
Advanced Specification 300 Watt DC/DC Power Module 48V Input, 12V Output

- High efficiency 92% Typ (25A) at full load
- High power density, 103 W/in³, (12V @ 25A)
- Fast dynamic response, 200µs,
 ± 200 mVpeak Typ
- Low output ripple, 80 mVp-p Typ
- Parallelable with no external components
- Wide input voltage range (36-75V)
- 1,500Vdc isolation voltage
- Max case temperature +100°C
- UL 1950/UL_C 1950 Recognized
- TUV EN 60 950 Type Approval

The PKL series represents another one of Ericsson's "industry first" achievements in the continued development of our "Third Generation" of high-density, high-efficiency power modules. This module packs 103 W/in³ at 92% efficiencies (12V @ 25A) in an industry standard footprint that has been enhanced to include two additional output pins for motherboard connection reliability. These breakthrough features come from using the most advanced patented topology utilizing integrated magnetics and synchronous rectification on a low-resistivity multilayer PCB.

This product features fast dynamic response times and low output ripple, which are important parameters when supplying low-voltage logics. The PKL series also is especially suited for limited board space and high dynamic load applications.

Ericsson's PKL Power Module has been designed with the converging "New Telecoms" market in mind, by specifying the input voltage range in accordance with ETSI specifications. The PKL series also offers over-voltage protection, under-voltage protection, over-temperature protection, soft-start, and is short circuit proof.

These modules are manufactured on highly automated manufacturing lines. Ericsson's world-class quality commitment is reflected in our standard five-year warranty. Ericsson Microelectronics has been an ISO 9001 certified supplier since 1991.

For a complete product program, please reference the back cover.

General

Connections

Designation	Function	
-IN	Negative input	
CASE	Connected to base plate	
RC	Remote control (primary) to turn-on	
	and turn-off the output	
+IN	Positive input	
-OUT	Negative output	
-SEN	Negative remote sense	
TRIM	Output voltage adjust	
+SEN	Positive remote sense	
+OUT	Positive output	

Note: If the remote sense is not needed the "-Sense" should be connected to -Out and "+Sense" should be connected to +Out.

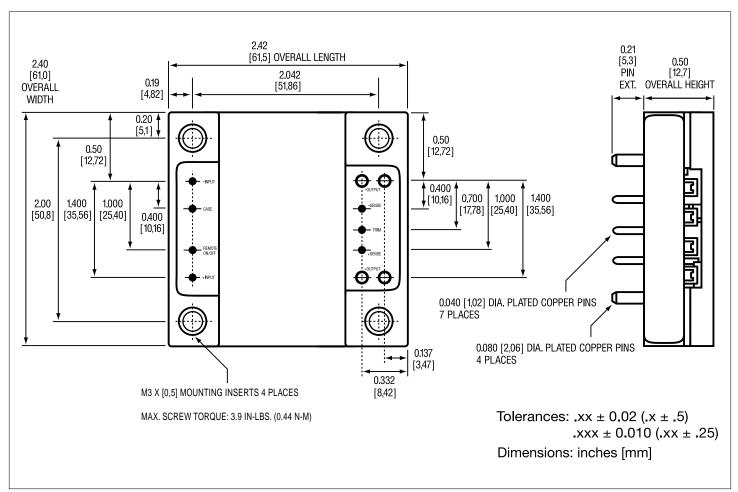
Weight

100 grams

Case

Aluminum baseplate with metal standoffs

Pins


Pin material: Brass

Pin plating: Tin/Lead over Nickel

 $\textbf{Input} \ \mathsf{T}_C < \mathsf{T}_{Cmax}$

Characteristics		Conditions		min	typ	max	Unit
VI	Input voltage range			36		75	Vdc
V _{loff}	Turn-off input voltage	Ramping from higher voltage		31	33		Vdc
V _{Ion}	Turn-on input voltage	Ramping from lower voltage			34	36	Vdc
Cl	Input capacitance			3.5			μF
I _I max	Maximum input current	$V_I = V_I \text{ min}$	250 W 300 W			8.0 9.6	A
P _{li}	Input idling power		I _O = 0		9		W
P _{RC}	Input stand-by power (turned off with RC)	V _I = 50V	RC open		1.2		W
TRIM	Maximum input voltage on trim pin					6	Vdc

Mechanical Data

PKL 4313 PIT/PKL 4213 PIT

 $T_C = -40...+100$ °C, $V_I = 36...75$ V dc unless otherwise specified.

Output

Charac	cteristics	Conditions		Output			
				min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$T_C = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	All	11.8	12	12.2	V
	Output adjust range	I _O = 0 to I _O max	All	9.6		13.3	V
IO	Output current		PKL 4313 PIT PKL 4213 PIT	0		25 20	А
VO	Output voltage tolerance band	I _O = 0 to I _O max	All	11.64		12.36	V
	Line regulation	I _O = I _O max	All		5	20	mV
	Load regulation	V _I = 53V, I _O = 0 to I _O max	All		5	20	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _{Omax} dl/dt = 1A/µs	All		±200		mV _{peak}
t _{tr}	Load transient recovery time		All		200		μs
t _s	Start-up time	From V_I connection to $V_O = 0.9 \times V_{O^{nom}}$	All		20	30	ms
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	PKL 4313 PIT PKL 4213 PIT	26 22	27.5 23.5	32 28	А
I _{SC}	Short circuit current		PKL 4313 PIT PKL 4213 PIT		30 26	33 29	А
V _{Oac}	Output ripple and noise	$I_O = I_{Omax} f \le 20 \text{ MHz}$	All		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	All	-50			dB
OVP	Over voltage protection	Vin = 50V	All		14.9	15.5	V

Miscellaneous

Char	acteristics	Conditions	Device	min	typ	max	Unit
η	Efficiency	$T_A = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	PKL 4313 PIT PKL 4213 PIT		92 92		%
Pd	Power dissipation	$I_O = I_{Omax}$, $V_I = 53V$	PKL 4313 PIT PKL 4213 PIT		26 20.9		W

Absolute Maximum Ratings

Cha	racteristics	min	max	Unit
T _C	Case temperature @ max output power	-40	+100	°C
T _S	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
v_{RC}	Remote control voltage		12	Vdc
I ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Product Program

V _I	V _O /I _O	POmax	Ordering Number
48/60 V	12V/25A	300W	PKL 4313 PIT
48/60 V	12V/20A	240W	PKL 4213 PIT

The PKL 4000 DC/DC power modules will be available with the different options listed in the Product Options table.

Please check with the factory for availability.

Product Options

Option	Suffix	Example
Negative remote on/off logic Industry Standard Trim, (i.e. V _{out} Adjust)	ı	PKL 4119A PIT
Positive remote on/off logic	Р	PKL 4119A PIPT
Lead length of 0.145" ± 0.010"	LA	PKL 4119A PITLA

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice.

The latest and most complete information can be found on our website!

Preliminary Data Sheet

AE/LZT 108 4895 R2 © Ericsson Microelectronics, May 2001

Ericsson Microelectronics

1700 International Pkwy. Richardson, Texas 75081 Phone: 1-877-ERICMIC

www.ericsson.com/microelectronics

For sales contacts, please refer to our website or call: 1-877-374-2642 or fax: 1-972-583-8355