NPN DARLINGTON POWER MODULE

- HIGH CURRENT POWER BIPOLAR MODULE
- VERY LOW Rth JUNCTION CASE
- SPECIFIED ACCIDENTAL OVERLOAD AREAS
- ULTRAFAST FREEWHEELING DIODE
- FULLY INSULATED PACKAGE (UL COMPLIANT)
- EASY TO MOUNT
- LOW INTERNAL PARASITIC INDUCTANCE

INDUSTRIAL APPLICATIONS:

- MOTOR CONTROL
- SMPS \& UPS
- DC/DC \& DC/AC CONVERTERS
- WELDING EQUIPMENT

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CEV}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{~V}\right)$	600	V
$\mathrm{~V}_{\mathrm{CEO}(\text { sus })}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	450	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	V
I_{C}	Collector Current	24	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	36	A
I_{B}	Base Current	2.5	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	5	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	125	W
$\mathrm{~V}_{\text {isol }}$	Insulation Withstand Voltage (RMS) from All Four Terminals to Exernal Heatsink	2500	V
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case (transistor)	Max	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {thj-case }}$	Thermal Resistance Junction-case (diode)	Max	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {thc-h }}$	Thermal Resistance	Case-heatsink With Conductive			${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Grease Applied		Max	0.05	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICer \#	Collector Cut-off Current ($\mathrm{R}_{\mathrm{BE}}=5 \Omega$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEV}} \\ & \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEV}} \end{aligned} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$			$\begin{aligned} & 1.5 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Icev \#	Collector Cut-off Current (VBE =-5)	$\begin{aligned} & V_{C E}=V_{C E V} \\ & V_{C E}=V_{C E V} \end{aligned} T_{j}=100^{\circ} \mathrm{C}$			$\begin{gathered} 1 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iebo \#	Emitter Cut-off Current $(\mathrm{IC}=0)$	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {CEO(SUS) }}{ }^{*}$	Collector-Emitter Sustaining Voltage $\left(\mathrm{IB}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \mathrm{I} \mathrm{C}=0.2 \mathrm{~A} \quad \mathrm{~L}=25 \mathrm{mH} \\ & \mathrm{~V}_{\text {clamp }}=450 \mathrm{~V} \end{aligned}$	450			V
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \quad \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$		120		
$\mathrm{V}_{\text {CE(sat) }}$ *	Collector-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.4 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE}(\text { sat) }}$ *	Base-Emitter Saturation Voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A} \\ \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{dic} / \mathrm{dt}$	Rate of Rise of On-state Collector	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} \quad \mathrm{R}_{\mathrm{C}}=0 \quad \mathrm{t}_{\mathrm{p}}=3 \mu \mathrm{~s} \\ & \mathrm{I}_{\mathrm{B} 1}=0.45 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{aligned}$	125	160		A/ $\mu \mathrm{s}$
$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}(3 \\ & \mu \mathrm{s}) \cdot \end{aligned}$	Collector-Emitter Dynamic Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} & \mathrm{R}_{\mathrm{C}}=20 \Omega \\ \mathrm{I}_{\mathrm{B} 1}=0.45 \mathrm{~A} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$		4.5	8	V
$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}(5 \\ & \mu \mathrm{s}) \cdot \end{aligned}$	Collector-Emitter Dynamic Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} & \mathrm{R}_{\mathrm{C}}=20 \Omega \\ \mathrm{I}_{\mathrm{B} 1}=0.45 \mathrm{~A} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$		2.5	4.5	V
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Cross-over Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{~V}_{\text {clamp }}=450 \mathrm{~V} \quad \mathrm{I}_{\mathrm{B} 1}=0.3 \mathrm{~A} \\ & \mathrm{~L}=0.17 \mathrm{mH} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 2.1 \\ 0.15 \\ 0.5 \end{gathered}$	$\begin{gathered} 4 \\ 0.4 \\ 1.2 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$V_{\text {cew }}$	Maximum Collector Emitter Voltage Without Snubber	$\begin{array}{ll} \mathrm{I}_{\mathrm{CWoff}}=24 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 1}=1.2 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} & \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ \mathrm{~L}_{2}=0.1 \mathrm{mH} & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} & \\ \hline \end{array}$	450			V
$V_{\text {F* }}$	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$		1.7	2	V
$\mathrm{I}_{\text {RM }}$	Reverse Recovery Current	$\begin{aligned} & \mathrm{V}_{C C}=200 \mathrm{~V} \quad \mathrm{I}_{F}=20 \mathrm{~A} \\ & \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=-125 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{~L}<0.05 \mu \mathrm{H} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{aligned}$		11	14	A

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%
\# See test circuits in databook introduction
To evaluate the conduction losses of the diode use the following equations:
$V_{F}=1.47+0.0026 \mathrm{I}_{\mathrm{F}} \quad \mathrm{P}=1.47 \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.0026 \mathrm{I}^{2} \mathrm{~F}(\mathrm{RMS})$

Safe Operating Areas

Derating Curve

Collector Emitter Saturation Voltage

Thermal Impedance

Collector-emitter Voltage Versus
base-emitter Resistance

Base-Emitter Saturation Voltage

Reverse Biased SOA

Reverse Biased AOA

Switching Times Inductive Load

Foward Biased SOA

Forward Biased AOA

Switching Times Inductive Load Versus Temperature

Dc Current Gain

Peak Reverse Current Versus dif/dt

Typical V_{F} Versus I_{F}

Turn-on Switching Test Circuit

Turn-on Switching Waveforms

ESM3045DV

Turn-on Switching Test Circuit

Turn-off Switching Test Circuit of Diode

Turn-off Switching Waveforms

Turn-off Switching Waveform of Diode

ISOTOP MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	11.8		12.2	0.465		0.480
A1	8.9		9.1	0.350		0.358
B	7.8		8.2	0.307		0.322
C	0.75		0.85	0.029		0.033
C2	1.95		2.05	0.076		0.080
D	37.8		38.2	1.488		1.503
D1	31.5		31.7	1.240		1.248
E	25.15		25.5	0.990		1.003
E1	23.85		24.15	0.938		0.950
E2					0.976	
G	14.9		15.1	0.586		0.594
G1	12.6		12.8	0.496		0.503
G2	3.5		4.3	0.137		1.169
F	4.1		4.3	0.161		0.169
F1	4.6		5	0.181		0.196
P	4		4.3	0.157		0.169
P1	4		4.4	0.157		0.173
S	30.1		30.3	1.185		1.193

ESM3045DV

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

