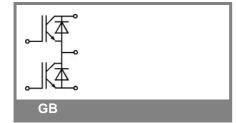
SK60GB128

IGBT Module

SK60GB128

Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C			1200	V	
I _C	T _j = 125 °C	T _s = 25 °C		63	Α	
		T _s = 80 °C		44	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C		10	μs	
Inverse D	iode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		57	Α	
		T _s = 80 °C		38	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t_p = 10 ms; half sine wave	T _j = 150 °C		550	Α	
Module						
I _{t(RMS)}					Α	
T_{vj}				-40 + 150	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,1	mA
		T _j = 125 °C		0,2		mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA
		T _j = 125 °C				nA
V_{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		1	1,2	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ
		T _j = 125°C		18		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	1,7	1,9	2,3	V
		$T_j = 125^{\circ}C_{chiplev.}$		1,9	2,3	V
C _{ies}				4,46		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,33		nF
C _{res}				0,21		nF
$t_{d(on)}$				80		ns
t _r	R_{Gon} = 15 Ω	V _{CC} = 600V		50		ns
Ė _{on}		I _{Cnom} = 50A		5,8		mJ
t _{d(off)}	$R_{Goff} = 15 \Omega$	T _j = 125 °C		420		ns
t _f		V _{GE} =±15V		40		ns
E _{off}				4,8		mJ
$R_{th(j-s)}$	per IGBT				0,6	K/W

SK60GB128

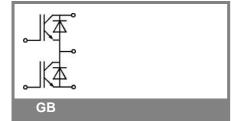
IGBT Module

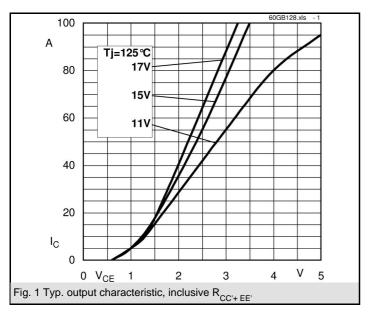
SK60GB128

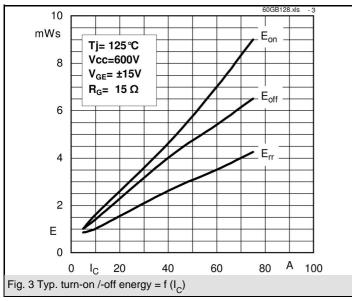
Preliminary Data

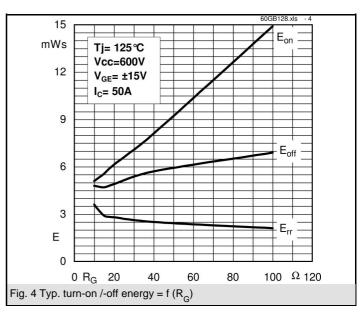
Features

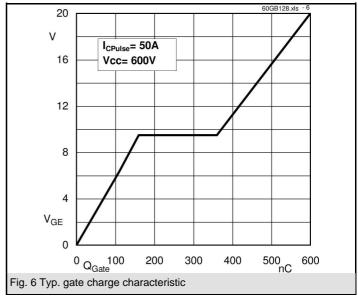
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- · High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

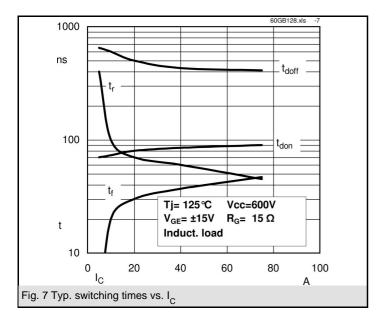

Typical Applications

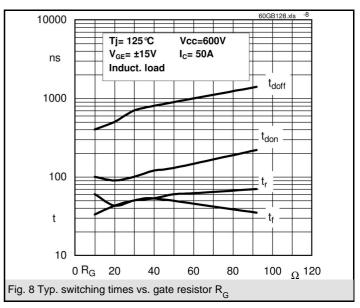

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

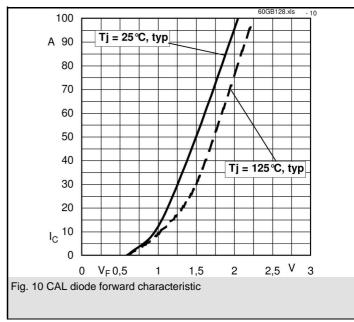

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		18	22	mΩ	
I _{RRM}	I _{Fnom} = 50 A	T _i = 125 °C		40		Α	
Q_{rr}	di/dt = -800 A/μs	,		8		μC	
E _{rr}	V _{CC} = 600V			2		mJ	
$R_{th(j-s)D}$	per diode				0,9	K/W	
M _s	to heat sink M1		2,25		2,5	Nm	
w				29		g	

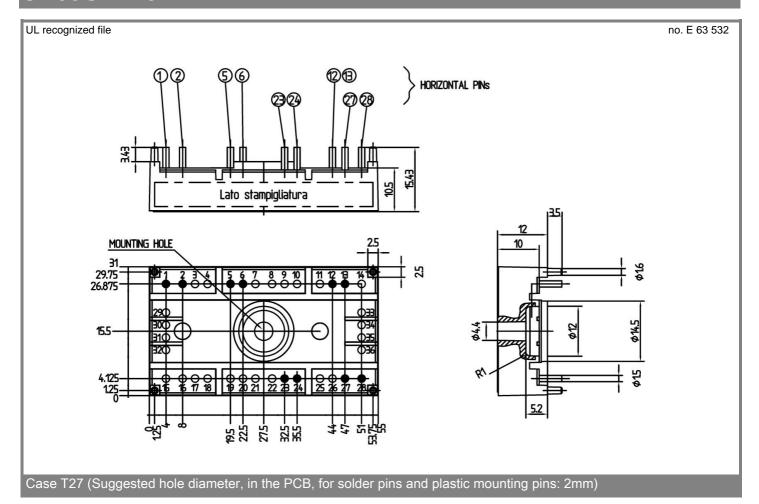

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

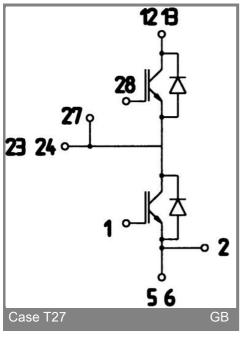

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.










SK60GB128

