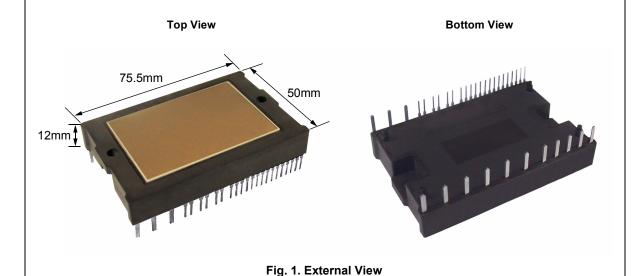


FSAC20SH60

Smart Power Integrated Module (SPIM)

General Description


FSAC20SH60 is an advanced smart power integrated module (SPIM) that Fairchild has newly developed and designed to provide very compact and high performance ac motor drives mainly targeting high speed low-power inverter-driven application like servo drive system. It combines optimized circuit protection and drive matched to low-loss IGBTs. Highly effective short-circuit current detection/protection is realized through the use of advanced current sensing IGBT chips that allow continuous monitoring of the IGBTs current. System reliability is further enhanced by the built-in over-temperature and integrated under-voltage lock-out protection. The high speed built-in HVIC provides opto-coupler-less IGBT gate driving capability that further reduce the overall size of the inverter system design. In addition the incorporated HVIC facilitates the use of single-supply drive topology enabling the FSAC20SH60 to be driven by only one drive supply voltage without opto-couplers. Inverter current sensing application can be achieved due to devided negative dc terminals.

Features

- · UL Certified No. E209204
- Three-phase IGBT inverter bridge including control ICs for gate driving and protection
- Converter bridge for one-phase AC-to-DC power conversion
- Circuit for dynamic braking of motor regeneration energy
- Divided negative dc-link terminals for inverter current sensing applications
- · Single-grounded power supply due to built-in HVIC
- Typical switching frequency of 15kHz
- · Built-in thermistor for over-temperature monitoring
- Inverter power rating of 1.5kW / 100~253 Vac
- Very low thermal resistance due to using DBC substrate
- · Isolation rating of 2500Vrms/min.
- Adjustable current protection level by varying series resistor value with sense-IGBTs

Applications

- AC 100V ~ 253V three-phase inverter drive for small power ac motor drives
- Industrial applications requiring high switching frequency operation like servo drive system
- Application ratings:
 - Power : 1.5 kW / 100~253 Vac
 - Switching frequency: Typical 15kHz (PWM Control)
 - 100% load current : 7A (Irms)
 - 150% load current: 10.5A (Irms) for 1 minute

Integrated Power Functions

- IGBT inverter for three-phase DC/AC power conversion (Please refer to Fig. 3)
- Diode converter for one-phase AC/DC power conversion (Please refer to Fig. 3)

Integrated Drive, Protection and System Control Functions

- For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting,
 Control circuit under-voltage (UV) protection
 - Note) Available bootstrap circuit example is given in Figs. 13 and 14.
- For inverter low-side IGBTs: Gate drive circuit, Short circuit protection (SC),
 Control supply circuit under-voltage (UV) protection
- · For Brake circuit IGBT : Drive circuit
- Temperature Monitoring: System over-temperature monitoring using built-in thermistor Note) Available temperature monitoring circuit is given in Fig. 14.
- Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side supply)
- Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input

Bottom View

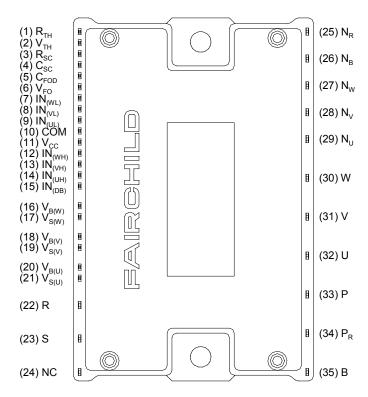
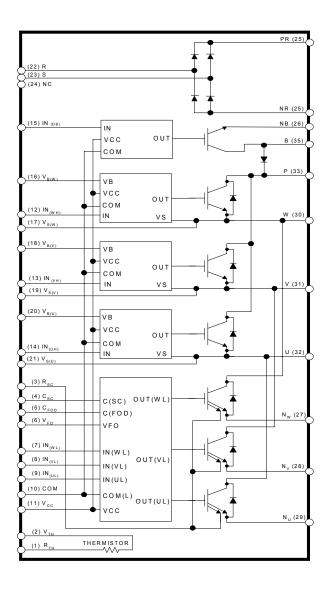



Fig. 2. Pin Configuration

Pin Descriptions

Pin Number	Pin Name	Pin Description
1	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
2	V_{TH}	Thermistor Bias Voltage
3	R _{SC}	Resistor for Short-Circuit Current Detection
4	C _{SC}	Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input
5	C_FOD	Capacitor for Fault Output Duration Time Selection
6	V_{FO}	Fault Output
7	IN _(WL)	Signal Input for Low-side W Phase
8	IN _(VL)	Signal Input for Low-side V Phase
9	IN _(UL)	Signal Input for Low-side U Phase
10	COM	Common Supply Ground
11	V _{CC}	Common Bias Voltage for IC and IGBTs Driving
12	IN _(WH)	Signal Input for High-side W Phase
13	IN _(VH)	Signal Input for High-side V Phase
14	IN _(UH)	Signal Input for High-side U Phase
15	IN _(DB)	Signal Input for Dynamic Braking
16	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
17	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
18	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
19	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
20	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
21	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
22	R	AC Input for R phase
23	S	AC Input for S phase
24	NC	No Connection
25	N _R	Negative DC-Link Output
26	N _B	Emitter of Brake IGBT
27	N _W	Negative DC-Link Input for W phase
28	N _V	Negative DC-Link Input for V phase
29	N _U	Negative DC-Link Input for U phase
30	W	Output for W Phase
31	V	Output for V Phase
32	U	Output for U Phase
33	Р	Positive DC-Link Input
34	P_{R}	Positive DC-Link Output
35	В	Collector of Brake IGBT

- 1) Inverter low-side is composed of three sense-IGBTs including freewheeling diodes for each IGBT and one control IC which has gate driving and protection functions.

 2) Inverter high-side is composed of three normal-IGBTs including freewheeling diodes and three drive ICs for each IGBT.

Fig. 3. Internal Equivalent Circuit and Input/Output Pins

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified) **Inverter Part (Including Brake Part)**

Item	Symbol	Condition	Rating	Unit
Supply Voltage	V_{PN}	Applied between P-N _U , N _V , N _W	450	V
Supply Voltage (Surge)	upply Voltage (Surge) V _{PN(Surge)} Applied between N		500	V
Collector-Emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	T _C = 25°C	20	Α
Each IGBT Collector Current (Peak)	± I _{CP}	T _C = 25°C, Instantaeous Value (Under 1ms)	40	Α
Brake IGBT Collector Current	I _C	T _C = 25°C	20	Α
Brake IGBT Collector Current (Peak)	I _{CP}	T _C = 25°C	40	Α
Brake Diode Anode Current	I _F	T _C = 25°C	20	Α
Brake Diode Anode Current (Peak)	I _{FP}	T _C = 25°C	40	Α
Collector Dissipation	P _C	Per One Chip	66	W
Operating Junction Temperature	TJ	(Note 1)	-20 ~ +125	$^{\circ}$

Converter Part

Item	Symbol	Condition	Rating	Unit
Repetitive Peak Reverse Voltage	V_{RRM}		900	V
Recommended AC Input Voltage	Ea		220	V
DC Output Current	Ιο	1-Phase Rectifying Circuit	18	Α
Surge (non-repetitive) Forward Current	I _{FSM}	1 Cycle at 60Hz, Peak Value Non-repetitive	300	Α
I ² t for Fusing	I ² t	Value for One Cycle of Surge Current	370	A ² s

Control Part

Item	Symbol	Condition	Rating	Unit
Control Supply Voltage	V_{CC}	Applied between V _{CC} - COM	20	V
High-side Control Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
Input Signal Voltage		Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$, $IN_{(DB)}$ - COM	-0.3 ~ V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM	-0.3~V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V_{SC}	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short Circuit Protection Capability)	V _{PN(PROT)}	$V_{CC} = V_{BS} = 13.5 \sim 16.5V$ T _J = 125°C, Non-repetitive, less than 6μs	400	V
Module Case Operation Temperature	T _C	Center of DBC Plate	-20 ~ +100	°C
Storage Temperature	T _{STG}		-20 ~ +125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

Note:
1. It would be recommended that the average junction temperature should be limited to $T_J \le 125$ ($T_C \le 100$) in order to guarantee safe operation.

Thermal Resistance

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	R _{th(j-c)Q}	Each IGBT under Inverter Operating Condition	-	-	2.2	°C/W
Resistance	R _{th(j-c)F}	Each FWDi under Inverter Operating Condition	-	-	3.0	°C/W
	R _{th(j-c)QB}	Brake IGBT	-	-	2.0	°C/W
	R _{th(j-c)FB}	Brake Diode	-	-	3.0	°C/W
	R _{th(i-c)FR}	Converter Diode	-	-	2.4	°C/W

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Power Part

Item	Symbol	Condi	tion	Min.	Тур.	Max.	Unit
Collector - Emitter Saturation Voltage	V _{CE(SAT)}	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	$I_C = 20A, T_J = 25^{\circ}C$	-	-	2.8	V
Collcetor-Emitter Saturation Voltage for Brake IGBT	V _{CE(SAT)B}	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	$I_C = 20A, T_J = 25^{\circ}C$	-	-	2.8	V
FWDi Forward Voltage	V_{FM}	V _{IN} = 5V	$I_C = 20A, T_J = 25^{\circ}C$	-	-	2.7	V
Forward Voltage for Brake Diode	V _{FMB}	V _{IN} = 5V	$I_C = 20A, T_J = 25^{\circ}C$	-	-	2.7	V
Forward Voltage for Converter Diode	V _{FR}	V _{IN} =5V	$I_C = 30A, T_J = 25^{\circ}C$	-	-	1.5	V
Leakage Current for Converter Diode	I _{RRM}	V _R =V _{RRM} , T _J =125°C		-	-	8	mA
Switching Times	t _{ON}	V_{PN} = 300V, V_{CC} = V_{BS} :	= 15V	-	0.35	-	us
	t _{C(ON)}	$I_C = 20A, T_J = 25^{\circ}C$		-	0.16	-	us
	t _{OFF}	$V_{IN} = 5V \leftrightarrow 0V$, Inductive	e Load	-	0.75	-	us
	t _{C(OFF)}	(High-Low Side)		-	0.23	-	us
	t _{rr}	(Note 2)		-	0.13	-	us
Collector - Emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}$, $T_J = 25$ °C		-	-	1	mA

Note:
 10 to Note:</l

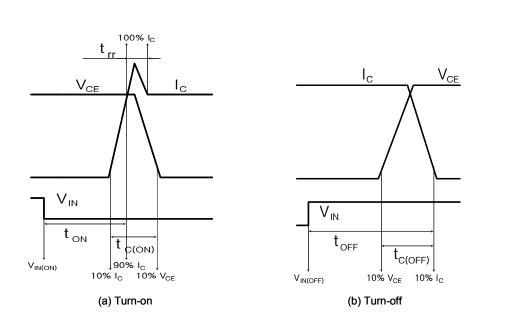


Fig. 4. Switching Time Definition

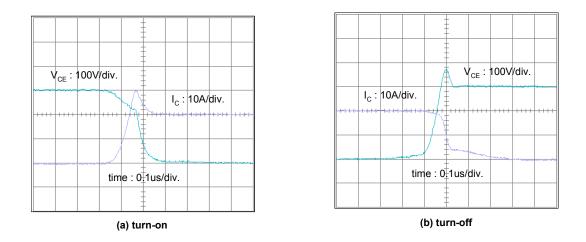


Fig. 5. Experimental Results of Switching Waveforms Test Condition: Vdc=300V, Vcc=15V, L=500uH (Inductive Load), T_J =25°C

Electrical Characteristics

Control Part (T_J = 25°C, Unless Otherwise Specified)

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Control Supply Voltage	V_{CC}	Applied between V _{CC}	- COM	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between V _{B(U} V _{B(W)} - V _{S(W)}	_{J)} - V _{S(U)} , V _{B(V)} - V _{S(V)} ,	13.5	15	16.5	V
Quiescent V _{CC} Supply Current	I _{QCC}	V _{CC} = 15V IN _(UL, VL, WL, DB) = 5V IN _(UH, VH, WH) = 5V	V _{CC} - COM	-	-	36.5	mA
Quiescent V_{BS} Supply Current	I _{QBS}	$V_{BS} = 15V$ $IN_{(UH, VH, WH)} = 5V$	$oxed{V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)},} \\ V_{B(W)} - V_{S(W)}$	-	-	420	uA
Fault Output Voltage	V_{FOH}	V _{SC} = 0V, V _{FO} Circuit	: 4.7kΩ to 5V Pull-up	4.5	-	-	V
	V_{FOL}	V _{SC} = 1V, V _{FO} Circuit	-	-	-	1.1	V
PWM Input Frequency	f _{PWM}	$T_C \le 100^{\circ}C, T_J \le 125^{\circ}$	°C	-	15	-	kHz
Allowable Input Signal Blanking Time considering Leg Arm-short	t _{dead}	-20°C ≤ T _C ≤ 100°C		3	-	-	us
Short Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15V (Note 3)			0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	T_C =25°C, @ R_{SC} = 95 Ω , R_{SU} = R_{SV} = R_{SW} =0 Ω and I_C = 20A (Note Fig. 7)		-	0.51	-	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault-out Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 4))	-	1.8	-	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN _(UH) , IN _(VH) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}]	IN _(WH) - COM	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN _(UL) , IN _(VL) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WL) - COM	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Brake	Applied between IN _(DB) - COM	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}	1	, ,	3.0	-	-	V
Resistance of Thermistor	R _{TH}	T _{TH} = 25°C (Note Fig.	. 6)	-	50	-	kΩ
		T _{TH} = 100°C (Note Fig	g. 6)	-	3.4	-	kΩ

Note:

3. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 50 Ω in order to make the SC trip-level of about 30A at the shunt resistors (R_{SU},R_{SV},R_{SW}) of $\Omega\Omega$. For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SU},R_{SV},R_{SW}), please see Fig. 7.

4. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$ 5. T_{TH} is the temperature of thermistor.

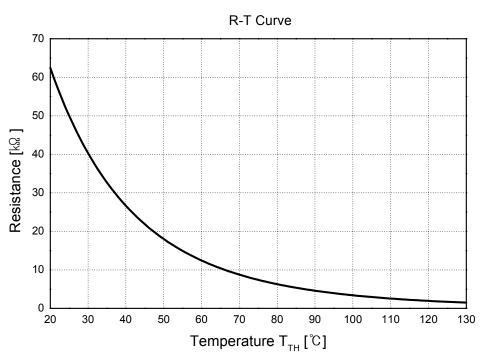


Fig. 6. R-T Curve of The Built-in Thermistor

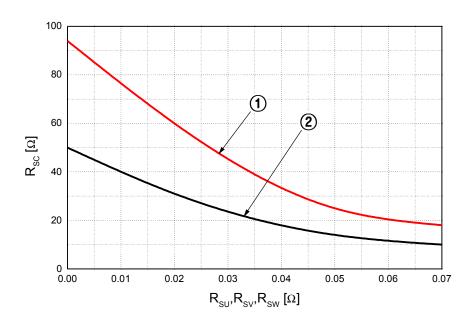
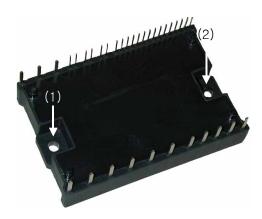



Fig. 7. R_{SC} Variation by Change of Shunt Resistors (R_{SU}, R_{SV}, R_{SW}) for Short-Circuit Protection ① @ around 100% Rated Current Trip (I_C := . 20A) ② @ around 150% Rated Current Trip (I_C := . 30A)

Mechanical Characteristics and Ratings

Item	Condition			Limits			
ntem		Condition			Max.	Units	
Mounting Torque	Mounting Screw: M4	Recommendation 17.9 Kg•cm	15.3	17.9	20.4	Kg•cm	
	(Note 6)	Recommendation 1.75 N•m	1.5	1.75	2	N•m	
Weight			-	60	-	g	

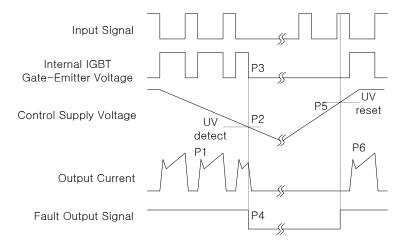
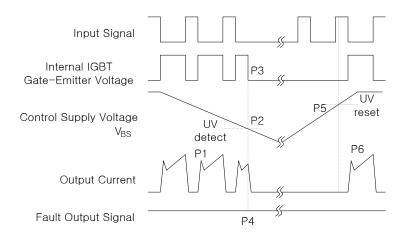

Note:6. Avoid one side tightening stress. Fig.7 shows the recommended torque order for mounting screws. Uneven mounting can cause the SPIM DBC substrate to be damaged.

Fig. 7. Mounting Screws Torque Order (1 \rightarrow 2)

Recommended Operating Conditions

Itama	Condition		Value			11
Item	Symbol	Condition		Тур.	Max.	Unit
Supply Voltage	V_{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V_{CC}	Applied between V _{CC} - COM	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.5	15	16.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3	-	-	us
PWM Input Signal	f _{PWM}	T _C ≤ 100°C, T _J ≤ 125°C	-	15	-	kHz
Input ON Threshold Voltage	V _{IN(ON)}	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) , IN _(VL) , IN _(WL) , IN _(DB) - COM		0 ~ 0.65	5	V
Input OFF Threshold Voltage	V _{IN(OFF)}	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$, $IN_{(DB)}$ - COM		4 ~ 5.5		V

Time Charts of SPIMs Protective Function

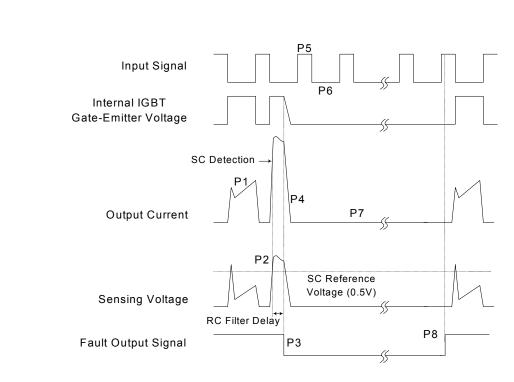


P1: Normal operation - IGBT ON and conducting current

P2 : Under voltage detection P3 : IGBT gate interrupt P4 : Fault signal generation P5 : Under voltage reset

P6: Normal operation - IGBT ON and conducting current

Fig. 9. Under-Voltage Protection (Low-side)



P1: Normal operation - IGBT ON and conducting current

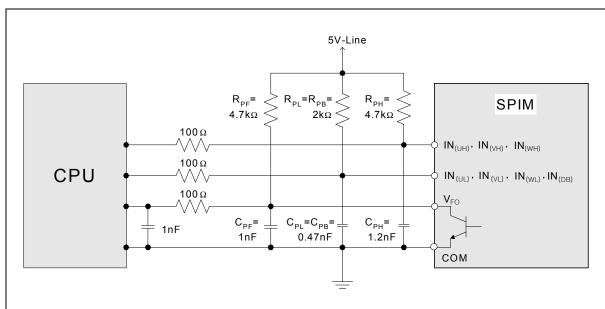
P2 : Under voltage detection P3 : IGBT gate interrupt P4 : No fault signal P5 : Under voltage reset

P6: Normal operation - IGBT ON and conducting current

Fig. 10. Under-Voltage Protection (High-side)

P1: Normal operation - IGBT ON and conducting currents

P2 : Short-circuit current detection

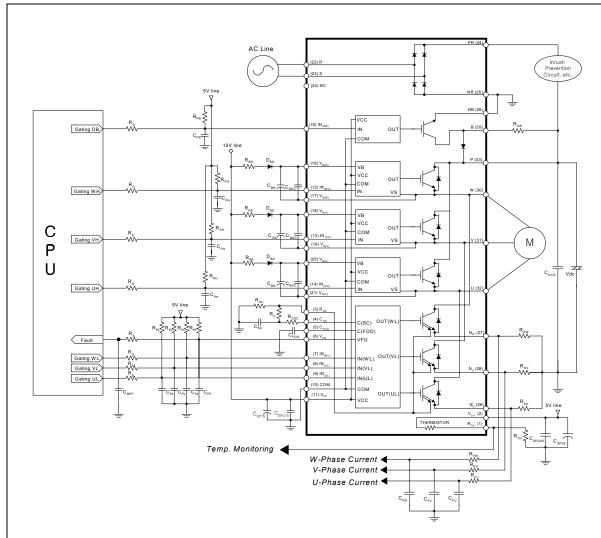

P3 : IGBT gate interrupt / Fault signal generation P4 : IGBT is slowly turned off

P5: IGBT OFF signal

P6 : IGBT ON signal - but IGBT cannot be turned on during the fault-output activation P7 : IGBT OFF state

P8: Fault-output reset and normal operation start

Fig. 11. Short-circuit Current Protection (Low-side Operation only)

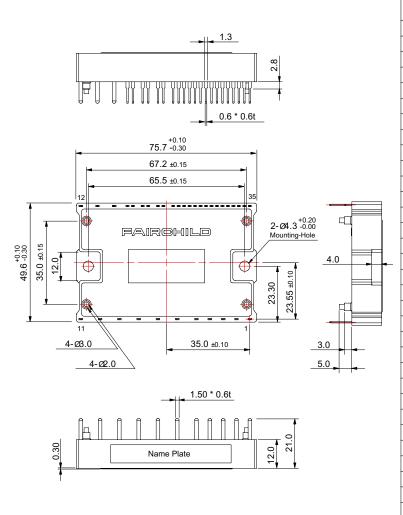


- 1) It would be recommended that by-pass capacitors for the gating input signals, IN_(UL), IN_(VL), IN_(WL), IN_(DB), IN_(UH), IN_(VH) and IN_(WH) should be placed on the SPIM pins and on the both sides of CPU and SPIM for the fault output signal, V_{FO}, as close as possible.
- The logic input is compatible with standard CMOS or LSTTL outputs.
 R_{PL}C_{PL}/R_{PH}C_{PH}/R_{PF}C_{PF}/R_{PB}C_{PB} coupling at each SPIM input is recommended in order to prevent input/output signals' oscillation and it should be as close as possible to each of SPIM pins.

Fig. 12. Recommended CPU I/O Interface Circuit

These Values depend on PWM Control Algorithm One-Leg Diagram of SPIM 15V-Line Ρ **20**Ω VΒ Vcc 0.1uE_ IN 47uF COM VS Inverter -Output / Vcc 1000uF 💳 0.1uF OUT COM

Fig. 13. Recommended Bootstrap Operation Circuit and Parameters



- 1) R_{PL}C_{PL}/R_{PH}C_{PF} /R_{PB}C_{PB} coupling at each SPIM input is recommended in order to prevent input signals' oscillation and it should be as close as possible to each SPIM input pin.
- 2) By virtue of integrating an application specific type HVIC inside the SPIM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible.
- V_{FO} output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7kΩ resistance. Please refer to Fig. 14
- 4) C_{SP15} of around 7 times larger than bootstrap capacitor C_{BS} is recommended.
- 5) V_{FO} output pulse width should be determined by connecting an external capacitor(C_{FOD}) between C_{FOD}(pin5) and COM(pin10). (Example : if C_{FOD} = 5.6 nF, then t_{FO} = 300 μ s (typ.)) Please refer to the note 4 for calculation method.
- 6) Each input signal line should be pulled up to the 5V power supply with approximately 4.7kΩ (at high side input) or 2kΩ (at low side input) resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedance of the system's printed circuit board). Approximately a 0.22~2nF by-pass capacitor should be used across each power supply connection terminals
- 7) To prevent errors of the protection function, the wiring around R_{SC} , R_{F} and C_{SC} should be as short as possible 8) In the short-circuit protection circuit, please select the $R_{F}C_{SC}$ time constant in the range 3~4 μ s.
- 9) To enhance the noise immunity, C_{SC} pin should be conected to the external circuit through a series resistor, R_{CSC} , which is approximately 390 Ω . R_{CSC} should be connected to C_{SC} pin as close as possible.
- 10)Each capacitor should be mounted as close to the pins of the SPIM as possible.

 11)To prevent surge destruction, the wiring between the smoothing capacitor and the P&N pins should be as short as possible. The use of a high frequency non-inductive capacitor of around 0.1~0.22 uF between the P&N pins is recommended.
- 12) The stray inductance between N-pins(N_U, N_V and N_W) and their shunt-resistors(R_{SU}, R_{SV} and R_{SW}) should be less than 10nH. Pleae refer to Fig. 14.

Fig. 14. Application Circuit

Detailed Package Outline Drawings

Pin Coordinate								
Pin	Coor	dinate						
#No	х	у						
1	0.0	0.0						
2	-5.6	0.0						
3	-11.2	0.0						
4	-16.8	0.0						
5	-22.4	0.0						
6	-30.5	0.0						
7	-38.6	0.0						
8	-46.7	0.0						
9	-54.8	0.0						
10	-62.9	0.0						
11	-71.0	0.0						
12	-71.0	47.1						
13	-64.0	47.1						
14	-57.0	47.1						
15	-51.4	47.1						
16	-49.1	47.1						
17	-45.0	47.1						
18	-42.7	47.1						
19	-38.6	47.1						
20	-36.3	47.1						
21	-32.2	47.1						
22	-29.9	47.1						
23	-27.6	47.1						
24	-25.3	47.1						
25	-23.0	47.1						
26	-20.7	47.1						
27	-18.4	47.1						
28	-16.1	47.1						
29	-13.8	47.1						
30	-11.5	47.1						
31	-9.2	47.1						
32	-6.9	47.1						
33	-4.6	47.1						
34	-2.3	47.1						
35	0.0	47.1						

^{*} datum pin : #1 * Pin Tilt : ±0.10

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
$CROSSVOLT^{\text{TM}}$	FRFET™	MicroPak™	QFET™	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C™	OCX™	RapidConfigure™	UHC™
Across the board.	Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™		OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable Ad	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.