
Advanced Data Sheet 310W DC/DC Power Module 48V Input, 28.2V Output

- High Efficiency, 90% Typ. at 11A (full load)
- High Power Density, 106.7 W/in³
- Fast Dynamic Response, 100 μs, ±750 mVpeak Typ
- Low Output Ripple, 50 mVp-p Typ.
- Parallelable with no external components
- · 1,500 V dc isolation voltage
- Max. case temperature +100°C
- Demonstrated compliance with isolation requirements equivalent to Basic Isolation per UL60 950
- UL/UL_C 1950 and UL/UL_C 60 950 Recognized
- MTBF > 3 million hours in accordance with Bellcore TR 332
- Input Transient Specification 100V, 100ms

The PKL 4000 series represents another one of Ericsson's "industry first" achievements in the continuing development of our "Third Generation" of high-density, high-efficiency power modules. The PKL 4316 PIT module packs 106.7 W/in³ at 91% efficiency (28.2V @ 11A) in an industry standard footprint. The PKL 4000 package has been enhanced to include two additional output pins for motherboard connection reliability at this high power.

This product features fast dynamic response times and low output ripple, which are important parameters when supplying high quality DC power to wireless applications. The PKL 4000 Series also is especially well suited for limited board space and high dynamic load applications.

Ericsson's28 volt PKL 4316 PIT Power Module has been designed with the global wireless Telecomm market in mind, by specifying the input voltage range in accordance with ETSI specifications. These modules are manufactured on highly automated manufacturing lines. Ericsson's world-class quality commitment is reflected in our standard five year warranty. Ericsson Microelectronics has been an ISO 9001 certified Supplier since 1991.

For a complete product program, please reference the back cover.

General

Connections

Pin	Designation	Function
1	-INPUT	Negative input
2	CASE	Connected to base plate
3	REMOTE ON/OFF	Remote control (primary) to turn-on and turn-off the output
4	+INPUT	Positive input.
5, 10	-OUTPUT	Negative output (two pins)
6	-SENSE	Negative remote sense
7	TRIM	Output voltage adjust
8	+SENSE	Positive remote sense
9, 11	+OUTPUT	Positive output (two pins)

Note: If the remote sense is not needed the "-Sense" should be connected to "-Out" and the "+Sense" should be connected to "+Out."

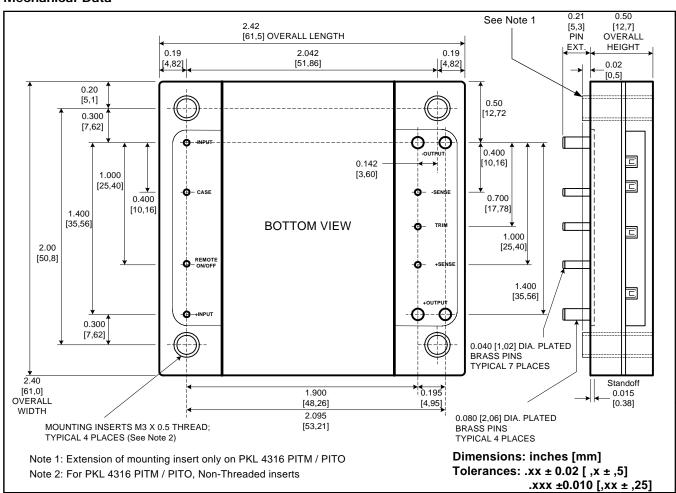
Weight

110 grams

Case

Aluminum base plate with stainless standoffs.

Pins


Pin Material: Brass

Pin Plating: Tin/Lead over Nickel

Input $T_C < T_{Cmax}$ unless otherwise specified

Characteristics		Conditions	min	typ	max	Units
VI	Input voltage range		36		75	V _{dc}
V _I off	Turn-off input voltage	Ramping from higher voltage	31	33		V _{dc}
V _I on	Turn-on input voltage	Ramping from lower voltage		34	36	V _{dc}
I _I max	Max. Input Current	V _i = V _i min = 36 V			9.5	A_{dc}
I _I rush	Inrush Current	Except Charging of C _I			1	A _{dc}
Cı	Input capacitance		3.5			μF
P _{li}	Input idling power	I _O =0, T _C =-30+95°C		6		W
P _{RC}	Input stand-by power	T _C =-30+95°C, RC Open		0.4	0.6	W

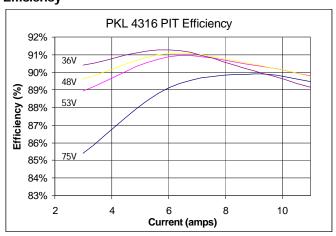
Mechanical Data

Output

 $T_c = -40...+100$ °C, $V_I = 36...75V_{dc}$ unless otherwise specified

Characteristics		Conditions		Output			
				min	typ	max	Unit
V _{Oi}	Output voltage initial	$T_C = +25^{\circ}C$, $I_O = I_{Omax}$ = 11A, $V_I = 53V$	PKL4316PIT PKL4316PITM,PKL4316PITO	27.6 27.9	28.2 28.2	28.8 28.5	V
	Output adjust range			23.5		31	
	Output voltage	Long term drift	I _O = 0.11.0 × I _O max	27.6	28.2	28.8	V
	Idling voltage	I _O = OA		27.6	28.2	30.6	V
V _O	Line regulation	I _O = I _O max	V _I = 3675 V		14	56	mV
	Load regulation	I _O = 0.11.0 × I _O max	I _O = 0.11.0 × I _O max		14	56	mV
t _{tr}	Load transient	I _O = 0.11.0 × I _O max, Load step =0.25 x I _O max,			100		μs
V _{tr}	Load transient voltage	- Di/dt = 0.1A/μs V ₁ = 53 V			± 0.75		V
t _r	Ramp-up time	$I_{O} = 0.11.0 \times I_{O}$ max,			20	40	ms
ts	Start-up time	I _O = 0.11.0 × I _O max, V _I = 53 V			20	40	ms
lo	Output current			0		11	А
P _{Omax}	Max output power	Calculated at V _O =V _O typ				310	W
l _{lim}	Current limiting	T _C <t<sub>Cmax</t<sub>			13.2	15.4	А
I _{sc}	Short circuit current	V _O = 0.20.5 V, T _C =+25°C			15	16	А
V _{Oac}	Output ripple & noise		5 Hz20MHz		50	130	mV_{p-p}
040	Catpat rippic a noise		0.15100 MHz		140		mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wave, 1V _{p-p} , V _I = 53 V		-50			dB

Miscellaneous


Characteristics		Conditions	min typ max		max	Unit
η	Efficiency	$I_{O} = I_{Omax}$, $V_{I} = 48V$, $T_{C} = +25^{\circ}C$		90		%
P _d	Power dissapation	$I_{O} = I_{Omax}, V_{I} = 48V, T_{C} = +25^{\circ}C$		30.7		W
f _s	Switching frequency	I _O = 01.0 x I _{Omax}		130		kHz

Absolute Maximum Ratings

Characteristics			max	Unit
T _C	Maximum Operating Case Temperature		+100	°C
T _S	Storage temperature		+125	°C
VI	Input voltage Continuous	-0.5	+ 80	Vdc
Vdc	Transient (100ms)		+100	V dc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
I ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Efficiency

Product Program

Vi	V _O /I _O	P _o max	Ordering Number
48/60V	28V/11A	310W	PKL4316PIT

The PKL 4000 DC/DC power modules will be available with the different options listed in the Product Options Table

Please check with the factory for availability.

Product Options

Option	Suffix	Example
Negative remote on/off logic, Industry Standard trim (i.e. V _o Adjust)	-	PKL4316PIT
Non-threaded standoff w/ increased length (0.02")	М	PKL4316PITM
Positive remote on/off logic	Р	PKL4316PIPT
Lead length 0.145"± 0.010"	LA	PKL4316PITLA
Setpoint accuracy to +/- 1%, Non-threaded standoff w/ increased length (0.02")	Ο	PKL4316PITO

Information given in this Advanced Data Sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications are subject to change without notice.

Ericsson Inc.
Microelectronics
1700 International Pkwy.
Richardson, Texas 75081
Phone: 877-ERICMIC
www.ericsson.com/microelectronics

The latest and most complete information can be found on our website!

Advanced Data Sheet