SYNCHRONOUS BURST SRAM

64K x 64 SRAM

3.3V SUPPLY, FULLY REGISTERED AND OUTPUTS, BURST COUNTER

PIN ASSIGNMENT (Top View)

FEATURES

- Fast Access times: 5, 6, 7, and 8ns
- Fast clock speed: 100, 83, 66, and 50 MHz
- Provide high performance 3-1-1-1 access rate
- Fast OE access times: 5 and 6ns
- Single 3.3V + 10% / -5V power supply
- · Common data inputs and data outputs
- BYTE WRITE ENABLE and GLOBAL WRITE control
- Five chip enables for depth expansion and address pipelining
- Address, control, input, and output pipelined registers
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pins (interleaved or linear burst sequence)
- High density, high speed packages
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- SNOOZE MODE for reduced power standby
- Single cycle disable (PentiumTM BSRAM compatible)

OPTIONS

TIMING	MARKING
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Package	
128-pin QFP	Q
128-pin LQFP	L

Part Number Examples

PART NO.	Pkg.	BURST SEQUENCE
T35L6464A-5Q	Q	Interleaved
		(MODE=NC or VCC)
T35L6464A-5L	L	Linear (MODE=GND)

Taiwan Memory Technology, Inc. reserves the right **P.1** to change products or specifications without notice.

281271261251241231221211201101181171161151141131121 0 102 VCCQ 101 DQ32 vssq 🗖 DQ33 100 DQ31 99 DQ30 DQ34 DQ35 98 DQ29 97 DQ29 97 DQ28 96 DQ27 95 DQ26 DOGE DO38 94 DQ25 93 DQ24 92 DQ23 91 DQ22 DQ4 90 VSSQ 89 VCCQ VCCO VSSQ 88 DQ21 87 DQ20
 86
 DQ19

 85
 DQ18

 84
 DQ16

 82
 DQ15

 81
 DQ16

 82
 DQ15

 81
 DQ14

 80
 DQ15

 77
 DQ12

 78
 VSSQ

 77
 VCQQ

 75
 DQ10

 74
 DQ9

 73
 DQ8

 72
 DQ7

 71
 DQ6
128-pin QFP DO46 DQ47 or 128-pin LQFP DQ50 DQ5 DO52 DQ53 VCCC DO54 DQ55 DQ56 DQ5 DQ58 DQ59 32 70 DQ5 69 DQ4 68 DQ3 67 DQ2 DO60 DQ61 34 DQ63 36 DO64 66 DQ1 VCCQ 65 VSSC

GENERAL DESCRIPTION

The Taiwan Memory Technology Synchronous Burst RAM family employs: high-speed, low power CMOS design using advanced triple-layer polysilicon, double-layer metal technology. Each memory cell consists of four transistors and two high valued resistors.

The T35L6464A SRAM integrates 65536 x 64 SRAM cells with advanced synchronous peripheral circuitry and a 2-bit counter for internal burst operation. All synchronous inputs are gated by registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, all data inputs, three active LOW chip enable (\overline{CE} , $\overline{CE2}$ and $\overline{CE3}$), two additional chip enables (CE2 and CE3), burst control inputs

GENERAL DESCRIPTION

 $(\overline{\text{ADSC}}, \overline{\text{ADSP}}, \text{and } \overline{\text{ADV}})$, write enables $(\overline{\text{BW1}}, \overline{\text{BW2}}, \overline{\text{BW3}}, \overline{\text{BW4}}, \overline{\text{BW5}}, \overline{\text{BW6}}, \overline{\text{BW7}}, \overline{\text{BW8}}$ and $\overline{\text{BWE}}$), and global write $(\overline{\text{GW}})$.

Asynchronous inputs include the output enable (\overline{OE}) , Snooze enable (ZZ) and burst mode control (MODE). The data outputs (Q), enabled by \overline{OE} , are also asynchronous.

Addresses and chip enables are registered with either address status processor ($\overline{\text{ADSP}}$) or address status controller ($\overline{\text{ADSC}}$) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin ($\overline{\text{ADV}}$).

Address, data inputs, and write controls are registered on-chip to initiate self-timed WRITE cycle. WRITE cycles can be one to eight bytes wide

FUNCTIONAL BLOCK DIAGRAM

(continued)

as controlled by the write control inputs. Individual byte write allows individual byte to be BW1 controls DQ1-DQ8. BW2 written. controls DQ9-DQ16. BW3 controls DQ17-DQ24. BW5 controls BW4 controls DQ25-DQ32. BW6 DQ33-DQ40. controls DQ41-DQ48. BW8 controls controls DQ49-DQ56. BW7 DQ57-DQ64. $\overline{BW1}$, $\overline{BW2}$, $\overline{BW3}$, $\overline{BW4}$, $\overline{BW5}$, $\overline{BW6}$, $\overline{BW7}$ and $\overline{BW8}$ can be active only with BWE being LOW. GW being LOW causes all bytes to be written. WRITE pass-through capability allows written data available at the output for the immediately next READ cvcle. This device also incorporates pipelined enable circuit for easy depth expansion without penalizing system performance.

Note: The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

Taiwan Memory Technology, Inc. reserves the right P. 2 to change products or specifications without notice.

PIN DESCRIPTIONS

QFP PINS	SYM.	TYPE	DESCRIPTION						
42-44, 47-51,	A0-	Input-	Addresses: These inputs are registered and must meet the setup and						
53-57, 60-62	A15	Synchronous	hold times around the rising edge of CLK. The burst counter						
		-	generates internal addresses associated with A0 and A1, during burs						
			cycle and wait cycle.						
107, 108, 111,	BW1-	Input-	Byte Write: A byte write is LOW for a WRITE cyle and HIGH for						
112,117-120	BW8	Synchronous	a READ cycle. BW1 controls DQ1-DQ8. BW2 controls DQ9-						
			DQ16. $\overline{BW3}$ controls DQ17-DQ24. $\overline{BW4}$ controls DQ25-DQ32.						
			$\overline{BW5}$ controls DQ33-DQ40. $\overline{BW6}$ controls DQ41-DQ48. $\overline{BW7}$						
			controls DQ49-DQ56. BW8 controls DQ57-DQ64. Data I/O are						
			high impedance if either of these inputs are LOW , conditioned by						
			BWE being LOW.						
114	BWE	Input-	Write Enable: This active LOW input gates byte write operations						
		Synchronous	and must meet the setup and hold times around the rising edge of						
			CLK.						
113	GW	Input-	Global Write: This active LOW input allows a full 64-bit WRITE						
		Synchronous	to occur independent of the \overline{BWE} and \overline{BWn} lines and must meet						
			the setup and hold times around the rising edge of CLK.						
115	CLK	Input-	Clock: This signal registers the addresses, data, chip enables, write						
		Synchronous	control and burst control inputs on its rising edge. All synchronous						
			inputs must meet setup and hold times around the clock's rising						
			edge.						
121	CE	Input-	Synchronous Chip Enable: This active LOW input is used to enable						
		Synchronous	the device and conditions internal use of $\overline{\text{ADSP}}$. This input is						
			sampled only when a new external address is loaded.						
124	CE2	Input-	Synchronous Chip Enable: This active LOW input is used to enable						
		Synchronous	the device. This input is sampled only when a new external address						
			is loaded. This input can be used for memory depth expansion.						
126	CE2	Input-	Synchronous Chip Enable: This active HIGH input is used to enable						
		Synchronous	the device. This input is sampled only when a new external address						
			is loaded. This input can be used for memory depth expansion.						
125	CE3	Input-	Synchronous Chip Enable: This active LOW input is used to enable						
		Synchronous	the device. This input is sampled only when a new external address						
			is loaded. This input can be used for memory depth expansion.						
127	CE3	Input-	Synchronous Chip Enable: This active HIGH input is used to enable						
		Synchronous	the device. This input is sampled only when a new external address						
			is loaded. This input can be used for memory depth expansion.						
116	OE	Input	Output enable: This active LOW asynchronous input enables the						
			data output drivers.						

P. 3

PIN DESCRIPTIONS (continued)

QFP PINS	SYM.	TYPE	DESCRIPTION						
104	ADV	Input-	Address Advance: This active LOW input is used to control the						
		Synchronous	internal burst counter. A HIGH on this pin generates wait cycle						
			(no address advance).						
105	ADSP	Input-	Address Status Processor: This active LOW input, along with \overline{CE}						
		Synchronous	being LOW, causes a new external address to be registered and a						
			READ cycle is initiated using the new address.						
106	ADSC	Input-	Address Status Controller: This active LOW input causes device to						
		Synchronous	be de- selected or selected along with new external address to be						
			registered. A READ or WRITE cycle is initiated depending upon						
			write control inputs.						
41	MODE	Input-	Mode: This input selects the burst sequence. A LOW on this pin						
		Static	selects LINEAR BURST. A NC or HIGH on this pin selects						
			INTERLEAVED BURST. Do not alter input state while device is						
			operating.						
63	ZZ	Input	Snooze Enable: This active HIGH asynchronous input causes the						
			device to enter a low-power standby mode in which all data in the						
			memory array is retained.						
2-12,15-24,	DQ1-	Input/	Data Inputs/Outputs: First Byte is DQ1-DQ8. Second Byte is DQ9-						
27-37,66-76,	DQ64	Output	DQ16. Third Byte is DQ17-DQ24. Fourth Byte is DQ25- DQ32.						
79-88,91-101			Fifth Byte is DQ33- DQ40. Sixth Byte is DQ41- DQ48. Seventh						
			Byte is DQ49- DQ56. Eighth Byte is DQ57- DQ64. Input data						
			must meet setup and hold times around the rising edge of CLK.						
45,58,109,122	VCC	Supply	Power Supply: 3.3V +10%/-5%.						
46,59,110,123	VSS	Ground	Ground: GND						
13,25,38,64,	VCCQ	I/O Supply	Isolated Output Buffer Supply: 3.3V +10%/5%.						
77,89,102,128									
1,14,26,39,65,	VSSQ	I/O Ground	Output Buffer Ground: GND						
78,90,103									
40,52	NC	-	No Connect: These signals are not internally conntected.						

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)
AA00	AA01	AA10	AA11
AA01	AA00	AA11	AA10
AA10	AA11	AA00	AA01
AA11	AA10	AA01	AA00

INTERLEAVED BURST ADDRESS TABLE (MODE = NC/Vcc)

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)
AA00	AA01	AA10	AA11
AA01	AA10	AA11	AA00
AA10	AA11	AA00	AA01
AA11	AA00	AA01	AA10

PARTIAL TRUTH TABLE FOR READ/WRITE

Function	GW	BWE	BW1	BW2	BW3	BW4	BW5	BW6	BW7	BW8
READ	Н	Н	Х	X	X	X	Х	Х	Х	Х
READ	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
WRITE byte 1	Н	L	L	Н	Н	Н	Н	Н	Н	Н
WRITE byte 2	Н	L	Н	L	Н	Н	Н	Н	Η	Н
WRITE byte 3	Н	L	Н	Н	L	Н	Н	Н	Н	Н
WRITE byte 4	Н	L	Н	Н	Н	L	Н	Н	Н	Н
WRITE byte 5	Н	L	Н	Н	Н	Н	L	Н	Η	Н
WRITE byte 6	Н	L	Н	Н	Н	Н	Н	L	Н	Н
WRITE byte 7	Н	L	Н	Н	Н	Н	Н	Н	L	Н
WRITE byte 8	Н	L	Н	Н	Н	Н	Н	Н	Η	L
WRITE all byte	Н	L	L	L	L	L	L	L	L	L
WRITE all byte	L	Х	Х	Х	Х	Х	Х	Х	Х	Х

TRUTH TABLE

OPERATION	ADDRESS	CE	CE2	CE2	CE3	CE3	ZZ	ADSP	ADSC	ADV	WRITE	ŌĒ	CLK	DQ
	USED		1											
Deselected Cycle, Power Down	None	Н	Х	Х	Х	Х	L	Х	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	Х	Х	L	L	L	Х	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	L	Х	Х	L	L	Х	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	Х	Н	Х	L	L	Х	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Н	Х	Х	Х	L	L	Х	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	Х	X	L	L	Н	L	Х	Х	X	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	L	X	Х	L	Н	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Х	Х	Н	Х	L	Н	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power Down	None	L	Н	Х	X	Х	L	Н	L	Х	Х	Х	L-H	High-Z
Snooze Cycle, Power Down	None	X	Х	Х	X	Х	Н	X	X	Х	Х	Х	Х	High-Z
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	L	Х	X	Х	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	L	Х	Х	Х	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	L	Н	L	Н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Н	L	X	Н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Н	L	X	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	х	Х	Х	Х	Х	L	Н	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	х	Х	Х	Х	Х	L	Н	Н	L	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	Х	Х	L	Х	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	Х	Х	L	Х	Н	L	Н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	x	X	X	X	X	L	Н	Н	L	L	X	L-H	D
WRITE Cycle, Continue Burst	Next	Н	X	X	X	X	L	X	Н	L	L	X	L-H	D
READ Cycle, Suspend Burst	Current	х	Х	X	х	Х	L	Н	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	X	Х	L	Н	Н	Н	Н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	Х	Х	L	Х	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	Х	Х	L	Х	Н	Н	Н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	X	Х	Х	X	Х	L	Н	Н	Н	L	X	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	X	Х	L	Х	Н	Н	L	Х	L-H	D

- **Note:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE = L means any one or more byte write enable signals ($\overline{BW1}$, $\overline{BW2}$, $\overline{BW3}$, $\overline{BW4}$, $\overline{BW5}$, $\overline{BW6}$, $\overline{BW7}$ or $\overline{BW8}$) and \overline{BWE} are LOW, or \overline{GW} equals LOW. WRITE = H means all byte write signal are HIGH.
 - 2. $\overline{BW1}$ = enables write to DQ1-DQ8. $\overline{BW2}$ = enables write to DQ9-DQ16. $\overline{BW3}$ = enables write to DQ17-DQ24. $\overline{BW4}$ =enables write to DQ25-DQ32. $\overline{BW5}$ = enables write to DQ33-DQ40. $\overline{BW6}$ = enables write to DQ41-DQ48. $\overline{BW7}$ = enables write to DQ49-DQ56. $\overline{BW8}$ = enables write to DQ57-DQ64.
 - 3. All inputs except \overline{OE} must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Suspending burst generates wait cycle.
 - 5. For a write operation following a read operation. \overline{OE} must be HIGH before the input data required setup time plus High-Z time for \overline{OE} and staying HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be High-Z during power-up.
 - 7. ADSP = LOW along with chip being selected always initiates an internal READ cycle at the L-H edge of CLK. A WRITE cycle can be performed by setting WRITE LOW for the CLK L-H edge of the subsequent wait cycle. Refer to WRITE timing diagram for clarification.

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notice.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss..

0.5V to +4.6V
0.5V to Vcc
-0.5V to Vcc +0.5V
55°C to +150°C
+150°C
1.6W
100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = +3.3V + 10\%/5\%; unless otherwise noted)$

DESCRIPTION	CONDITIONS	SYM.	MIN	MAX	UNITS	NOTES
Input High (Logic) voltage		VIH	2	VccQ + 0.3	V	1, 2
Input Low (Logic) voltage		V _{IL}	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le VCC$	ILI	-2	2	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ VOUT≤ VCC	ILO	-2	2	μΑ	
Output High Voltage	$I_{OH} = -4.0 \text{ mA}$	VOH	2.4		V	1,11
Output Low Voltage	$I_{OL} = 8.0 \text{ mA}$	VOL		0.4	V	1,11
Supply Voltage		Vcc	3.1	3.6	V	1

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = +3.3V + 10\%/5\%$ unless otherwise noted)

					M A	X			
DESCRIPTION	CONDITIONS	SYM.	ТҮР	-5	-6	-7	-8	UNITS	NOTES
Power Supply Current:	Device selected; all inputs ≤V _{IL} or ≥ V _{IH} ; cycle time	Icc	200	300	260	240	210	mA	3, 12, 13
Operating	≥ ^t KC MIN; VCC = MAX; outputs open								
Power Supply Current: Idle	Device selected; \overline{ADSC} , \overline{ADSP} , \overline{ADV} , \overline{GW} , $\overline{BWE} \ge V_{IH}$; all other inputs $\le V_{IL}$ or $\ge V_{IH}$; $VCC = MAX$; cycle time $\ge V_{IK}C$ MIN: outputs one	I _{SB1}	30	60	55	50	45	mA	12, 13
CMOS Standby	Device deselected; VCC = MAX; all inputs \leq VSS + 0.2 or \geq VCC - 0.2; all inputs static; CLK frequency = 0	I _{SB2}	2	10	10	10	10	mA	12, 13
TTL Standby	Device deselected; all inputs $\leq V_{IL}$ or $\geq V_{IH}$; all inputs static; VCC = MAX; CLK frequency = 0	I _{SB3}	15	40	40	40	40	mA	12, 13
Clock Running	Device deselected; all inputs \leq V _{IL} or \geq V _{IH} ; VCC = MAX; CLK cyce time \geq ^t KCMIN	I _{SB4}	30	81	76	66	51	mA	12, 13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYM.	ТҮР	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1 MHz$	CI	3	4	pF	4
Input/ Output	VCC = 3.3V	CO	6	7	pF	4
Capacitance(DQ)						

THERMAL CONSIDERATION

DESCRIPTION	CONDITIONS	SYM.	QFP TYP	UNITS	NOTES
Thermal Resistance - Junction to	Still air, soldered on	Θ_{JA}	20	°C/W	
Ambient	4.25x				
Thermal Resistance - Junction to	1.125 inch 4-layer PCB	Θ_{JB}	1	°C/W	
Case					

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notice.

AC ELECTRICAL CHARACTERISTICS

(Note 5) (0°C \leq T_{A} \leq 70°C; Vcc = + 3.3V +10%/5%)

DESCRIPTION			5		6	_'	7	-	8		
	SYM.	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock											
Clock cycle time	tKC	10		12		15		20		ns	
Clock HIGH time	^t KH	4		4.5		5		6		ns	
Clock LOW time	^t KL	4		4.5		5		6		ns	
Output Times											
Clock to output valid	^t KQ		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2		2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		5		5		5		ns	6,7
Clock to output in High-Z	^t KQHZ		5		5		6		6	ns	6,7
OE to output valid	tOEQ		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		ns	6,7
OE to output in High-Z	^t OEHZ		4		5		6		6	ns	6,7
Setup Times	<u> </u>										
Address	tAS	3		3		3		3		ns	8,10
Address Status	t ADSS	3		3		3		3		ns	8,10
$(\overline{\text{ADSC}}, \overline{\text{ADSP}})$											
Address Advance (ADV)	tAAS	3		3		3		3		ns	8,10
Byte Write Enables	tWS	3		3		3		3		ns	8,10
$(\overline{\mathrm{BW1}} \sim \overline{\mathrm{BW8}}, \overline{\mathrm{BWE}}, \overline{\mathrm{GW}})$											
Data-in	t _{DS}	3		3		3		3		ns	8,10
Chip Enables (\overline{CE} ,	^t CES	3		3		3		3		ns	8,10
CE2,CE2,CE3,CE3)											
Hold Times		1	1	1	1		1				
Address	t _{AH}	0.5		0.5		0.5		0.5		ns	8,10
Address Status	t _{ADSH}	0.5		0.5		0.5		0.5		ns	8,10
$(\overline{\text{ADSC}}, \overline{\text{ADSP}})$											
Address Advance (ADV)	tAAH	0.5		0.5		0.5		0.5		ns	8,10
Byte Write Enables	tWH	0.5		0.5		0.5		0.5		ns	8,10
$(\overline{\mathrm{BW1}} \sim \overline{\mathrm{BW8}}, \overline{\mathrm{BWE}}, \overline{\mathrm{GW}})$											
Data-in	^t DH	0.5		0.5		0.5		0.5		ns	8,10
Chip Enables (\overline{CE} , $\overline{CE2}$, $\overline{CE2}$, $\overline{CE3}$, $\overline{CE3}$)	tCEH	0.5		0.5		0.5		0.5		ns	8,10

AC TEST CONDITIONS

Input pulse levels	0V to 3.0V
Input rise and fall times	1.5ns
Input timing reference	1.5V
levels	
Output reference levels	1.5V
Output load	See Figures 1 and 2

Notes:

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +3.6 \text{ V}$ for $t \le {}^{t}\text{KC/2}$ Undershoot: $V_{IL} \ge -1.0 \text{ V}$ for $t \le {}^{t}\text{KC/2}$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with G=5 pF as in Fig.2.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.

- 8. A Write cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A Read cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. \overline{OE} is a "don't care" when a byte write enable is sampled LOW.
- 10. This is a synchronous device. All synchronous inputs must meet the setup and hold times, except for "don't care" as defined in the truth table.
- 11.AC I/O curves are available upon request.
- 12."Device Deselected means the device is in POWER-DOWN mode as defined in the truth table. "Device Selected" means the device is active.(not in POWER-DOWN mode).
- 13.Typical values are measured at 3.3V 25°C and 20ns cycle time.
- 14.MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.

OUTPUT LOADS

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notice.

SNOOZE MODE

SNOOZE MODE is a low current, "power down" mode in which the device is deselected and the current is reduced to I_{ZZ} The duration of SNOOZE MODE is dictated by the length of time the ZZ pin is in a HIGH state. After entering SNOOZE MODE, the clock and all other inputs are ignored.

The ZZ pin (pin 63) is an asynchronous,

active HIGH input that causes the device to enter SNOOZE MODE. When the ZZ pin becomes a logic HIGH, J_{zz} is guaranteed after the setup time ¹ZZ is met. Any access pending when entering SNOOZE MODE is not guaranteed to successfully complete. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.

SNOOZE MODE ELECTRICAL CHARACTERISTICS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Current during SNOOZE MODE	$ZZ \ge V_{IH}$	I _{zz}		10	mA	
ZZ HIGH to SNOOZE MODE time		tZZ	2(^t KC)		ns	3
SNOOZE MODE Operation Recovery Time		tRZZ		2(^t KC)	ns	3

SNOOZE MODE WAVEFORM

- **Note:** 1. The \overline{CE} signal shown above refers to a TRUE state on all chip selects for the device. 2. All other inputs held to static CMOS levels ($V_{IN} \le V_{SS} + 0.2 \text{ V or } \ge V_{CC} - 0.2 \text{ V}$).
 - 3. This parameter is sampled.

P. 11

READ TIMING

- **Note:** 1. Q(A2) refers to output from address A2. Q (A2 + 1) refers to output from the next internal burst address following A2.
 - 2. $\overline{CE2}$, CE2, $\overline{CE3}$ and CE3 have timing identical to \overline{CE} . On this diagram, when \overline{CE} is LOW, $\overline{CE2}$, $\overline{CE3}$ is LOW and CE2, CE3 is HIGH. When \overline{CE} is HIGH, $\overline{CE2}$, $\overline{CE3}$ is HIGH and CE2, CE3 is LOW.
 - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. \overline{OE} does not cause Q to be driven until after the following clock rising edge.
 - 4. Outputs are disabled within one clock cycle after deselect.

WRITE TIMING

- **Note:** 1. Q(A2) refers to output from address A2. Q (A2 + 1) refers to output from the next internal burst address following A2.
 - 2. $\overline{CE2}$, CE2, $\overline{CE3}$ and CE3 have timing identical to \overline{CE} . On this diagram, when \overline{CE} is LOW, $\overline{CE2}$, $\overline{CE3}$ is LOW and CE2, CE3 is HIGH. When \overline{CE} is HIGH, $\overline{CE2}$, $\overline{CE3}$ is HIGH and CE2, CE3 is LOW.
 - 3. OE must be HIGH before the input data setup and hold HIGH throughout the data hold time. This prevents input/output data contention for the time period to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by \overline{GW} LOW or \overline{GW} HIGH and \overline{BWE} , $\overline{BW1}$ - $\overline{BW8}$ LOW.

Taiwan Memory Technology, Inc. reserves the right **P.13** *to change products or specifications without notice.*

READ/WRITE TIMING

- **Note:** 1. Q (A4) refers to output from address A4. Q (A4 + 1) refers to output from the next internal burst address following A4.
 - 2. $\overline{CE2}$, $\overline{CE3}$ and $\overline{CE3}$ have timing identical to \overline{CE} . On this diagram, when \overline{CE} is LOW, $\overline{CE2}$, $\overline{CE3}$ is LOW and CE2, CE3 is HIGH. When \overline{CE} is HIGH, $\overline{CE2}$, $\overline{CE3}$ is HIGH and CE2, CE3 is LOW.
 - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 4. $\overline{\text{GW}}$ is HIGH.
 - 5. Back-to-back READs may be controlled by either $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$.

Taiwan Memory Technology, Inc. reserves the right **P.14** *to change products or specifications without notice.*

PACKAGE DIMENSIONS 128-LEAD QFP SSRAM (14 x 20 mm)

SYMBOL	DIMENSIONS IN INCHES	DIMENTION IN MM
А	0.134(MAX)	3.400(MAX)
Al	0.107+0.007-0.009	2.720+0.180-0.220
A2	0.010(MIN)	0.250(MIN)
b	0.008+0.003-0.001	0.200+0.070-0.030
D	0.551	14.000
Е	0.787	20.000
e	0.020	0.500
HD'	0.677	17.200
HE	0.913	23.200
L'	0.035 ± 0.006	0.880±0.150
L1'	0.063±0.006	1.600±0.150
t	0.006+0.003-0.002	0.150+0.080-0.040
у	0.003	0.080
θ	0°~7°	0°~7°

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notice. **P.15**

PACKAGE DIMENSIONS 128-LEAD LQFP SSRAM (14 x 20 mm)

SYMBOL	DIMENSIONS IN INCHES	DIMENTION IN MM			
А	0.063(MAX)	1.600(MAX)			
Al	0.055 ± 0.002	1.400±0.050			
A2	0.002(MIN)	0.050(MIN)			
b	0.008+0.003-0.001	0.200+0.070-0.030			
D	0.551	14.000			
Е	0.787	20.000			
e	0.020	0.500			
HD'	0.630	16.000			
HE	0.866	22.000			
L'	0.024 ± 0.006	0.600±0.150			
L1'	0.039	1.000			
t	0.004(MIN),0.008(MAX)	0.090(MIN),0.200(MAX)			
у	0.003	0.080			
θ	0°~7°	0°~7°			

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notice. **P.16**