
Advanced Specification 50-60A DC/DC Power Modules 48V Input, 1.8V Output

- High efficiency 87% Typ (60A) at full load
- High power density, 37.2 W/in³, (1.8V @ 60A)
- Fast dynamic response, 200µs,
 ± 200 mVpeak Typ
- Low output ripple, 80 mVp-p Typ
- Parallelable with no external components
- Wide input voltage range (36-75V)
- 1,500Vdc isolation voltage
- Max case temperature +100°C
- Designed to meet UL 1950 and EN 60950

The PKL series represents another one of Ericsson's "industry first" achievements in the continued development of our "Third Generation" of high-density, high-efficiency power modules. This module packs 37.2 W/in³ at 87% efficiencies (1.8V @ 60A) in an industry standard footprint that has been enhanced to include two additional output pins for motherboard connection reliability. These breakthrough features come from using the most advanced patented topology utilizing integrated magnetics and synchronous rectification on a low-resistivity multilayer PCB.

This product features fast dynamic response times and low output ripple, which are important parameters when supplying low-voltage logics. The PKL series also is especially suited for limited board space and high dynamic load applications.

Ericsson's PKL Power Module has been designed with the converging "New Telecoms" market in mind, by specifying the input voltage range in accordance with ETSI specifications. The PKL series also offers over-voltage protection, under-voltage protection, over-temperature protection, soft-start, and is short circuit proof.

These modules are manufactured on highly automated manufacturing lines. Ericsson's world-class quality commitment is reflected in our standard five-year warranty. Ericsson Microelectronics has been an ISO 9001 certified supplier since 1991.

For a complete product program, please reference the back cover.

General

Connections

Designation	Function
-INPUT	Negative input. Connected to base plate
CASE REMOTE	Remote control (primary).
ON/OFF	To turn-on and turn-off the output
+INPUT	Positive input
-OUTPUT	Negative output, (two pins)
-SENSE	Negative remote sense
TRIM	Output voltage adjust
+SENSE	Positive remote sense
+OUTPUT	Positive output, (two pins)

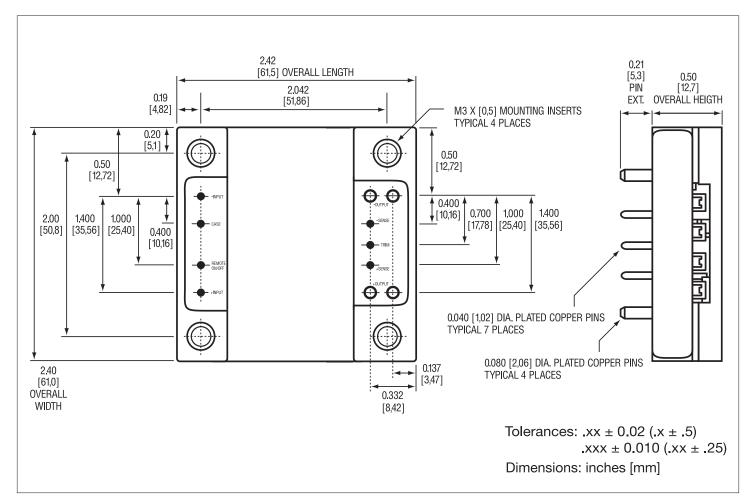
Note: If the remote sense is not needed the -Sen should be connected to -Out and +Sen should be connected to +Out.

Weight

100 grams

Case

Aluminum baseplate with metal standoffs.


Pins

Pin material: Copper Alloy Pin plating: Tin/Lead over Nickel.

$\textbf{Input} \ \mathsf{T}_C < \mathsf{T}_{Cmax}$

Chara	ecteristics	Conditions		min	typ	max	Unit
VI	Input voltage range			36		75	Vdc
V _{loff}	Turn-off input voltage	Ramping fro		31	33		Vdc
V _{Ion}	Turn-on input voltage	Ramping fro			34	36	Vdc
Cl	Input capacitance			3.5			μF
I _I max	Maximum input current	$V_I = V_I \min$	125 W 150 W			5.5 6.5	А
P _{li}	Input idling power		I _O = 0		6		W
P _{RC}	Input stand-by power (turned off with RC)	V _I = 50V	RC open		0.6		W
TRIM	Maximum input voltage on trim pin					6	Vdc

Mechanical Data

PKL 4118 PIT $T_C = -40...+100$ °C, $V_I = 36...75$ V dc unless otherwise specified.

Output

Characte	eristics	Conditions		Output		
			min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$T_C = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	1.77	1.8	1.83	V
	Output adjust range	I _O = 0 to I _O max	1.44		2.0	V
IO	Output current		0		60	А
VO	Output voltage tolerance band	I _O = 0 to I _O max	1.71		1.89	V
	Line regulation	$I_{O} = I_{Omax}$		5	15	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _O max dl/dt = 1A/µs		±200		mV _{peak}
t _{tr}	Load transient recovery time			200		μs
t _s	Start-up time	From V _I connection to V _O = 0.9 x V _{Onom}		20	30	ms
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	61	66	71	А
I _{SC}	Short circuit current			70	75	А
V _{Oac}	Output ripple and noise	$I_{O} = I_{Omax} f \le 20 \text{ MHz}$		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-50			dB
OVP	Over voltage protection	Vin = 50V	2.2	2.5	2.9	V

Miscellaneous

Characte	ristics	Conditions	min	typ	max	Unit
η	Efficiency	$T_A = +25$ °C, $V_I = 53$ V, $I_O = I_{Omax}$		87		%
P_{d}	Power dissipation	$I_O = I_{O}^{\text{max}}, V_I = 53V$		16.1		W

Absolute Maximum Ratings

Characte	eristics	min	max	Unit
TC	Case temperature @ max output power	-40	+100	°C
TS	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
l ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

PKL 4918 PIT $T_C = -40...+100$ °C, $V_I = 36...75$ V dc unless otherwise specified.

Output

Characte	eristics	Conditions		Output		
			min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$T_C = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	1.77	1.8	1.83	V
	Output adjust range	I _O = 0 to I _O max	1.44		2.0	V
lo	Output current		0		50	А
VO	Output voltage tolerance band	I _O = 0 to I _O max	1.71		1.89	V
	Line regulation	I _O = I _O max		5	15	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _O max dl/dt = 1A/µs		±200		mV _{peak}
t _{tr}	Load transient recovery time			200		μѕ
t _S	Start-up time	From V _I connection to V _O = 0.9 x V _O nom		20	30	ms
I _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	51	56	61	А
I _{SC}	Short circuit current			60	65	А
V _{Oac}	Output ripple and noise	I _O = I _{Omax} f≤20 MHz		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-50			dB
OVP	Over voltage protection	Vin = 50V	2.2	2.5	2.9	V

Miscellaneous

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	$T_A = +25^{\circ}C, V_I = 53V, I_O = I_{Omax}$		88		%
P _d	Power dissipation	$I_O = I_{O}$ max, $V_I = 53V$		12.3		W

Absolute Maximum Ratings

Characte	ristics	min	max	Unit
TC	Case temperature @ max output power	-40	+100	°C
TS	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
l ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Product Program

v _I	V _O /I _O	Pomax	Ordering Number
48/60 V	1.8V/60A	108W	PKL 4118 PIT
48/60 V	1.8V/50A	90W	PKL 4918 PIT

The PKL $4000\ DC/DC$ power modules will be available with the different options listed in the Product Options table.

Please check with the factory for availability.

Product Options

Option	Suffix	Example
Negative remote on/off logic Industry Standard Trim, (i.e. V _{out} Adjust)	-	PKL 4118 PIT
Positive remote on/off logic	Р	PKL 4118 PIPT
Lead length of 0.145" ± 0.010"	LA	PKL 4118 PITLA

Ericsson Microelectronics' Sales Offices:

Brazil:	Phone: +55 11 681 0040	Fax: +55 11 681 2051
Denmark:	Phone: +45 33 883 109	Fax: +45 33 883 105
Finland:	Phone: +358 9 299 4098	Fax: +358 9 299 4188
France:	Phone: +33 1 4083 7720	Fax: +33 1 4083 7741
Germany:	Phone: +49 211 534 1516	Fax: +49 211 534 1525
Great Britain:	Phone: +44 1793 488 300	Fax: +44 1793 488 301
Hong Kong:	Phone: +852 2590 2356	Fax: +852 2590 7152
Italy:	Phone: +39 2 7014 4203	Fax: +39 2 7014 4260
Japan:	Phone: +81 3 5216 9091	Fax: +81 3 5216 9096
Norway:	Phone: +47 66 841 906	Fax: +47 66 841 909
Russia:	Phone: +7 095 247 6211	Fax: +7 095 247 6212
Spain:	Phone: +34 91 339 1858	Fax: +34 91 339 3145
Sweden:	Phone: +46 8 721 6258	Fax: +46 8 721 7001
United States:	Phone: +1 877 374 2642	Fax: +1 972 583 8355

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Inc. These products are sold only according to Ericsson Inc.'s general conditions of sale, unless otherwise confirmed in writing.

The contents of this document are subject to revision without notice due to continued progress in design and manufacturing.

Advanced Specification

AE/LZT 108 4753 R1 © Ericsson Inc., January 2001

Ericsson Inc.
Microelectronics
1700 International Pkwy.
Richardson, Texas 75081
Phone: 877-ERICMIC
www.ericsson.com/micro