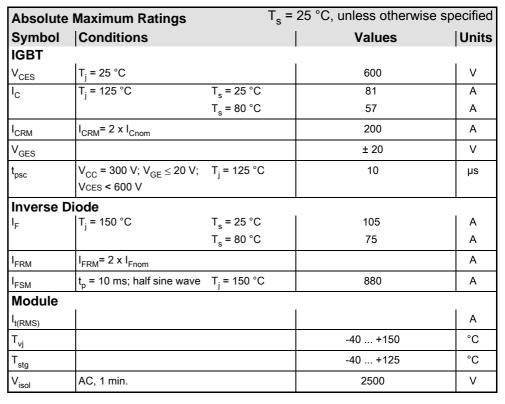


SEMITOP® 2

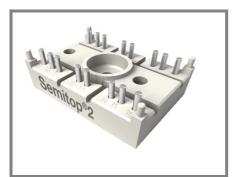
IGBT Module

SK80GM063


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics		T_s = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V		
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA		
		T _j = 125 °C				mA		
I_{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			240	nA		
		T _j = 125 °C				nA		
V_{CE0}		T _j = 25 °C		0,9		V		
		T _j = 125 °C		0,9		V		
r_{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ		
		T _j = 125°C		15		mΩ		
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			2	2,5	V		
		$T_j = 125^{\circ}C_{chiplev.}$		2,4		V		
C _{ies}				4,4		nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF _		
C _{res}				0,4		nF		
Q_G	V _{GE} =0 20 V			310		nC		
t _{d(on)}				45	60	ns		
Į t _r	R_{Gon} = 11 Ω	V _{CC} = 300V		35 3	50	ns		
E _{on}	R _{Goff} = 11 Ω	I _{Cnom} = 60A T _i = 125 °C		ა 250	300	mJ ns		
$egin{aligned} \mathbf{t}_{d(off)} \ \mathbf{t}_{f} \end{aligned}$	Goff	V _{GE} =±15V		25	40	ns		
E _{off}				2,3		mJ		
R _{th(j-s)}	per IGBT				0,6	K/W		

SEMITOP® 2

IGBT Module

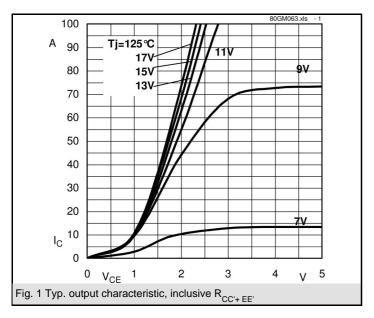
SK80GM063

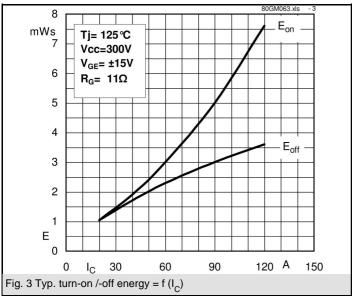
Preliminary Data

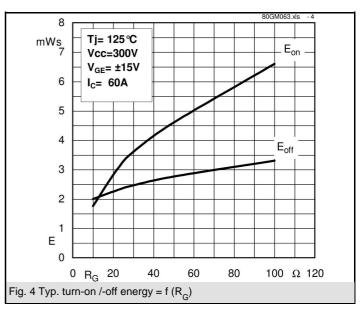
Features

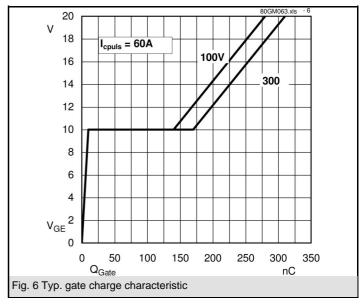
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,3	1,5	V			
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,2	1,45	V			
V _{F0}		T _j = 125 °C		0,85	0,9	V			
r _F		T _j = 125 °C		5,8	7,5	mΩ			
I _{RRM}	I _{Fnom} = 60 A	T _i = 125 °C		22	26	Α			
Q_{rr}	di/dt = -500 A/μs	,		2,2	3,5	μC			
E _{rr}	V _{CC} = 300V			0,2	0,3	mJ			
$R_{th(j-s)D}$	per diode				1,2	K/W			
M_s	to heat sink M1				2	Nm			
w				21		g			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

