORD	260000H - 267FFFH
国	82	32K-WORD	258000H - 25FFFFH
	81	32K-WORD	250000H - 257FFFH
ΙÝ	80	32K-WORD	248000H - 24FFFFH
딥	79	32K-WORD	240000H - 247FFFH
_	78	32K-WORD	238000H - 23FFFFH
	77	32K-WORD	230000H - 237FFFH
	76	32K-WORD	228000H - 22FFFFH
	75	32K-WORD	220000H - 227FFFH
	74	32K-WORD	218000H - 21FFFFH
	73	32K-WORD	210000H - 217FFFH
	72	32K-WORD	208000H - 20FFFFH
1	71	32K-WORD	200000H - 207FFFH

BLOCK NUMBER ADDRESS RANGE

_			_
	70	32K-WORD	1F8000H - 1FFFFFH
	69	32K-WORD	1F0000H - 1F7FFFH
	68	32K-WORD	1E8000H - 1EFFFFH
	67	32K-WORD	1E0000H - 1E7FFFH
	66	32K-WORD	1D8000H - 1DFFFFH
	65	32K-WORD	1D0000H - 1D7FFFH
	64	32K-WORD	1C8000H - 1CFFFFH
	63	32K-WORD	1C0000H - 1C7FFFH
lΘ	62	32K-WORD	1B8000H - 1BFFFFH
(UNIFORM PLANE)	61	32K-WORD	1B0000H - 1B7FFFH
Ą	60	32K-WORD	1A8000H - 1AFFFFH
	59	32K-WORD	1A0000H - 1A7FFFH
T.	58	32K-WORD	198000H - 19FFFFH
	57	32K-WORD	190000H - 197FFFH
J.	56	32K-WORD	188000H - 18FFFFH
F)	55	32K-WORD	180000H - 187FFFH
Ϊ̈̈	54	32K-WORD	178000H - 17FFFFH
15	53	32K-WORD	170000H - 177FFFH
	52	32K-WORD	168000H - 16FFFFH
17	51	32K-WORD	160000H - 167FFFH
PLANE1	50	32K-WORD	158000H - 15FFFFH
\mathbb{Z}	49	32K-WORD	150000H - 157FFFH
١Ž	48	32K-WORD	148000H - 14FFFFH
1	47	32K-WORD	140000H - 147FFFH
	46	32K-WORD	138000H - 13FFFFH
	45	32K-WORD	130000H - 137FFFH
	44	32K-WORD	128000H - 12FFFFH
	43	32K-WORD	120000H - 127FFFH
	42	32K-WORD	118000H - 11FFFFH
	41	32K-WORD	110000H - 117FFFH
	40	32K-WORD	108000H - 10FFFFH
	39	32K-WORD	100000H - 107FFFH

	38	32K-WORD	0F8000H - 0FFFFFH
	37	32K-WORD	0F0000H - 0F7FFFH
	36	32K-WORD	0E8000H - 0EFFFFH
	35	32K-WORD	0E0000H - 0E7FFFH
ľ	34	32K-WORD	0D8000H - 0DFFFFH
	33	32K-WORD	0D0000H - 0D7FFFH
	32	32K-WORD	0C8000H - 0CFFFFH
	31	32K-WORD	0C0000H - 0C7FFFH
	30	32K-WORD	0B8000H - 0BFFFFH
	29	32K-WORD	0B0000H - 0B7FFFH
	28	32K-WORD	0A8000H - 0AFFFFH
H H	27	32K-WORD	0A0000H - 0A7FFFH
7	26	32K-WORD	098000H - 09FFFFH
Γ'	25	32K-WORD	090000H - 097FFFH
Ь	24	32K-WORD	088000H - 08FFFFH
PLANEO (PARAMETER PLANE)	23	32K-WORD	080000H - 087FFFH
븬	22	32K-WORD	078000H - 07FFFFH
E l	21	32K-WORD	070000H - 077FFFH
M	20	32K-WORD	068000H - 06FFFFH
[A]	19	32K-WORD	060000H - 067FFFH
Y	18	32K-WORD	058000H - 05FFFFH
۲	17	32K-WORD	050000H - 057FFFH
(F	16	32K-WORD	048000H - 04FFFFH
00	15	32K-WORD	040000H - 047FFFH
	14	32K-WORD	038000H - 03FFFFH
A.	13	32K-WORD	030000H - 037FFFH
Ţ	12	32K-WORD	028000H - 02FFFFH
Ь	11	32K-WORD	020000H - 027FFFH
	10	32K-WORD	018000H - 01FFFFH
	9	32K-WORD	010000H - 017FFFH
	8	32K-WORD	008000H - 00FFFFH
	7	4K-WORD	007000H - 007FFFH
	6	4K-WORD	006000H - 006FFFH
	5	4K-WORD	005000H - 005FFFH
	4	4K-WORD	004000H - 004FFFH
	3	4K-WORD	003000H - 003FFFH
	2	4K-WORD	002000H - 002FFFH
	1	4K-WORD	001000H - 001FFFH
	0	4K-WORD	000000H - 000FFFH

Figure 2.2. Memory Map (Bottom Parameter)

SHARP

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000Н	00B0H	1
Device Code	Device Code	000111	00B0H (BE ₀ #=V _{IL})	1.2
		0001H	00B1H (BE ₁ #=V _{IL})	1, 2
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3
Code	Block is Locked	Block	$DQ_0 = 1$	3
	Block is not Locked-Down	Address + 2	$DQ_1 = 0$	3
	Block is Locked-Down		$DQ_1 = 1$	3
Device Configuration Code	Partition Configuration Register	0006Н	PCRC	1, 4
OTP	OTP Lock	0080Н	OTP-LK	1, 5, 7
	OTP	0081-0088H	OTP	1, 6, 7

Table 3. Identifier Codes and OTP Address for Read Operation

NOTES:

- The address A₂₁-A₁₆ are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data.
- 2. Bank 0 (selected by $BE_0\#=V_{IL}$) has its parameter blocks in the plane3 (The highest address within the bank). Bank 1 (selected by $BE_1\#=V_{IL}$) has its parameter blocks in the plane0 (The lowest address within the bank).
- 3. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written. DQ₁₅-DQ₂ are reserved for future implementation.
- 4. PCRC=Partition Configuration Register Code.
- 5. OTP-LK=OTP Block Lock configuration.
- 6. OTP=OTP Block data.
- 7. When the data within OTP block is read, BE_0 # must be V_{IL} . OTP block in Bank 1 (selected by BE_1 #= V_{II}) should not be used.

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾

Partition Configuration Register (2)		Register (2)	Address ⁽³⁾
PCR.10	PCR.9	PCR.8	[A ₂₁ -A ₁₆]
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

- 1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).
- 2. Refer to Table 12 for the partition configuration register.
- When the data within OTP block is read, BE₀# must be V_{IL}.
 OTP block in Bank 1 (selected by BE₁#=V_{IL}) should not be used.

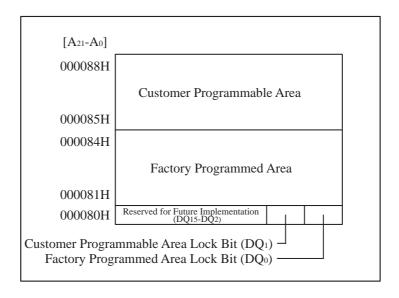


Figure 3. OTP Block Address Map for OTP Program⁽¹⁾ (The area outside 80H~88H cannot be used.)

NOTE:

1. When the OTP program operation is executed, write the OTP Program command with BE $_0$ # at V $_{IL}$. OTP block in Bank 1 (selected by BE $_1$ #=V $_{IL}$) should not be used.

LHF12FZ8 10

Mode		Notes	RST#	BE ₀ #	BE ₁ #	OE#	WE#	Address	V _{PP}	DQ ₀₋₁₅
	Bank 0			V _{IL}	V _{IH}					D
Read Array	Bank 1	6	V_{IH}	V _{IH}	V_{IL}	V_{IL}	V_{IH}	X	X	D_{OUT}
	Inhibited			V _{IL}	V_{IL}	H	N/A			
Output Disable	.		V_{IH}	V _{IL}	V_{IL}	V_{IH}	V_{IH}	X	X	High Z
	Bank 0			V_{IH}	V_{IL}					
Standby	Bank 1		V_{IH}	V _{IL}	V_{IH}	X	X	X	X	High Z
	Bank 0, 1			V _{IH}	V_{IH}					
Reset		3	V_{IL}	X	X	X	X	X	X	High Z
	Bank 0			V _{IL}	V _{IH}			Saa		See
Read Identifier Codes/OTP	Bank 1	6,9	V_{IH}	V _{IH}	V_{IL}	V_{IL}	V_{IH}	Table 3 and	X	Table 3 and Table 4
	Inhibited			V _{IL}	V _{IL}		See See Table 3 and X Table 4	N/A		
	Bank 0			V _{IL}	V_{IH}					See
Read Query	Bank 1	6,7	V_{IH}	V _{IH}	V_{IL}	V_{IL}	V_{IH}		X	Appendix
	Inhibited			V _{IL}	V_{IL}			Аррениіх		N/A
	Bank 0		V _{IH}	V_{IL}	V_{IH}		V _{IL}	X	X	D
Write	Bank 1	4,5, 6,8		V _{IH}	V_{IL}	V_{IH}				D_{IN}
	Inhibited] 0,0		V _{IL}	V _{IL}					N/A

Table 5. Bus Operation^(1, 2)

- 1. Refer to DC Characteristics. When $V_{PP} \le V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} . See DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages.
- 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, (page buffer) program or OTP program are reliably executed when $V_{PP}=V_{PPH1/2}$ and $V_{CC}=2.7V-3.6V$. Command writes involving bank erase are reliably executed when $V_{PP}=V_{PPH1}$ and $V_{CC}=2.7V-3.6V$.
- 5. Refer to Table 6 for valid D_{IN} during a write operation.
- 6. Never hold OE# low and WE# low at the same timing.
- 7. Refer to Appendix of LH28F128BF series for more information about query code.
- 8. While the erase or program operation is executed in one bank, it is inhibited to execute the erase or program operation in another bank.
- 9. When the data within OTP block is read, $BE_0\text{\#}$ must be $V_{IL}.$ OTP block in Bank 1 (selected by BE₁#=V_{II}) should not be used.

LHF12FZ8 11

Table 6. Command Definitions⁽¹²⁾

	Bus]	First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	
Read Array	1		Write	PA	FFH				
Read Identifier Codes/OTP	≥ 2	4,11	Write	PA	90H	Read	IA or OA	ID or OD	
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD	
Read Status Register	2		Write	PA	70H	Read	PA	SRD	
Clear Status Register	1		Write	PA	50H				
Block Erase	2	5	Write	BA	20H	Write	BA	D0H	
Bank Erase	2	5,9	Write	X	30H	Write	X	D0H	
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD	
Page Buffer Program	≥4	5,7	Write	WA	E8H	Write	WA	N-1	
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	ВОН				
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H				
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H	
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H	
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH	
OTP Program	2	9,11	Write	OA	СОН	Write	OA	OD	
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H	

- 1. Bus operations are defined in Table 5.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address. Bank erase is executed to the bank selected by BE₀# or BE₁#.
 - PA=Address within the selected partition.
 - IA=Identifier codes address (See Table 3 and Table 4).
 - QA=Query codes address. Refer to Appendix of LH28F128BF series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
 - PCRC=Partition configuration register code presented on the address A₀-A₁₅.
- 3. ID=Data read from identifier codes. (See Table 3 and Table 4).
 - QD=Data read from query database. Refer to Appendix of LH28F128BF series for details.
 - SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or BE₀# or BE₁# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or BE_0 # or BE_1 #
 - (whichever goes high first) during command write cycles. N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, bank erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of

LHF12FZ8 12

LH28F128BF series for details.

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Bank erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL} . When WP# is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
- 11. When the data within OTP block is read, $BE_0\#$ must be V_{IL} . When the OTP program operation is executed, write the OTP Program command with $BE_0\#$ at V_{IL} . OTP block in Bank 1 (selected by $BE_1\#=V_{IL}$) should not be used.
- 12. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

SHARP

		(2)			
State	WP#	DQ ₁ ⁽¹⁾	$DQ_0^{(1)}$	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

NOTES:

- DQ₀=1: a block is locked; DQ₀=0: a block is unlocked.
 DQ₁=1: a block is locked-down; DQ₁=0: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, bank erase and (page buffer) program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.
- 4. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- OTP (One Time Program) block has the lock function which is different from those described above.

	Curren	t State		Result after L	Lock Command Writte	n (Next State)
State	WP#	DQ_1	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ $_0$ =0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

Table 9.	Block Lockin	g State Ti	ansitions	upon W	/P# Tra	nsition ⁽⁴⁾

Decision Control	Current State				ansition (Next State)	
Previous State	State	WP#	DQ ₁	DQ_0	WP#= $0 \rightarrow 1^{(1)}$	WP#=1→0 ⁽¹⁾
-	[000]	0	0	0	[100]	-
-	[001]	0	0	1	[101]	-
[110] ⁽²⁾					[110]	-
Other than [110] ⁽²⁾	[011]	0	1	1	[111]	-
-	[100]	1	0	0	-	[000]
-	[101]	1	0	1	-	[001]
-	[110]	1	1	0	-	[011] ⁽³⁾
-	[111]	1	1	1	-	[011]

- 1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{II} .
- 2. State transition from the current state [011] to the next state depends on the previous state.
- 3. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

					5	Н	A	R	P
				SHAIL					
SHAIR		SHAKE		SHARP					
SHAKE				SHAIT					
SHARP	SMAKE	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHAKE	SHARP					
SHAKP	SHARP	SHAKP	SHAKP	SHARP					
SHAKP	SHAKP	SHAKP	SHARP	SHARP					
SHARP	SHAKP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					
SHARP	SHARP	SHARP	SHARP	SHARP					

Table 10. S	Status	Register	Definition
-------------	--------	----------	------------

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

SR.7 = WRITE STATE MACHINE STATUS (WSMS)

1 = Ready

0 = Busy

SR.6 = BLOCK ERASE SUSPEND STATUS (BESS)

1 = Block Erase Suspended

0 = Block Erase in Progress/Completed

SR.5 = BLOCK ERASE AND BANK ERASE STATUS (BEFCES)

1 = Error in Block Erase or Bank Erase

0 = Successful Block Erase or Bank Erase

SR.4 = (PAGE BUFFER) PROGRAM AND OTP PROGRAM STATUS (PBPOPS)

1 = Error in (Page Buffer) Program or OTP Program

0 = Successful (Page Buffer) Program or OTP Program

 $SR.3 = V_{PP} STATUS (VPPS)$

 $1 = V_{PP}$ LOW Detect, Operation Abort

 $0 = V_{pp} OK$

SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS)

1 = (Page Buffer) Program Suspended

0 = (Page Buffer) Program in Progress/Completed

SR.1 = DEVICE PROTECT STATUS (DPS)

1 = Erase or Program Attempted on a Locked Block, Operation Abort

0 = Unlocked

SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.

Check SR.7 to determine block erase, bank erase, (page buffer) program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, bank erase, (page buffer) program, set/clear block lock bit, set block lock-down bit, set partition configuration register attempt, an improper command sequence was entered.

SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Bank Erase, (Page Buffer) Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when V_{pp}≠V_{ppH1}, V_{ppH2} or V_{ppLK}

SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Bank Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
SMS	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

XSR.15-8 = RESERVED FOR FUTUREENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

1 = Page Buffer Program available

0 = Page Buffer Program not available

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.

XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

SHARP

rable 12. Partition	Configuration	Register Definition

R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R)

PCR.10-8 = PARTITION CONFIGURATION (PC2-0)

000 = No partitioning. Dual Work is not allowed.

001 = Plane1-3 are merged into one partition. (default in Bank 1 selected by $BE_1\#=V_{IL}$)

010 = Plane 0-1 and Plane2-3 are merged into one partition respectively.

100 = Plane 0-2 are merged into one partition. (default in Bank 0 selected by $BE_0\#=V_{II}$)

011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

111 = There are four partitions in this configuration.

Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.

PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After power-up or device reset, PCR10-8 (PC2-0) is set to "001" in Bank 1 and "100" in Bank 0.

See Figure 4 for the detail on partition configuration.

PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register.

PC2 PC1 PC0	PARTITIONING FOR DUAL WORK	PC2 PC1 PC0 PARTITIONING FOR DUAL WORK
0 0 0	PLANE3 PLANE1 PLANE1 PLANE0	PARTITION2 PARTITION1 PARTITION0 0 1 1 EBURDAL BARBAR STATE OF THE PARTITION PARTITIO
0 0 1	PARTITION PARTITION PLANE PLAN	PARTITION2 PARTITION1 PARTITION0 1 1 0 EBURDAL FOR THE STATE OF THE S
0 1 0	PLANE3 0NOITITARA PLANE3 PLANE1 PLANE1 PLANE3	PARTITION2 PARTITION1 PARTITION0 1 0 1 PARTITION2 PARTITION1 PARTITION0 1 0 1
1 0 0	0/O/OITIT/ANE INOITIT/ANE INOI	PARTITION3 PARTITION2 PARTITION1 PARTITION0 1 1 1 BLANE

Figure 4. Partition Configuration

18

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

During Read, Erase and Program ...-40°C to +85°C (1)

Storage Temperature

During under Bias....-40°C to +85°C During non Bias...--65°C to +125°C

Voltage On Any Pin

(except V_{CC} and V_{PP})......-0.5V to $V_{CC}+0.5V^{(2)}$

 V_{CC} Supply Voltage-0.2V to +3.9V $^{(2)}$

V_{PP} Supply Voltage-0.2V to +12.6V ^(2, 3, 4)

Output Short Circuit Current 100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for extended temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
- 3. Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns.
- 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V _{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V _{PPH2}	11.7	12	12.3	V	1, 2
Main Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Main Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at V _{PPH2}				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- 2. Applying V_{pp} =11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{pp} =11.7V-12.3V is not allowed and can cause damage to the device.

SHARP

LHF12FZ8

19

1.2.1 Capacitance⁽¹⁾ (T_A=+25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C_{IN}	V _{IN} =0.0V		12	16	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		20	24	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

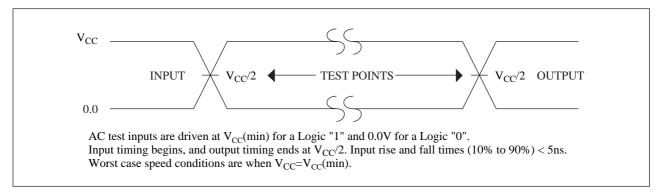


Figure 5. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.6V

Figure 6. Transient Equivalent Testing Load Circuit

Table 13. Configuration Capacitance Loading Value

Test Configuration	C _L (pF)
V _{CC} =2.7V-3.6V	50

20

1.2.3 DC Characteristics

 $V_{CC} = 2.7V - 3.6V$

Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current		1	-2.0		+2.0	μΑ	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Cur	rent	1	-2.0		+2.0	μΑ	V _{IN} /V _{OUT} =V _{CC} or GND
I_{CCS}	V _{CC} Standby Curren	V _{CC} Standby Current			8	40	μА	$V_{CC}=V_{CC}Max.,$ $BE_0\#=BE_1\#=RST\#=$ $V_{CC}\pm0.2V,$ $WP\#=V_{CC}$ or GND
I _{CCAS}	V _{CC} Automatic Power Savings Current		1,4		8	40	μА	$V_{CC}=V_{CC}Max.,$ $BE_0\#$ or $BE_1\#=$ $GND\pm0.2V,$ $WP\#=V_{CC}$ or GND
I_{CCD}	V _{CC} Reset Power-De	own Current	1		8	40	μΑ	RST#=GND±0.2V
T	Average V _{CC} Read Current Normal Mode		1,7		15	25	mA	$V_{CC}=V_{CC}Max.,$ $BE_0\#$ or $BE_1\#=V_{IL},$
I_{CCR}	Average V _{CC} Read Current Page Mode	8 Word Read	1,7		5	10	mA	OE#=V _{IH} , f=5MHz
ī	V _{CC} (Page Buffer) P	rogram Current	1,5,7		20	60	mA	V _{PP} =V _{PPH1}
I_{CCW}	V _{CC} (Fage Bullet) F	rogram Current	1,5,7		10	20	mA	V _{PP} =V _{PPH2}
I	V _{CC} Block Erase, Ba	ank	1,5,7		10	30	mA	V _{PP} =V _{PPH1}
I_{CCE}	Erase Current		1,5,7		10	30	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend	-	1,2,7		10	200	μА	BE ₀ #=BE ₁ #=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read	d Current	1,6,7		4	10	μΑ	$V_{PP} \leq V_{CC}$
ĭ	V _{PP} (Page Buffer) P	rogram Current	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPW}	V pp (Fage Bullet) F	rogram Current	1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
Inne	V _{PP} Block Erase, Bank		1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPE}	Erase Current		1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
I _{PPWS}	V _{PP} (Page Buffer) Program		1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
-PPWS	Suspend Current		1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}
I _{PPES}	V _{PP} Block Erase Sus	snend Current	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
PPES	, pp Block Eluse Bus	Spond Carront	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}

DC Characteristics (Continued)

$V_{CC} = 2.7V - 3.6V$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CC} + 0.4	V	
V _{OL}	Output Low Voltage	5			0.2	V	V _{CC} =V _{CC} Min., I _{OL} =100μA
V _{OH}	Output High Voltage	5	V _{CC} -0.2			V	V _{CC} =V _{CC} Min., I _{OH} =-100μA
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V_{PPH1}	V _{PP} during Block Erase, Bank Erase, (Page Buffer) Program or OTP Program Operations		1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, (Page Buffer) Program or OTP Program Operations	6	11.7	12	12.3	V	
V_{LKO}	V _{CC} Lockout Voltage		1.5			V	

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified.
- 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} .
- 3. Block erase, bank erase, (page buffer) program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).
- 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 5. Sampled, not 100% tested.
- 6. V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, bank erase, (page buffer) program and OTP program cannot be executed and should not be attempted.
 - Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
 - Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.
- 7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		90		ns
t _{AVQV}	Address to Output Delay			90	ns
t _{ELQV}	BE ₀ # or BE ₁ # to Output Delay	3		90	ns
t _{APA}	Page Address Access Time			35	ns
t_{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	$BE_0\#$ or $BE_1\#$ or $OE\#$ to Output in High Z, Whichever Occurs First	2		20	ns
$t_{\rm ELQX}$	BE ₀ # or BE ₁ # to Output in Low Z	2	0		ns
t_{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, BE ₀ # or BE ₁ # or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to BE ₀ # or BE ₁ #, OE# Going Low for Reading Status Register	4, 6	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from BE ₀ # or BE ₁ #, OE# Going Low for Reading Status Register	5, 6	30		ns
$t_{\rm EHEL}, t_{\rm GHGL}$	BE ₀ # or BE ₁ #, OE# Pulse Width High for Reading Status Register	6	30		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.

- OE# may be delayed up to t_{ELQV}—t_{GLQV} after the falling edge of BE₀# or BE₁# without impact to t_{ELQV}.
 Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of BE₀# or BE₁# or OE# (whichever goes low last).
 Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of BE₀# or BE₁# or OE# (whichever goes low last).
 Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations.

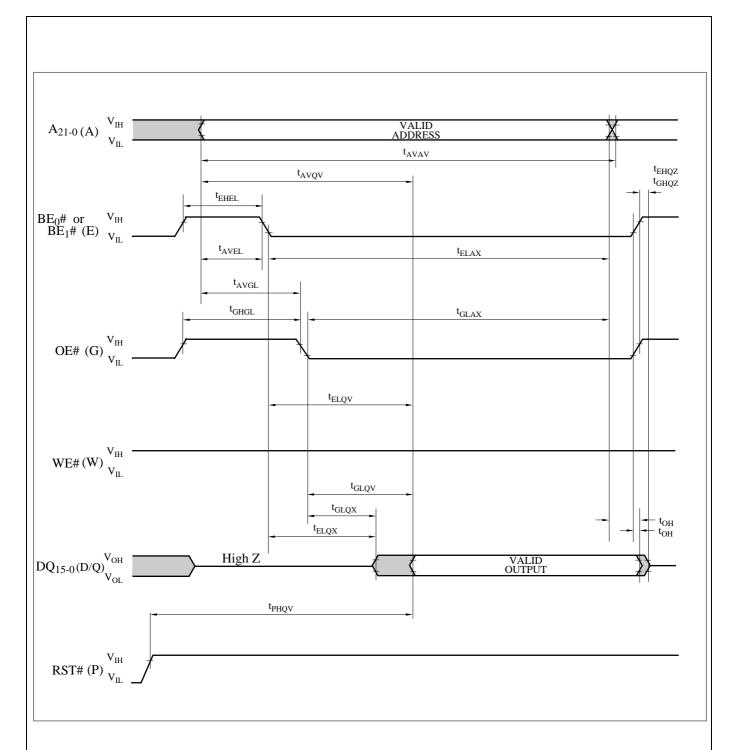


Figure 7. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

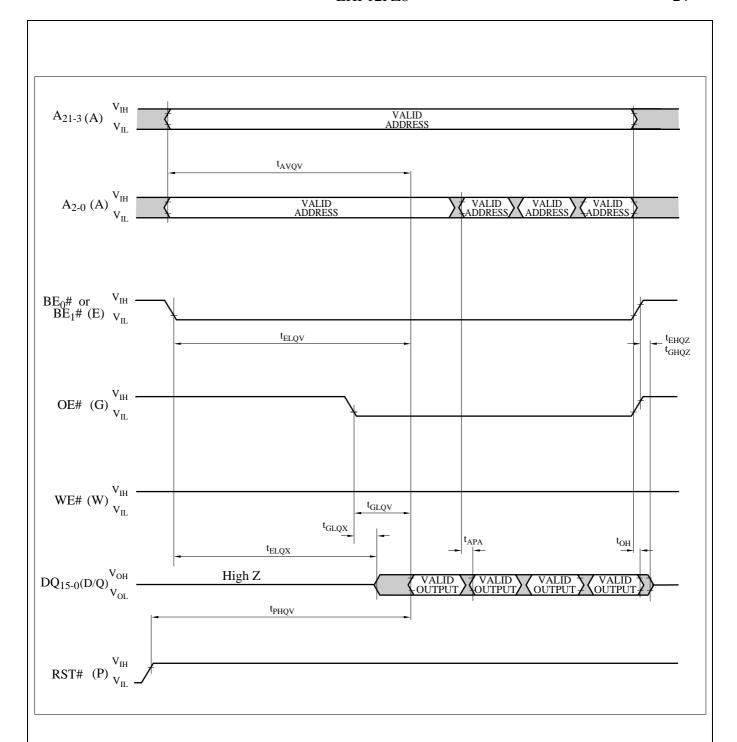
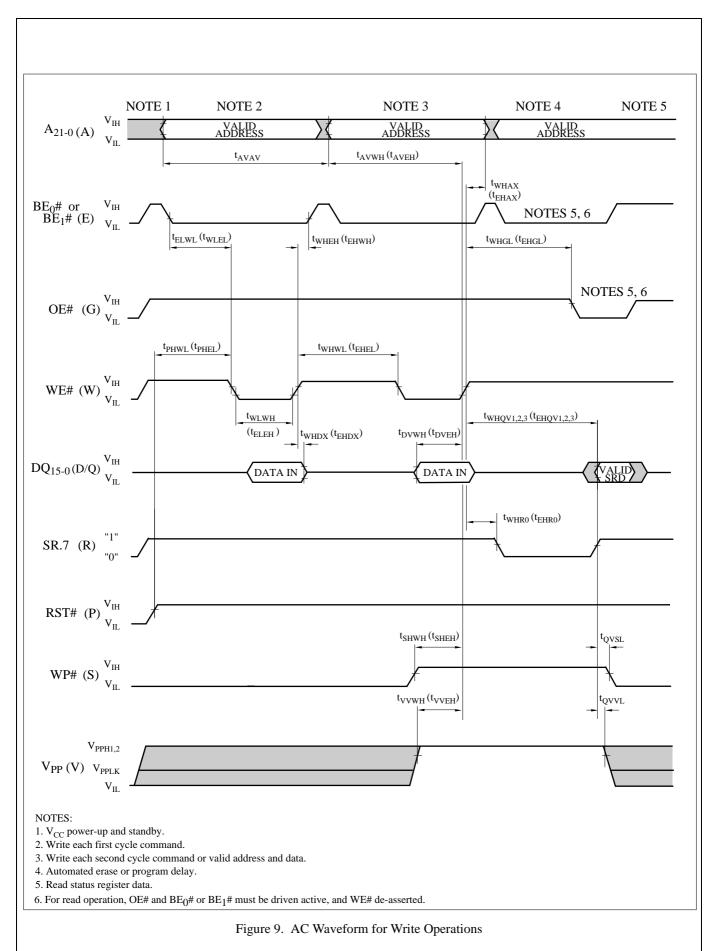


Figure 8. AC Waveform for Asynchronous Page Mode Read Operations from Main Blocks or Parameter Blocks

1.2.5 AC Characteristics - Write Operations^{(1), (2)}


V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		90		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (BE ₀ # or BE ₁ #) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	BE ₀ # or BE ₁ # (WE#) Setup to WE# (BE ₀ # or BE ₁ #) Going Low		0		ns
t _{WLWH} (t _{ELEH})	WE# (BE ₀ # or BE ₁ #) Pulse Width	4	60		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (BE ₀ # or BE ₁ #) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (BE ₀ # or BE ₁ #) Going High	8	50		ns
t _{WHEH} (t _{EHWH})	$BE_0\#$ or $BE_1\#$ (WE#) Hold from WE# ($BE_0\#$ or $BE_1\#$) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (BE ₀ # or BE ₁ #) High		0		ns
$t_{WHAX} (t_{EHAX})$	Address Hold from WE# (BE ₀ # or BE ₁ #) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (BE ₀ # or BE ₁ #) Pulse Width High	5	30		ns
$t_{SHWH} (t_{SHEH})$	WP# High Setup to WE# (BE ₀ # or BE ₁ #) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (BE ₀ # or BE ₁ #) Going High	3	200		ns
$t_{\mathrm{WHGL}} (t_{\mathrm{EHGL}})$	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (BE ₀ # or BE ₁ #) High to SR.7 Going "0"	3, 7		t _{AVQV} + 50	ns

- 1. The timing characteristics for reading the status register during block erase, bank erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either BE₀# or BE₁# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (twp) is defined from the falling edge of BE₀# or BE₁# or WE# (whichever goes low last) to the rising
- edge of BE₀# or BE₁# or WE# (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.

 5. Write pulse width high (t_{WPH}) is defined from the rising edge of BE₀# or BE₁# or WE# (whichever goes high first) to the falling edge of BE₀# or BE₁# or WE# (whichever goes low last). Hence, twpH=twHwL=teHeL=twHeL=teHwL.
- 6. V_{PP} should be held at $V_{PP} = V_{PPH1/2}$ until determination of block erase, (page buffer) program or OTP program success (SR.1/3/4/5=0) and held at $V_{PP}=V_{PPH1}$ until determination of bank erase success (SR.1/3/5=0).
- 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVOV}+100ns.
- 8. Refer to Table 6 for valid address and data for block erase, bank erase, (page buffer) program, OTP program or lock bit configuration.

1.2.6 Reset Operations

HARP

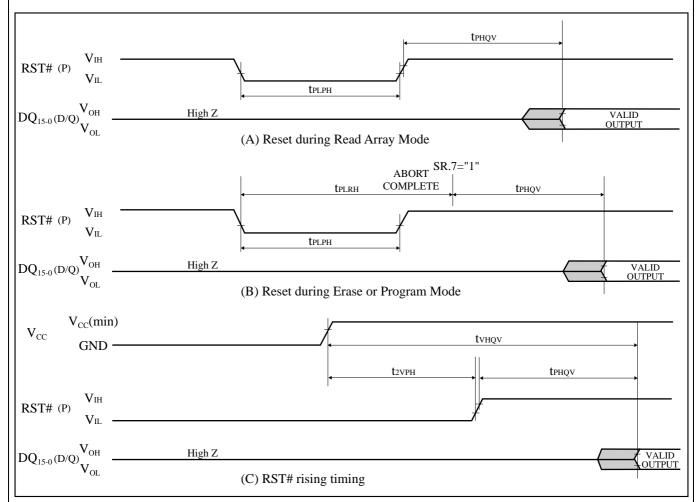


Figure 10. AC Waveform for Reset Operations

Reset AC Specifications (V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
$t_{\rm PLPH}$	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	V _{CC} 2.7V to RST# High	1, 3, 5	100		ns
t _{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

- 1. A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV}.
- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, bank erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Bank Erase, (Page Buffer) Program and OTP Program Performance⁽³⁾

 V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Page Buffer Command is		_{PP} =V _{PPI} In Systen			_{PP} =V _{PPI} ⁄Ianufactu		Unit
			Used or not Used		Typ.(1)	Max. ⁽²⁾	Min.	Typ.(1)	Max. ⁽²⁾	
two	4K-Word Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	S
t_{WPB}	Program Time	2	Used		0.03	0.12		0.02	0.06	S
tune	32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1.0	s
t_{WMB}	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
t_{EHQV1}	Word Frogram Time	2	Used		7	100		5	90	μs
$t_{\mathrm{WHOV1}}/$ t_{EHOV1}	OTP Program Time	2, 6	Not Used		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	S
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	S
	Bank Erase Time	2			80	700				S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

- 1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
- 2. Excludes external system-level overhead.
- 3. Sampled, but not 100% tested.
- 4. A latency time is required from writing suspend command (WE# or BE₀# or BE₁# going high) until SR.7 going "1".
- 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.
- 6. When the OTP program operation is executed, write the OTP Program command with BE_0 # at V_{IL} . OTP block in Bank 1 (selected by BE_1 #= V_{II}) should not be used.

29

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F128BF series Appendix

NOTE:

SHARP

1. International customers should contact their local SHARP or distribution sales offices.

Package and packing specification

[Applicability]

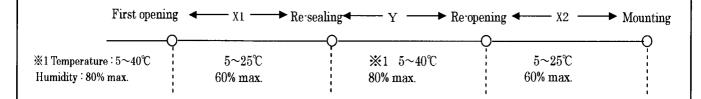
This specification applies to IC package of the LEAD-FREE delivered as a standard specification.

1.Storage Conditions.

- 1-1. Storage conditions required before opening the dry packing.
 - Normal temperature : 5~40°C
 - Normal humidity: 80% (Relative humidity) max.
 - *"Humidity" means "Relative humidity"

1-2. Storage conditions required after opening the dry packing.

In order to prevent moisture absorption after opening, ensure the following storage conditions apply:


- (1) Storage conditions for one-time soldering. (Convection reflow*1, IR/Convection reflow.*1, or Manual soldering.)
 - Temperature : 5~25°C
 - · Humidity: 60% max.
 - · Period: 72 hours max. after opening.
- (2) Storage conditions for two-time soldering. (Convection reflow.*1, IR/Convection reflow.*1)
 - a. Storage conditions following opening and prior to performing the 1st reflow.
 - Temperature : 5~25°C
 - · Humidity: 60% max.
 - Period: 72 hours max. after opening.
 - b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow.
 - Temperature : 5~25°C
 - · Humidity: 60% max.
 - Period: 72 hours max. after completion of the 1st reflow.

1-3. Temporary storage after opening.

To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing.

The storage period, temperature and humidity must be as follows:

- (1) Storage temperature and humidity.
 - **※1**: External atmosphere temperature and humidity of the dry packing.

(2) Storage period.

- X1+X2: Refer to Section 1-2(1) and (2)a, depending on the mounting method.
- Y : Two weeks max.

^{*1:} Air or nitrogen environment.

2. Baking Condition.

- (1) Situations requiring baking before mounting.
 - Storage conditions exceed the limits specified in Section 1-2 or 1-3.
 - Humidity indicator in the desiccant was already red (pink) when opened.
 (Also for re-opening.)
- (2) Recommended baking conditions.
 - · Baking temperature and period :

 120° C for $16\sim24$ hours.

- · The above baking conditions apply since the trays are heat-resistant.
- (3) Storage after baking.
 - After baking, store the devices in the environment specified in Section 1-2 and mount immediately.
- 3. Surface mount conditions.

The following soldering condition are recommended to ensure device quality.

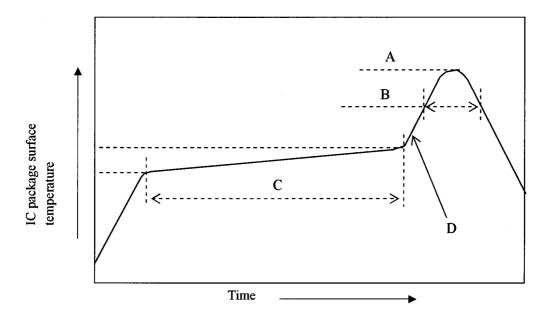
- 3-1. Soldering.
- (1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment)
 - · Temperature and period :

A) Peak temperature.

250°C max.

B) Heating temperature.

40 to 60 seconds as 220°C


C) Preheat temperature.

It is 150 to 200°C, and is 120±30 seconds

D) Temperature increase rate.

It is 1 to 3°C/seconds

- Measuring point : IC package surface.
- · Temperature profile:

SHARP

(2) Manual soldering (soldering iron) (one-time soldering only)

Soldering iron should only touch the IC's outer leads.

· Temperature and period :

350℃ max. for 3 seconds / pin max.

(Soldering iron should only touch the IC's outer leads.)

- · Measuring point : Soldering iron tip.
- 4. Condition for removal of residual flux.
 - (1) Ultrasonic washing power: 25 watts / liter max.
 - (2) Washing time: Total 1 minute max.
- (3) Solvent temperature : 15~40°C
- 5. Package outline specification.

Refer to the attached drawing.

(Plastic body dimensions do not include burr of resin.)

The contents of LEAD-FREE TYPE application of the specifications. (*2)

- 6. Markings.
 - 6-1. Marking details. (The information on the package should be given as follows.)

(1) Product name

LH28F128BFHED-PWTLZ8

(2) Company name

: SHARP

(3) Date code

(Example) YYWW XXX

YY -

Denotes the production year. (Last two digits of the year.)

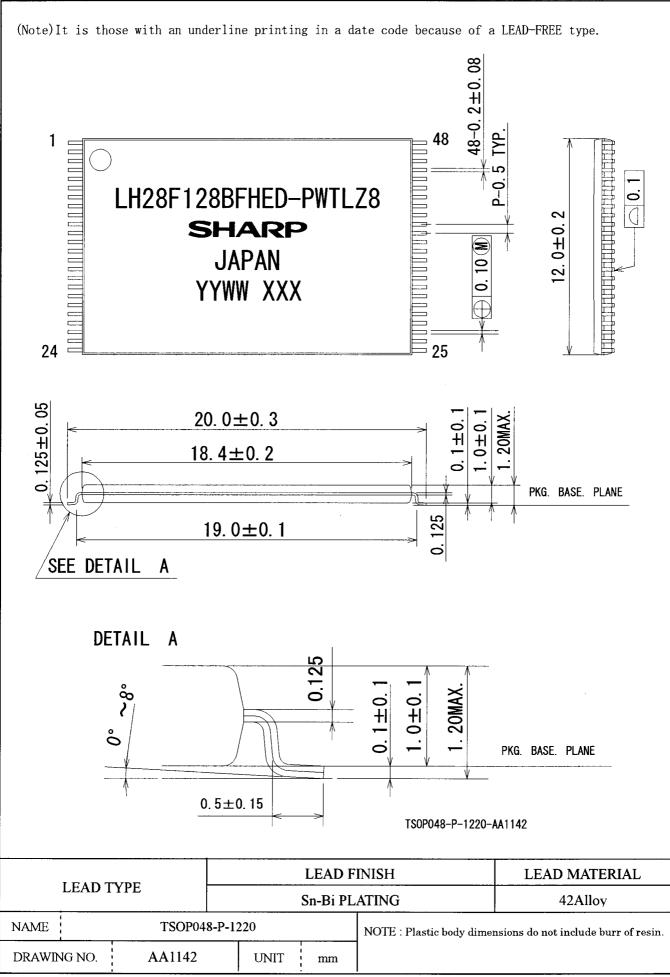
WW

Denotes the production week. $(01 \cdot 02 \cdot \sim \cdot 52 \cdot 53)$

 $XXX \rightarrow$

Denotes the production ref. code ($1 \sim 3$ digits).

- (4) "JAPAN" indicates the country of origin.
- 6-2. Marking layout.


The layout is shown in the attached drawing.

(However, this layout does not specify the size of the marking character and marking position.)

*2 The contents of LEAD-FREE TYPE application of the specifications.

LEAD FINISH or BALL TYPE	LEAD-FREE TYPE (Sn-Bi)
DATE CODE	They are those with an underline.
The word of " LEAD FREE" is printed on the packing label	Printed

7. Packing Specifications (Dry packing for surface mount packages.)

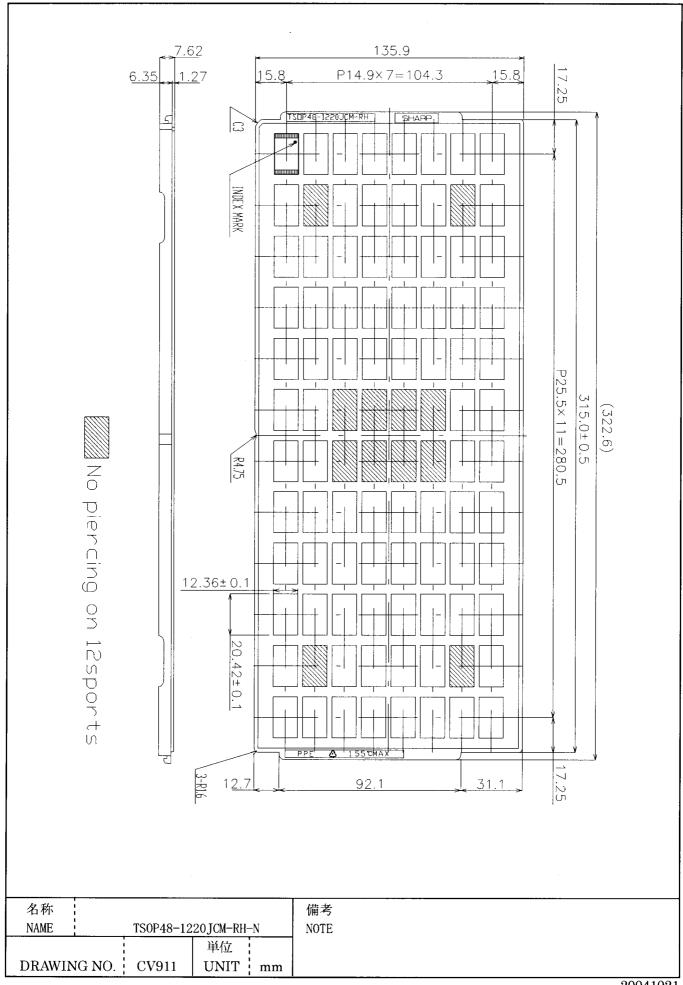
7-1. Packing materials.

Material name	Material specifications	Purpose
Inner carton	Cardboard (960 devices / inner carton	Packing the devices.
	max.)	(10 trays / inner carton)
Tray	Conductive plastic (96 devices / tray)	Securing the devices.
Upper cover tray	Conductive plastic (1 tray / inner carton)	Securing the devices.
Laminated aluminum	Aluminum polyethylene	Keeping the devices dry.
bag		
Desiccant	Silica gel	Keeping the devices dry.
Label	Paper	Indicates part number,
		quantity, and packed date.
PP band	Polypropylene (3 pcs. / inner carton)	Securing the devices.
Outer carton	Cardboard (3840 devices / outer carton	Outer packing.
	max.)	

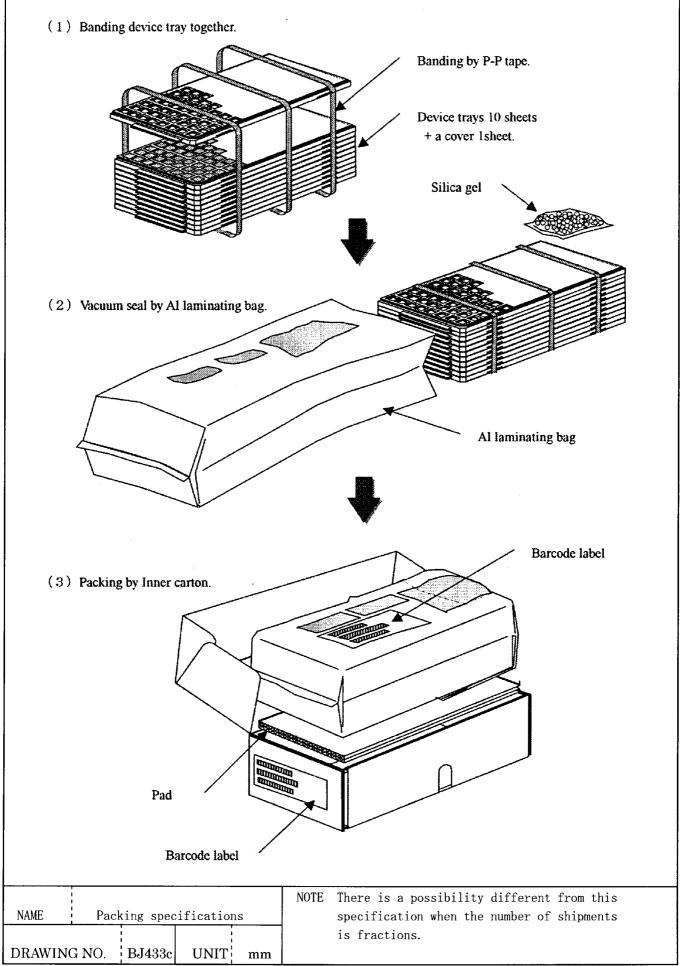
(Devices must be placed on the tray in the same direction.)

7-2. Outline dimension of tray.

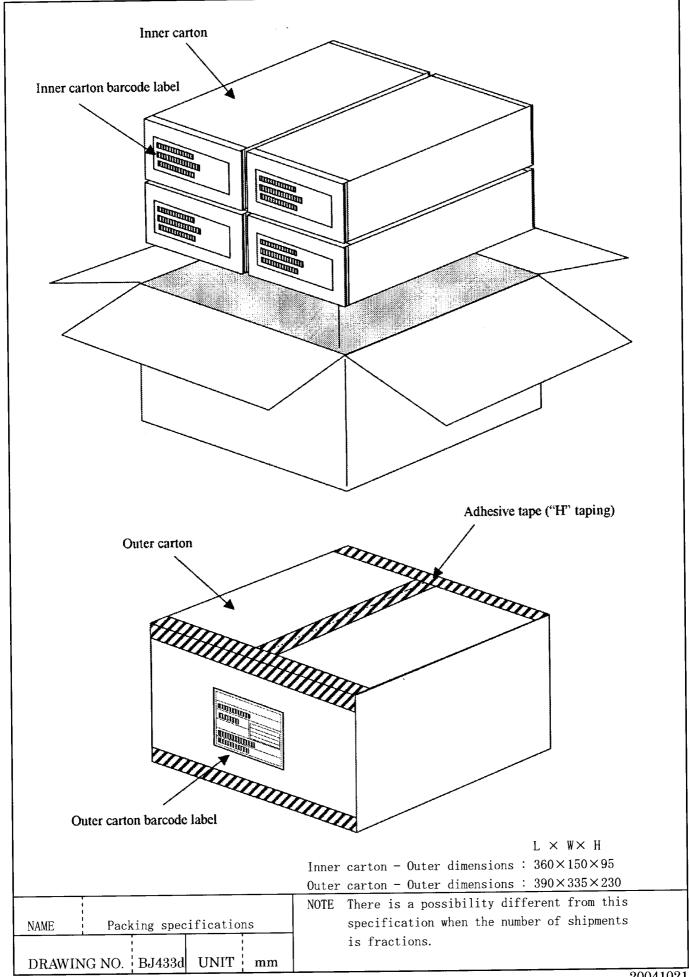
Refer to the attached drawing.

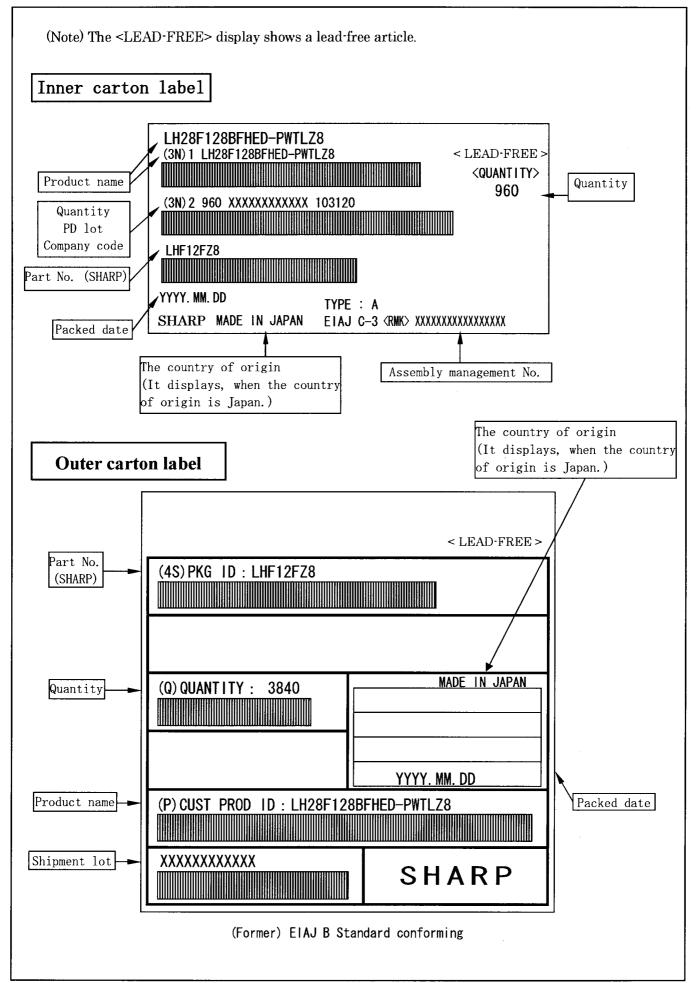

7-3. Outline dimension of carton.

Refer to the attached drawing.


- 8. Precautions for use.
 - (1) Opening must be done on an anti-ESD treated workbench.
 All workers must also have undergone anti-ESD treatment.
 - (2) The trays have undergone either conductive or anti-ESD treatment.

 If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
 - (3) The devices should be mounted within one year of the date of delivery.





A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

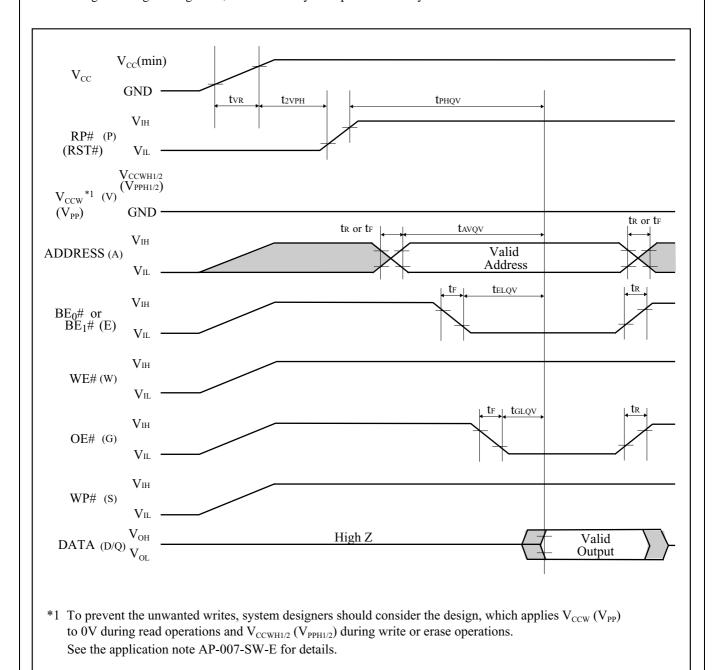


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t_{F}	Input Signal Fall Time	1, 2		1	μs/V

- 1. Sampled, not 100% tested.
- 2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

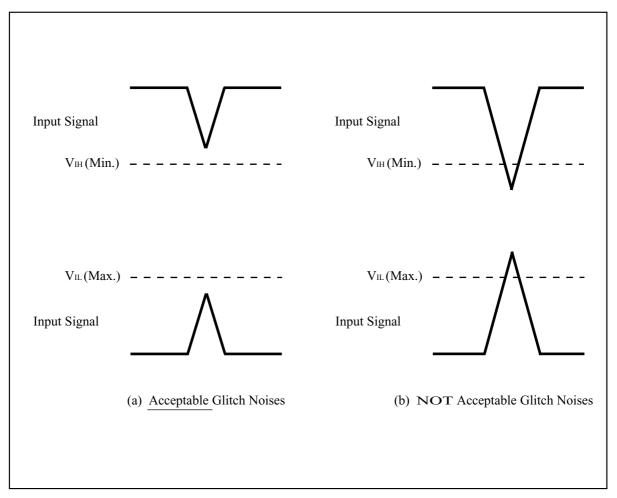


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name		
AP-001-SD-E	Flash Memory Family Software Drivers		
AP-006-PT-E	Data Protection Method of SHARP Flash Memory		
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit		

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

A-3 STATUS REGISTER READ OPERATIONS

If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed.

Table A-3-1. Status Register Definition (SR.15 and SR.7)

$SR.15 = WRITE STATE MACHINE STATUS: (DQ_{15})$

1 = Ready in All Partitions

0 = Busy in Any Partition

SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇)

1 = Ready in the Addressed Partition

0 = Busy in the Addressed Partition

NOTES:

SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition.

SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition.

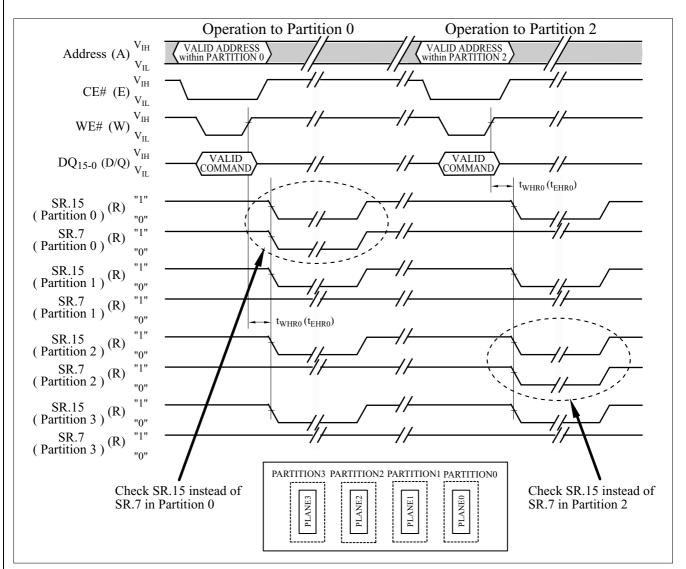


Figure A-3-1. Example of Checking the Status Register (In this example, the device contains four partitions.)

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903

Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341

Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:**

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232

SINGAPORE

www.sharpsme.com

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk

Shenzhen Representative Office:

Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China

Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301

www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8

Fax: (82) 2-711-5819