NOvV 21 189

e]

80286

High-Performance Microprocessor with
Memory Management and Protection

Pn

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

=B High-performance processor (up to 13.3 times ® High bandwidth bus interface
IAPX 86 when using the 16 MHz 80286) (16 megabyte/sec)

m Large address space
—16 megabytes physical m Range of clock rates
~1 gigabyte virtual memory per task -8 MHz 80286-8

® Integrated memory management, four-level —10 MHz 80286-10
memory protection and support for virtual —12 MHz 80286-12
memory and operating systems —16 MHz 80286-16

® Two IAPX 86 upward-compatible operating
modes
—iAPX 86 real address mode
—Protected virtual address mode

GENERAL DESCRIPTION

The 80286 is an advanced, high-performance micropro-

cessor with specially optimized capabilities for multiple

user and multi-tasking systems. The 80286 has built-in
memory protection that supports operating system and
task isolation as well as program and data privacy within

tasks. A 16-MHz B0286 provides up to 13.3 times greater
throughput than the standard 5-MHz 8086. The 80286 in-
cludes memory management capabilities that map up to
2%pytes (one gigabyte) of virtual address space pertask
into 2% bytes (16 megabytes) of physical memory.

BLOCK DIAGRAM

-
| Address Unit {(AU)]]
Address Aa
| Physical Latches and Drivers I , M0
'S|
! 'Address I [r > PEACK
| Adder Prefetcher || Extension | PEREQ
| Segment / | | Interface 1 FEADY. HOLD
| ases | l 5
Bus Control 1, 50, COD/INTA
= e [p— : | [OCR, HLDA
I Checker | Sizes M DataTransceivers Dis—Da
|

| | 6-Byte |
| | Pre%/k:h]
| | Queue
U — —d a Bus Unit (BU) J'
nrH——1 rr—————=—14 t————— B —
| ALU |
: [- = N\] le—reser

Regi Control 3 ; ¢— cik
| ! Instruction Instruction "l'},,""f,'l’j;" = V..

it
I Execution Unit (EU < | H) bt
L _Execution Unit (EU) L I e . < [¢—Pp CAP
NMI BUSY
INTR' ERROR 03552-1

This Materia

Copyri ghted By

/

Issue Date:

Publication # 03552 Rev. F Amendment 0
June 1989

Its Respective Manufacturer

This Materia

GENERAL DESCRIPTION (continued)

The 80286 is upward-compatible with iAPX 86 and 88
software. Using iAPX 86 real address mode, the 80286
is object-code compatible with existing iAPX 86, 88
software.

In protected virtual address mode, the 80286 is source-
code compatible with iAPX 86, 88 software and may
require upgrading to use virtual addresses supported by
the 80286’s integrated memory management and pro-
tection mechanism. Both modes operate at full 80286
performance and execute a superset of the iIAPX 86 and
88 instructions.

The 80286 provides special operations to support the
efficient implementation and execution of operating sys-
tems. For example, one instruction can end execution
of one task, save its state, switch to a new task, load its
state, and start execution of the new task. The 80286
also supports virtual memory systems by providing
a segment-not-present exception and restartable
instructions.

Related AMD Products

Part No. Description
82284 Clock Driver
82C54 Programmable Interval Timer
Am9517A DMA Controller
2 80286

Copyrighted By Its Respective Mnufacturer

CONNECTION DIAGRAMS

Component Pad Views—As viewed from Lcc PC Board Views—As viewed from the
underside of component on the PC Board component side of the PC Board

There are no electrical connections on the

035502 bottom of this package 03552-3
PGA
OO OO : ®35 ®37 ®39 %41 %43 %45 %47 %49 %51
POPPPPPOOO6 O ®34 %36 3 %0 %2 % % % "0 s %52
® 6 ® @I 0y 0a LI D
® 6 @ @: ®30 ®31 %7 ® 46
@ @ @l .28 859 059 .48
® 80286 @ @: *2x %27 80286 %1 ® 60
@ @ @ @l ®24 ®25 ®ss ® 62
I@@ @@= *2 *x %5 64
® 6 ® @{ ®20 ®21 %7 ® 66
@@@@)@@@@@: ®18 ®19 %16 %14 %12 %10 %8 %% %1 %2 %
\QQPQP0PO0BB® | s et 7 % et
L Pin No. 1 Mark 035524 03552-5
Pins pointing away from viewer Pins pointing toward viewer
80286 3

This Material Copyrighted By Its Respective Manufacturer

PGA (continued)

Bottom View

PPPEPEPPEEG® |1
(ONONONONONONONONONONON RL
®@® oXolE
(ONO] [ONOR R
@e ©E|7
® @ (ONONN
®e [ONON K
®e © @
(ONO] ONON K
[ONONONORONONONONON NONN-
PPRPEEEEO
L K J HGF EDCB A 03552-6
PIN DESIGNATIONS
(Sorted by pin number)
Pin Pin Pin Pin Pin Pin
No. Name No. Name No. Name
1 BHE 24 A7 47 Dia
2 NC 25 As 48 De
3 NC 26 As 49 D1
4 51 27 A4 50 D7
5 [28 As 51 Dss
6 PEACK 29 RESET 52 CAP
7 Az 30 Vce 53 ERROR
8 Az 31 CLK 54 BUSY
9 Vss 32 Az 55 NC
10 Azt 33 A1 56 NC
1 Ao 34 Ao 57 INTR
12 Ais 35 Vss 58 NC
13 Ass 36 Do 59 NMI
14 Az 37 Ds 60 Vss
15 Ae 38 D1 61 PEREQ
16 Ats 39 Dse 62 Vec
17 A 40 D2 63 READY
18 A 41 Dio 64 HOLD
19 Az 42 Da 65 - HLDA
20 At 43 Dn 66 COD/INTA
21 Ao 44 Da 67 M/IO
22 As 45 D12 68 LOCK
23 As 46 Ds
4 80286

This Materi al

Copyrighted By Its Respective Mnufacturer

ORDERING INFORMATION
Commodity Products

AMD standard products are available in several packages and operating ranges. The ordering number
(Valid Combination) is formed by a combination of: a. Temperature Range

b. Package Type

¢. Device Number

d. Speed Option (if applicable)

e. Optional Processing

- R 80286 -6
| I d. SPEED OPTION
—16=16 MHz
-12=125 MHz
—10=10 MHz
- 8=8 MHz

c. DEVICE NUMBER/DESCRIPTION
80286

High-Performance Microprocessor

b. PACKAGE TYPE
R = 68-Pin Ceramic Leadless Chip Carrier
(CA2068)
A = 68-Pin Grid Array (CGX068)
N = 68-Pin Plastic Leaded Chip Carrier

a. TEMPERATURE RANGE (PLOBB)*
Blank = Commercial {TC = 0 to +85° C)

Valld Combinations

A 80286-8
80286-10
80286-12

80286-8
R 80286-10

8028612
80286-16

Valild Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult

*The PLCC package is not a valid ordering part number for the the local AMD sales office to confirm availability of
80286. The PLCC package is valid for the 80L286 part number. See specific valid combinations, to check on newly re-
the 80L286 data sheet (order #08511D) for ordering information and leased combinations, and to obtain additional
DC and AC parametrics. data on AMD’s standard military grade products.

80286 5

This Material Copyrighted By Its Respective Manufacturer

This Materi al

PIN DESCRIPTION

CLK
System Clock (input; Active HIGH)

System Clock provides the fundamental timing for 80286
systems. Itis divided by two inside the 80286 to generate
the processor clock. The internal divide-by-two circuitry
can be synchronized to an external clock generator by
LOW-to-HIGH transition on the RESET input.

Do—D:s

Data Bus (Input/Output; Active HIGH)

Data Bus inputs data during memory, 1/O, and interrupt
acknowledge read cycles; outputs data during memory
and I/O write cycles. The data bus is active HIGH and
floats to three-state OFF during bus hold acknowledge.

Azx—Ao

Address Bus (Output; Active HIGH)

Address Bus outputs physical memory and 1/0 port ad-
dresses. Ao is LOW when data is to be transferred on
pins Dr-. A2s—Aie are LOW during I/O transfers. The
address bus is active HIGH andfloats to three-state OFF
during bus hold acknowledge.

BHE

Bus High Enable (Output; Active LOW)

Bus High Enable indicates transfer of data on the upper
byte of the data bus Diss. Eight-bit oriented devices
assigned to the upper byte of the data bus would nor-
mally use BHE to condition chip select functions. BHE s
active LOW and floats to three-state OFF during bus hold
acknowl-

80286 Bus Cycle Status Definition

iCOD/
INTA

9
g

Bus Cycle Status Definition

edge.
BHE and A, Encodings
BHE A,
Value Value Function
0 0 Word transfer
0 1 Byte transfer on upper half of data bus (D,s)
1 0 Byte transfer on lower half of data bus (D;_,)
1 1 Reserved
§1,50

Bus Cycle Status (Output; Active LOW) Bus Cycle
Status indicates initiation of a bus cycle and, along with
MO and COD/INTA, defines the type of bus cycle. The
bus is in a Ts state whenever one or both are LOW. 51
and SO are active LOW and float to three-state OFF
during bus hold acknowledge.

(=]
[5
E:

Interrupt acknowledge
Reserved

Reserved

None; not a status cycle
If A, =1 then hatt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Reserved

1O Read

/O Write

None; not a status cycle
Reserved

Memory instruction read
Reserved

None; not a status cycle

(HIGH)

_— bk ek ek OO OODOOO
L a e 000044~ 20000 d
R R - T - N - I R =)

M10

Memory/I0 Select (Output)

Memory/i0 Select distinguishes memory access from
VO access. If HIGH during Ts, a memory cycle or a
halt/shutdown cycle is in progress. Iif LOW, an I/O cycle
or an interrupt acknowledge cycle is in progress. M/1O
floats to three-state OFF during bus hold acknowledge.

COD/INTA

Code/interrupt Acknowledge (Output)
Code/Interrupt Acknowledge distinguishes instruction
fetch cycles from memory data read cycles. Also distin-
guishes interrupt acknowledge cycles from /0O cycles.
COD/INTA floats to three-state OFF during bus hold ac-
knowledge.

LOCK

Bus Lock (Output; Active LOW)

Bus Lock indicates that other system bus masters are not
1o gain control of the system bus following the current
bus cycle. The LOCK signal may be activated explicitly
by the “LOCK” instruction prefix or automatically by
80286 hardware during memory XCHG instructions, in-
terrupt acknowledge, or descriptor table access. LOCK
is active LOW and floats to three-state OFF during hold
acknowledge.

6 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

PIN DESCRIPTION (continued)

READY
Bus Ready (Input; Actlve LOW)

Bus Ready terminates a bus cycle. Bus cycles are ex-
tended without limit until terminated by READY LOW.
READY is an active LOW synchronous input requiring
set-up and hold times relative to the system clock be met
for correct operation. READY is ignored during bus hold
acknowledge.

HOLD, HLDA

Bus Hold Request and Hold Acknowledge
(input/Output; Active HIGH)

Bus Hold Request and Hold Acknowledge control owner-
ship of the 80286 local bus. The HOLD input allows
another local bus master to request control of the local
bus. When control is granted, the 80286 will float its bus
drivers to three-state OFF and then active HLDA, thus
entering the bus hold acknowledge condition. The local
bus will remain granted to the requesting master until
HOL D becomes inactive which results in the 80286 de-
activating HLDA and regaining control of the local bus.
This terminates the bus hold acknowledge condition.
HOLD may be asynchronous to the system clock. These
signals are active HIGH.

INTR
Interrupt Request (Input; Active HIGH)

Interrupt Request requests the 80286 to suspend its cur-
rent program execution and service a pending external
request. Interrupt requests are masked whenever the
interrupt enable bit in the flag word is cleared. When the
80286 responds to an interrupt request, it performs two
interrupt acknowledge bus cycles to read an 8-bit inter-
rupt vector that identifies the source of the interrupt. To
assure program interruption, INTR must remain active
until the first interrupt acknowledge cycle is completed.
INTR is sampled at the beginning of each processor
cycle and must be active HIGH at least two processor
cycles before the current instruction ends in order to
interrupt before the next instruction. INTR is level sensi-
tive, active HIGH, and may be asynchronous to the sys-
tem clock.

NMI

Non-maskable Interrupt Request

(Input; Active HIGH)

Non-maskable Interrupt Request interrupts the 80286
with an internally supplied vector value of 2. No interrupt
acknowledge cycles are performed. The interrupt enable
bit in the 80286 flag word does not affect this input. The
NMI input is active HIGH, may be asynchronous to the
system clock, and is edge triggered after internal syn-
chronization. For proper recognition, the input must have
been previously LOW for at least four system clock cy-
cles and remain HIGH for at least four system clock
cycles.

PEREQ, PEACK

Processor Extenslon Operand Request and
Acknowledge (Input/Output)

Processor Extension Operand Request and Acknowi-
edge extended the memory management and protection
capabilities of the 80286 to processor extensions. The
PEREQ input requests the 80286 to perform a data oper-
and transfer for a processor extension. The PEACK out-
put signals the processor extension when the requested
operand is being transferred. PEREQ is active HIGH and
may be asynchronous to the system clock. PEACK is
active LOW.

BUSY, ERROR

Processor Extension Busy and Error

(Input/input, Active Low)

Processor Extension Busy and Error indicate the operat-
ing condition of a processor extension to the 80286. An
active BUSY input stops 80286 program execution on
WAIT and some ESC instructions until BUSY becomes
inactive (HIGH). The 80286 may be interrupted while
waiting for BUSY to become inactive. An active ERROR
input causes the 80286 to perform a processor extension
interrupt when executing WAIT or some ESC instruc-
tions. These inputs are active LOW and may be asyn-
chronous to the system clock.

RESET
System Reset (Input; Active HIGH)

System Reset clears the internal logic of the 80286 and
is active HIGH. The 80286 may be reinitialized at any
time with a LOW-to-HIGH transition on RESET which
remains active for more than 16 system clock cycles.
During RESET active, the output pins of the 80286 enter
the state shown below:

80286 Pin State During Reset

Pin Value Pin Names

1 (HIGH) 80, S1, PEACK, A,-A,, BHE, LOCK
0 (LOW) M/I0, COD/INTA, HLDA
Three-state OFF D,s~D,

Operation of the 80286 begins after a HIGH-to-LOW
transition on RESET. The HIGH-to-LOW transition of
RESET must be synchronous to the system clock. Ap-
proximately 50 system clock cycles are required by the
80286 for internal initializations before the first bus cycle
to fetch code from the power-on execution address is
performed.

80286 7

Copyrighted By Its Respective Mnufacturer

PIN DESCRIPTION (continued)

A LOW-to-HIGH transition of RESET synchronous to the
system clock will begin a new processor cycle at the next
HIGH-to-LOW transition of the system clock. The LOW-
to-HIGH transition of RESET may be asynchronous to
the system clock; however, in this case it cannot be
predetermined which phase of the processor clock will
occur during the next system period. Synchronous LOW-
to-HIGH transitions of RESET are only required for sys-
tems where the processor clock must be phase synchro-
nous to another clock.

Vss

System Ground (Input; Active HIGH)
System Ground: 0 volts.

Vee

System Power (Input; Active HIGH)
System Power: +5 volt power supply.

CAP
Substrate Filter Capacitor (Input; Active High)

A 0.047 pF +20% 12 V capacitor must be connected
between this pin and ground. This capacitor filters the
output of the internal substrate bias generator. A maxi-
mum DC leakage curmrent of 1 pA is allowed through the
capacitor.

For correct operation of the 80286, the substrate bias
generator must charge this capacitor to its operating
voltage. The capacitor charge-up time is 5 milliseconds
(max.) after Vcc and CLK reach their specified AC and
DC parameters. RESET may be applied to prevent spuri-
ous activity by the CPU during this time. After this time,
the 80286 processor clock can be phase synchronizedto
another clock by pulsing RESET LOW synchronous to
the system clock.

This Materia

8 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

FUNCTIONAL DESCRIPTION
introduction

The 80286 is an advanced, high-performance micropro-
cessor with specially optimized capabilities for multiple
user and multi-tasking systems. Depending on the appli-
cation, the 80286’s performance is up to 13.3 times
faster than the standard 5-MHz 8086’s, while providing
complete upward software compatibility with AMD's
iAPX 86, 88, and 186 family of CPUs.

The 80286 operates intwo modes: IAPX 86 real address
mode and protected virtual address mode. Both modes
execute a superset of the iAPX 86 and 88 instruction set.

In iAPX 86 real address mode programs use real ad-
dresses with up to one megabyte of address space. Pro-
grams use virtual addresses in protected virtual address
mode, also called protected mode. In protected mode,
the 80286 CPU automatically maps 1 gigabyte of virtual
addresses per task into a 16-megabyte real address
space. This mode also provides memory protection to
isolate the operating system and ensure privacy of each
task’s programs and data. Both modes provide the same
base instruction set, registers, and addressing modes.

The following pages describe first, the base 80286 archi-
tecture common to both modes; second, iIAPX 86 real
address mode; and third, protected mode.

80286 Base Architecture

The IAPX 86, 88, 186, and 286 CPU family all containthe
same basic set of registers, instructions, and addressing

modes. The 80286 processor is upward-compatible with
the 8086, 8088, and 80186 CPUs.

Register Set

The 80286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the
following four categories:

General Registers: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands.
Four of these (AX, BX, CX, and DX) canbe used eitherin
their entirety as 16-bit words or split into pairs of separate
8-bit registers.

Segment Registers: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data. (For usage, refer to Memory Organization.)

Base and Index Registers: Four of the general purpose
registers may also be used to determine offset ad-
dresses of operands in memory. These registers may
containbase addresses or indexes to particular locations
within a segment. The addressing mode determines the
speciic registers used for operand address calculations.

Status and Control Registers: Three 16-bit special
purpose registers record or control certain aspects of the
80286 processor state. These include the Instruction
Pointer, which contains the offset address of the next
sequential instruction to be executed.

16-Bit Special
Register Register
Name Function 15 0
B 7 07 0 cs Code Segment Selector
© . -
A();‘dressable AX{ AH AL Muttiply/Divide DS Data Segment Selector
ka-en Register | DX { DH DL VO Instructions ss Stack Segment Selector
Shown) cx| cH CL |} Loop/Shift Repeat Count ES Extra Segment Selector
BX i
o BH BL } Base Registers Segment Registers
15 o]
SI Index Registers
DI eg F Flags
SP Stack Pointer P Instruction Pointer
15 0 MSW Machine Status Word
General Registers

Status and Control Registers
03552-7

Figure 1. Register Set

80286 9

Copyrighted By Its Respective Mnufacturer

Status Flags:

Carry
Parity
Aucxiliary Carry
Zero
Sign
Overflow
14 13 12 1110 9 8 0
T
Flags: | NT IOPL OF | OF | IF | TF CF
Control Flags:
Trap Flag
interrupt Enable
Direction Flag
Special Fields:
VO Privilege Level
Nested Task Flag
3 2 1 0

TS EM | MP | PE

Processor Extension Emulated
Monitor Processor Extension

0, Task Switch —-T
": Reserved PU—

Protection Enable

Figure 2. Status and Control Register Bit Functions

03552-8

10 80286

This Material Copyrighted By Its Respective Manufacture

r

This Materi al

Flags Word Description

The Flags word (Flags) records specific characteristics
of the result of logical and arithmetic instructions (bits 0,
2,4,6,7,and 11) and controls the operation of the 80286
within a given operating mode (bits 8 and 9). Flags is a
16-bit register. The function of the flag bits is given in
Table 1.

Table 1. Flags Word Blt Functions

Bit
Position Name Function

0 CF Carry Flag—Set on high-order bit carry or

borrow; cleared otherwise

Parity Flag—Set if low-order 8 bits of re-
sult contain an even number of 1 bits;
cleared otherwise

Set on carry-from or borrow-to the low-or-
der four bits of AL; cleared otherwise

Zero Flag—Set if result is zero; cleared
otherwise

Sign Flag—Set equal to high-order bit of
result (O if positive, 1 if negative)
Overflow Flag—Set if result is a too-large
positive number or a too-small negative
number (exciuding sign-bit) to fit in desti-
nation operand; cleared otherwise

Single Step Flag—Once set, a single step
interrupt occurs after the next instruction
executes. TF is cleared by the single step
interrupt

Interrupt-Enable Flag—When set, mask-
able interrupts will cause the CPU to trans-
fer control to an interrupt vector specified
location

Direction Flag—Causes string instruc-
tions to auto-decrement the appropriate
index registers when set. Clearing DF
causes auto increment.

2 PF

4 AF

6 ZF

7 SF

1 OF

10 DF

Instruction Set

The instruction set is divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipula-
tion, program transfer, high-level instructions, and proc-
essor control. These categories are summarized in Fig-
ures 3-9.

An 80286 instruction can reference zero, one, or two
operands where an operand resides in a register, in the
instruction itself, or in memory. Zero-operand instruc-
tions (e.g., NOP and HLT) are usually one byte long.
One-operand instructions {e.g., INC and DEC) are usu-
ally two bytes long, but some are encoded in only one
byte. One-operand instructions may reference a register
or memory location. Two-operand instructions permit the
following six types of instruction operations:

Register to Register

Memory to Register

Immediate to Register

Memory to Memory

Register to Memory

Immediate to Memory
Two-operand instructions (e.g.. MOV and ADD) are usu-
ally three to six bytes long. Memory to memory opera-
tions are provided by a special class of string instructions
requiring one to three bytes. For detailed instruction for-
mats and encodings, refer to the instruction set summary
at the end of this document.

80286 11

Copyrighted By Its Respective Mnufacturer

General Purpose MOVS Move byte or word string
INS Input bytes or word string
MoV Move byte or word ouTS Output bytes or word string
PUSH Push word onto stack CMPS Compare byte or word string
POP Pop word off stack SCAS Scan byte or word string
PUSHA Push all registers on stack LODS Load byte or word string
POPA Pop all registers from stack STOS Store byte or word string
XCHG Exchange byte or word REP Repeat
XLAT Translate byte REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal/not zero
Input/Output
Figure 5. String Instructions
IN Input byte or word
ouT Output byte or word
Address Object Logicals
: NOT “Not” byte or word
LEA Load effective address ”
LDS Load pointer using DS gr;(o "IAnr::?usmeo‘:: l':;redor word
E Load pointer using ES r
LES 0ac pointar Using XOR “Exclusive or” byte or word
Flag Transfer TEST “Test” byte or word
LAHF Load AH register from flags Shifts
SAHF Store AH register in flags
PUSHF Push flags onto stack SHL/SAL Sh?ft logfcal/a.rithmetic left byte or word
POPF Pop flags off stack SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
Figure 3. Data Transfer Instructions
Rotates
ROL Rotate left byte or word
Addition ROR Rotate right byte or word
ADD Add byte or word RCL Rotate through carry Igft byte or word
ADC Add byte or word with carry RCR Rotate through carry right byte or word
INC Increment byte or word by 1 Figure 6. Shift/Rotate/Logical
AAA ASCI| adjust for addition
DAA Decimal adjust for addition
Subtraction
SuB Subtract byte or word
SBB Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCI| adjust for subtraction
DAS Decimal adjust for subtraction
Multiplication
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCIi adjust for multiply
Division
DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
CBW Convert byte to word
CWD Convert word to double word
Figure 4. Arithmetic Instructions
12 80286

This Materi al

Copyrighted By Its Respective Mnufacturer

This Materi al

Condltional Transfers

Uncondlitional Transfers

JAJJNBE Jump if above/not below nor equal CALL Call procedure
JAE/JJNB Jump if above or equal/not below RET Return from procedure
JBANAE Jump if below/not above nor equal JMP Jump
JBEAJNA Jump if below or equai/not above
Jc Jump if carry Iteration Controls
JENZ Jump if equalfzero
JG/ANLE Jump if greater/not less nor equal LooP Loop
JGE/NL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JLUNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zerc
JLEANG Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry
JNEUNZ Jump if not equal/not zero Interrupts
JNO Jump if not overflow
JNPAUPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
Jo Jump if overfiow IRET Interrupt return
JPAPE Jump if parity/parity even
Js Jump if sign
Figure 7. Program Transfer Instructions
Flag Operations 16-bit segment selector and a 16-bit offset. The segment
sTC Set carry fla selector indicates the desired segment in memory. The
oLe Pt c'ay"y f?ag offset component indicates the desired byte address
CMC Complement carry flag within the segment.
g{g gﬁ;’;ﬁ;?oﬂﬁ?ag All instructions that address operands in memory must
STI Set interrupt enable flag specify the segment and the offset. For speed and com-
cLI Clear interrupt enable flag pactinstruction encoding, segment selectors are usually
stored in the high speed segment registers. An instruc-
External Synchronization tion need specify only the desired segment register and
an offset to address a memory operand.
HLT Halt until interrupt or reset
‘é’SA(I)T \é\lait for BUSY not active Most instructions need not explicitly specify which seg-
scape to extension processar ment register is used. The comrect segment register is
LocK Lock bus during next instruction automatically chosen according to the rules of Table 2.
These rules follow the way programs are written (see
No Operation Figure 11) as independent modules that require areas
NOP No operation for code and data, a stack, and access to external data

Executlon Environment Control

areas.

LMSW
SMSW

Load machine status word
Store machine status word

Figure 8. Processor Control Instructions

ENTER Format stack for procedure entry
LEAVE Restore stack for procedure exit
BOUND Detects values outside prescribed range

Figure 9. High-Level instructions

Memory Organization

Memory is organized as sets of variable length seg-
ments. Each segment is a linear contiguous sequence of
up to 64K(2'®) 8-bit bytes. Memory is addressed using a
two-component address (a pointer) that consists of a

))
W
)]
W

Pointer
A

Segment I Offset

3t 16,15 [

L

Selected
Segment

i
g

\ 4

=

Memory =
03552-9
Figure 10. Two-Component Address

80286 13

Copyrighted By Its Respective Mnufacturer

This Materia

Table 2. Segment Register Selection Rules

Memory Segment

Reference Register Implicit Segment

Needed Used Selectlon Rule

Instructions Code (CS) Automatic with instruction
prefstch

Stack Stack (SS) All stack pushes and pops.
Any memory reference which
uses BP as a base register.

Local Data Data (DS) All data references except
when relative to stack or
string destination.

External Extra (ES) Alternate data segment and

{Global) Data destination of string operation.

Special segment override instruction prefixes aliow the
implicit segment register selection rules to be overridden
for special cases. The stack, data, and exira segments
may coincide for simple programs. To access operands
that do not reside in one of the fourimmediately available
segments, either a full 32-bit pointer can be used or a
new segment selector must be loaded.

ree=e- -
Code
Module A Data
] 1
] 1]
L] L]
Code CPU
Module B |
Data Code
! oo Data
Process Stack
Stack
Extra
1 : Segment
' Registers
Process
Data
Block 1
L 1]
1] ’
Process
Data
Block 2
becmme 4 03552-10
Memory

Figure 11. Segmented Memory Helps Structure Software

Addressing Modes

The 80286 provides atotal of eight addressing modes for
instructions to specify operands. Two addressing modes
are provided for instructions that operate on register or
immediate operands:

Register Operand Mode: The operand is located in one
of the 8- or 16-bit general registers.

immediate Operand Mode: The operand is included in
the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: segment
selector and offset. The segment selector is supplied by
a segment register either implicitly chosen by the ad-
dressing mode or explicitly chosen by a segment over-
ride prefix. The offset is calculated by summing any com-
bination of the following three address elements:

the displacement (an 8- or 16-bit immediate value con-
tained in the instruction)

the base (contents of eitherthe BX or BP base registers}
the index (contents of either the Sl or DI index registers)

Any carry out fromthe 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

Combinations of these three address elements define
the six memory addressing modes here described:

Direct Mode: The operand’s offset is contained in the
instruction as an 8- or 16-bit displacement element.

Register Indirect Mode: The operand’s offset is in one
of the registers Sl, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an 8- or
16-bit displacement and the contents of a base register
(BX or BP).

Indexed Mode: The operand’s offset is the sum of an 8-
or 16-bit displacement and the contents of an index reg-
ister (Sl or DI).

Based indexed Mode: The operand’s offset is the sum
of the contents of a base register and an index register.

Based Indexed Mode with Displacement: The
operand’s offset is the sum of abase register’s contents,
an index register's contents, and an 8- or 16-bit dis-
placement.

14 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

Data Types
The 80286 directly supports the following data types:

Integer: A signed binary numeric value con-
tained in an 8-bit byte or a 16-bit word.
All operations assume a two's comple-
ment representation. Signed 32- and
64-bit integers are supported using the
80287 Numeric Data Processor.

Ordinal: An unsigned binary numeric value con-

tained in an 8-bit byte or 16-bit word.

A 32-bit quantity, composed of a seg-
ment selector component and an offset
component. Each componentis a 16-bit
word.

Pointer:

String: A contiguous sequence of bytes or
words. A string may contain from 1 byte

to 64K bytes.

A byte representation of alphanumeric
and control characters using the ASCII
standard of character representation.

ASCII:

BCD: Abyte (unpacked) representation of the

decimal digits 0-9.

A byte (packed) representation of two
decimal digits 0—9 storing one digit in
each nibble of the byte.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. (Floating point oper-
ands are supported using the iAPX 287
Numeric Processor configuration.)

Packed BCD:

Figure 12 graphically represents the data types sup-
ported by the 80286.

J/O Space

The /O space consists of 64K 8-bit or 32K 16-bit ports.
VO instructions address the I/O space with either an 8-bit
port address, specified in the instruction, or a 16-bit port
address in the DX register. Eight-bit port addresses are
zero extended such that Ais—As are LOW. 17O port ad-
dresses 00F8(H) through 00FF(H) are reserved.

Interrupts

Aninterrupt transfers execution to a new program loca-
tion. The old program address (CS:IP) and machine
state (Flags) are saved on the stack to allow resumption
of the interrupted program. Interrupts fall into three
classes: hardware initiated, INT instructions, and in-
struction exceptions. Hardware initiated interrupts occur
in response to an external input and are classified as
non-maskable or maskable. Programs may cause an
interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition, which prevents further
instruction processing, is detected while attempting to
execute an instruction. The return address from an ex-
ception will always point at the instruction causing the
exception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts
0-31, some of which are used for instruction exceptions,
are reserved. For each interrupt, an 8-bit vector must be
supplied to the 80286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally. INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware-
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined inter-
nally supplied vector.

Maskable Interrupt (INTR)

The 80286 provides a maskable hardware interrupt re-
quest pin, INTR. Software enables this input by setting
the interrupt flag bit {IF) in the flag word. All 224 user-de-
fined interrupt sources can share this input, yetthey can
retain separate interrupt handlers. An 8-bit veclor read
by the CPU during the interrupt acknowledge sequence

{discussed inthe System Interface section) identities the
source of the interrupt.

Further maskable interrupts are disabled while servicing
aninterrupt by resetting the IF but as part of the response
fo an interrupt or exception. The saved flag word will
reflect the enable status of the processor prior to the
interrupt. Until the flag word is restored to the flag regis-
ter, the interrupt flag will be zero unless specifically set.
The interrupt return instruction includes restoring the flag
word, thereby restoring the original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided.
NMI has higher priority than INTR. A typical use of NMI|
would be to activate a power failure routine. The activa-
tion of this input causes an interrupt with an internally
supplied vector value of 2. No external interrupt acknowl-
edge sequence is performed.

While executing the NMI servicing procedure, the 80286
will not service further NMI requests, INTR requests, or
the processor extension segment overrun interrupt until
an interrupt return (IRET) instruction is executed or the
CPU is reset. If NMI occurs while currently servicing an
NML, its presence will be saved for servicing after execut-
ing the first IRET instruction. IF is cleared at the begin-
ning of an NMI interrupt to inhibit INTR interrupts.

Single Step Interrupt

The 80286 has an intemal interrupt that allows programs
to execute one instruction at a time. It is calted the single
step interrupt and is controlled by the single step flag bit
(TF) in the flag word. Once this bit is set, an internal
single step interrupt will occur after the next instruction

80286 15

Copyrighted By Its Respective Mnufacturer

7 0

Signed LAR AR
Byte
Sign Bit
Magnitude
7 [
Unsigned AR RRE
Byte
L MSB
Magnitude
. wie 1 e7 O
Signed RN RERE RRRERRR!
Word I
Sign Bit— L. MSB
Magnitude
+3 +2 +1 [}
7 16 15 [+]
gg:;g ||||llllll[lTl'rhllillIlllllll
Word*
Sign Bit—- LL=MSB i
Magnitude
. +7 +6 +5 +4 +3 +2 +1 0
Signed 48 47 231 1815 (]
e (T 1] 1
Word*
Sign Bit = LL-MSB
Magnitude
15 +1 o
Unsigned Illllllllll]lll
Word
L MSB
Magnitude
Binay 7N 7 M 7 0
Coded ceo IIIIIIII TTT]TTT
Decimal
(BCD) BCD BCD BCD
Digit N Digit 1 Digit 0
7 +N o 2 +1]
ASCII oo IIIIIIIIIIIIIII
ASCII ASCIi ASCIl
Character, Character, Character,
Packed T . T AL
TTT[TTT TTTJTTITI Tt}
BCD e«]
Most Significant Digit Least Significant Digit
715 *N [715 *+1 715 9 0
String eoe
Byte/Word N Byte/Word 1 Byte/Word 0
\ +3 +2 18 15 +1 o
Pointer ll||||||llll|IITI'|'I'|'I'I"FI'f'I'I"r|'|'|"
1
Selector Offset
+9 +8 +7 +6 +5 +4 +3 +2 +1
Floating
e | | | | | 1 [[1
Sign Bit
9 Exponent Magnitude

Figure 12. 80286 Supported Data Types
*Supported by iIAPX 286/287 Numeric Data Processor Contiguration

16

This Materi al

80286

Copyrighted By Its Respective Mnufacturer

This Materi al

Table 3. Interrupt Vector Assignments

Return Address
Interrupt Related Bafore Instruction

Function Number Instructions Causing Exception?
Divide error exception 0 D, IDIV Yes
Single step interrupt 1 Al

" NMlinterrupt 2 All
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception [] Any undefined opcode Yes
Processor extension not ilable exception 7 ESC or WAIT Yes
Reserved B-15
Processor extension error input 16 ESC or WAIT
Reserved 17-31
User-defined 32~-255

Tabile 4. Interrupt Processing Order

Table 5. 80286 Initial Register State after RESET

Order Interrupt Flag word 0002(H)
Machine Status Word FFFO(H)

1 INT instruction or exception Instruction pointer FFFO(H)

2 Single step Code segment FOOO(H)

3 NMI Data segment 0000(H)

4 Processor extension segment overrun Extra segment 0000(H)

5 INTR Stack segment 0000(H)

has been executed. The interrupt clears the TF bit and
uses an internally supplied vector of 1. The IRET instruc-
tion is used to set the TF bit and transfer control to the
next instruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are
processed in a fixed order as shown in Table 4. Interrupt
processing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the inter-

bits are used. One bit places the CPU into protected
mode, while the other three bits, as shown in Table 6,
control the processor extension interface. After RESET,
this register contains FFFO(H) which places the 80286 in
iAPX 86 real address mode.

The LMSW and SMSW instructions can load and store
the MSW in real address mode. The recommended use
of TS, EM, and MP is shown in Table 7.

Table 6. MSW Bit Functions

rupt handler. If other interrupts remain enabled, they are Bit
processed before the first instruction of the current inter- Position | Name | Function
rupt handler is executed. The last interrupt processed is o PE | Protected mode Enable places the
therefore the first one serviced. 80286 into protected mode and
cannot be cleared except by RESET.
Initialization and Processor Reset 3 P | Monitor Processor extansion allows
Processor initialization or start up is accomplished by WAIT instructions to cause a
driving the RESET input pin HIGH. RESET forces the processor extension not present
80286 to terminate all execution and local bus activity. exception (number 7).
No instruction or bus activity will occur as long as RESET 2 EM | Emulate processor extension causes
is active. After RESET becomes inactive and an internal a processor °"‘§25‘;’" "°‘Eg’gs°m
processing interval elapses, the 80286 begins execution :"‘s‘;r‘l;’;'%‘ng";";m;, ;:"l',laﬁng a
in real address mode with the instruction at physical processor extension.
location FFFFFO(H). RESET also sets some registers to 3 TS | Task Switched indicates the next
predefined values as shown in Table 5. instruction using a processor
extension will cause exception 7,
Machine Status Word Description :L'ﬁ’;',:;“;,g;‘;;:;‘, to test whether the
The machine status word (MSW) records when a task belongs to the current task.
switch takes place and controls the operating mode of
the 80286. It is a 16-bit register of which the lower four
80286 17

Copyrighted By Its Respective Mnufacturer

This Materi al

Table 7. Recommended MSW Encodings For Processor Extension Control

Instructions
TS| MP |EM Recommended Use Causing
Exception

0 0 0 | iAPX 86 real address mode only. Initial encoding after RESET. 80286 operation is None
identical to iIAPX 86, 88.

0 0 1 No processor extension is available. Software will emulate its function. ESC

1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.

0 1 0 | A processor extension exists. None

1 0 | A processor extension exists. The current processor extension context may belong to ESC or WAIT
another task. The exception on WAIT allows software to test for an error
pending from a previous processor extension operation.
Halt Reserved Memory Locations

The HLT instruction stops program execution and pre-
vents the CPU from using the local bus until restarted.
Either NMI, INTR with IF=1, or RESET will force the
80286 out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

iAPX 286 Real Address Mode

The 80286 executes a fully upward-compatible superset
of the 8086 instruction set in real address mode. In real
address mode the 80286 is object code compatible with
8086 and 8088 software. The real address mode archi-
tecture (registers and addressing modes) is exactly as
described in the 80286 Base Architecture section.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins Ac
through Assand BHE. Az through Azs are ignored.

Memory Addressing

In real address mode the processor generates 20-bit
physical addresses directly from a 20-bit segment base
address and a 16-bit offset.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower four
bits of the 20-bit segment address are always zero. Seg-
ment addresses, therefore, begin on multiples of 16
bytes. See Figure 13 for a graphic representation of ad-
dress formation.

All segments in real address mode are 64 kbytes in size
and may be read, written, or executed. An exception or
interrupt can occur if data operands or instructions at-
tempt to wrap around the end of a segment {e.g., a word
‘with its low order byte at offset FFFF(H) and its high order
byte at offset 0000(H)). if, in real address mode, the
information contained in a segment does not use the full
64 kbytes, the unused end of the segment may be over-
laid by another segment to reduce physical memory re-
quirements.

The 80286 reserves two fixed areas of memory in real
address mode (see Figure 1): system initialization area
and interrupt table area. Locations from addresses
FFFFO(H) through FFFFF(H) are reserved for system
initialization. Initial execution begins at location FFFFO
(H). Locations 00000(H) through 003FF(H) are reserved
for interrupt vectors.

15 0
Offset
Offset Address
«
N (7
5
Segment oovo | Segment
L J
4 \
9 0
20-Bit Physical
Memory Address
03552-12

Figure 13. IAPX 86 Real Address Mode
Address Calculation

18 80286

Copyrighted By Its Respective Mnufacturer

Reset Bootstrap FFFFFH
Program Jump
FFFFOH
® : Sl
3FFH
Interrupt Pointer
for Vector 255 3FOH
® : T
- 7H
Interrupt Pointer
for Vector 1 4H
Interrupt Pointer 3H
for Vector 0
oH
03552-13

Figure 14. IAPX 86 Real Address Mode Initially
Reserved Memory Locations

Table 8. Real Address Mode Addressing Interrupts

This Materi al

Interrupt Related Return Address
Function Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun interrupt 9 ESC with memory operand extending No
beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with Yes

offset = FFFF(H) or an attempt to
execute past the end of a segment

Interrupts

Table 8 shows the interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing ervor.
The exceptions leave the CPU in the state existing be-
fore attempting to execute the failing instruction (except
for PUSH, POP, PUSHA, or POPA). Refer to the next
section on protected mode initialization for a discussion
on exception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT in-
struction is used 1o load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the
interrupt vector table in real address mode. After reset,
the interrupt table base is initialized to 000000(H) and its
size set to 03FF(H). These values are compatible with
iAPX 86, 88 software. LIDT should only be executed in
preparation for the protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externally signaled via a halt bus

operation. They can be distinguished by A1 HIGH for halt
and A1 LOW for shutdown. In real address mode, shut-
down can occur under two conditions:

o Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

e A CALL, INT, or POP instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
IDT limit is at least 000F(H) and SP is greater than
0005({H); otherwise, shutdown can only be exited via the
RESET input.

Protected Virtual Address Mode

The 80286 executes a fully upward-compatible superset
of the 8086 instruction set in protected virtual address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80286 enters protected virtual address mode from
real address mode by setting the PE {Protection Enable)
bit of the machine status word with the Load Machine
Status Word (LMSW) instruction. Protected mode offers
extended physical and virtual memory address space,

80286 19

Copyrighted By Its Respective Mnufacturer

This Materi al

memory protection mechanisms, and new operations to
support operating systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80286 Base Architecture section remain
the same. Programs for the iAPX 86, 88, 186, and real
address mode 80286 can be run in protected mode;
however, embedded constants for segment selectors
are different.

Memory Size

The protected mode 80286 provides a 1 gigabyte virtual
address space per task mapped into a 16-megabyte
physical address space defined by the address pin
A2—As and BHE. The virtual address space may be
larger than the physical address space since any use of
an address that does not map to a physical memory
location will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset compo-
nents. The selector, however, specifies an index into a
memory resident table rather than the upper 16 bitsof a
real memory address.

The 24-bit base address of the desired segment is ob-
tained from the tables in memory. The 16-bit offset is
added o the segment base address to form the physical
address as shown in Figure 15. The tables are automati-
cally referenced by the CPU whenever a segment regis-
ter is loaded with a selector. All 80286 instructions which
load a segment register will reference the memory-
based tables without additional software. The memory-
based tables contain 8-byte values called descriptors.

Physical Memory

Memory L Segment
Operand

Segment Base LSegm.om
Address Ds:élcmr Descriptor
Table
23 [K
,
= & 03s52-14

Figure 15. Protected Mode Memory Addressing

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of con-
trol and task switching. The 80286 has segment descrip-
tors for code, stack and data segments, and system
control descriptors for special system data segments
and control transfer operations. Descriptor accesses are
performed as locked bus operations to assure descriptor
integrity in multi-processor systems.

Code and Data Segment Descriptors
(S=1)

Besides segment base addresses, code and data de-
scriptors contain other segment attributes, including
segment size (1 to 64 kbytes), access rights (read-only,
read/write, execute-only, and execute/read), and pres-
ence in memory (for virtual memory systems) (see Fig-
ure 16). Any segment usage violating a segment attrib-
ute indicate by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

7 o 7 [
I
+7 Reserved*® +6
Access +5| P|DPL |S| Type | A Basesy.1¢ +4
Rights Byte 1 L1
+3 Basel,,.. +2
+1 Umit]m- o
15 8 7 0
03552-15

*Must be set to 0 for compatibility with iIAPX 386.

Code and data are stored in two types of segments: code
segments and data segments. Both types are identified
and defined by segment descriptors. Code segments are
identified by the executable (E) bit set to 1 in the descrip-
tor access rights byte. The access rights byte of both
code and data segment descriptor types have three
fields in common: present (P) bit, Descriptor Privilege
Level (DPL), and accessed (A) bit. If P = 0, any attempted
use of this segment will cause a not-present exception.
DPL specifies the privilege level of the segment descrip-
tor. DPL controls when the descriptor may be used by a
task (refer to privilege discussion). The A bit shows
whether the segment has been previously accessed for
usage profiling, a necessity for virtual memory systems.
The CPU will always set this bit when accessing the
descriptor.

Data segments (S = 1, E = 0) may be either read-only or
read-write as controlled by the W bit of the access rights
byte. Read-only (W = 0) data segments may not be writ-
ten into. Data segments may grow in two directions, as
determined by the Expansion Direction (ED) bit: up-
wards (ED = 0) for data segments, and downwards (ED =
1) for a segment containing a stack. The limit field for a

20 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

Access Rights Byte Definition

Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists; base and limit are
not used. Segment privilege attribute used in privilege tests.
65 Descriptor Privilege
Level (DPL)
4 Segment Descriptor (S) S=1 Code or Data segment descriptor
S=0 Non-segment descriptor
3 Executable (E) E=0 Data segment descriptor type is:
2 Expansion Direction ED =0 Grow up segment, offsets must be <limit.
(ED) ED =1 Grow down segment, offsets must be>limit. | . Data

1 Writable (W) W=0 Data segment may not be written into. Segment

T W=1 Data segment may be written into. _

ype
Field 3 Executable (E) E=1 Code Segment Descriptor type is:
Definition 2 Conforming (C) C=1 Code segment may only be executed when |
CPL>DPL. Code
1 Readabie (R) R=0 Code segment may not be read. — Segment
R=1 Code segment may be read.
(1] Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register

or used by selector test instructions.

Figure 16. Code and Data Segment Descriplors

data segment descriptor is interpreted differently de-
pending on the ED bit (see Figure 16).

A code segment (S = 1, E = 1) may be execute-only or
execute/read as determined by the Readable (R) bit.
Code segments may never be written into and execute-
only code segments (R = 0) may not be read. A code
segment may also have an attribute called Conforming
(C). A conforming code segment may be shared by pro-
grams that execute at different privilege levels. The DPL
of a conforming code segment defines the range of privi-
lege levels at which the segment may be executed (refer
to privilege discussion).

System Segment Descriptors
(S =0, Type 1-3)

In addition to code and data segment descriptors, the
protected mode 80286 defines system segment descrip-
tors. These descriptors define special system data seg-
ments which contain a table of descriptors (Local
Descriptor Table Descriptor) or segments which contain
the execution state of a task (Task State Segment
Descriptor).

Figure 17 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The
access byte defines the type of descriptor, its state and
privilege level. The descriptor contents are valid and the
segment is in physical memory if P=1. If P=0, the seg-
ment is not valid. The DPL field is only used in Task State
Segment descriptors and indicates the privilege level at
which the descriptor may be used (see Privilege). Since
the Local Descriptor Table descriptor may only be used
by a special privileged instruction, the DPL field is not
used. Bit 4 of the access byte is 0 to indicate that it is a
system control descriptor. The Type field specifies the
descriptor type as indicated in Figure 17.

80286

21

Copyrighted By Its Respective Mnufacturer

This Materi al

System Segment Descriptor

[¢] T Z Q
+7 Reserved* +6
+5| P|DPL |O]| Type Basess s +4
1 1 11
+3 Bau:‘,. +2
1 Limitl‘,. °
15 8 7 -]

*Must be set to 0 for compatibility with iIAPX 386.
03552-16

System Segment Descriptor Flelds

Name Value Description
Type 1 Available Task State Segment
2 Local Descriptor Table Descriptor
3 Busy Task State Segment
P L] Descriptor contents are not valid
1 Dascriptor contents are valid
DPL 0-3 Descriptor Privilege Level
Base 24-bit Base Address of special system data
number segment in real memory
Limit 16-bit Offset of last byte in segment
number

Figure 17. System Segment Format

Gate Descriptors
(S=0, Type =4-7)

Gates are used to control access to entry points within
the target code segment. The gate descriptors are call
gates, task gates, interrupt gates and trap gates. Gates
provide a level of indirection between the source and
destination of the control transfer. This indirection allows
the CPU to automatically perform protection checks and
control the entry point of the destination. Call gates are
used to change privilege levels (see Privilege); task
gates are used to perform a task switch; and interrupt
and trap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets IF)
while the trap gates does not.

Figure 18 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to
the descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap
gate, and call gate must refer to a code segment descrip-

tor. These gate descriptors contain the entry point to
prevent a program from constructing and using anillegal
entry point. Task gates may only refer to a task state
segment. Since task gates invoke a task switch, the des-
tination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct descrip-
tor type. The Word Count field is used in the call gate
descriptor to indicate the number of parameters (0-31
words) to be automatically copied fromthe caller’s stack
to the stack of the called routine when a control transfer
changes privilege levels. The Word Count field is not
used by any other gate descriptor.

Gate Descriptor
7 07 4]
1
+7 Reserved* +6
Word
+5| P|DPL|O] Type | X X X +4
] L tyy] Countes
+3 Destination Selector s, X X] 42
| |
1 Desﬁnaﬁofl\ufsot‘u 0
15 8 7 o

03552-17
*Must be set to 0 for compatibility with iAPX 386.

Gate Descriptor Fields

Name Value Description
Type 4 —Call Gate
5 —Task Gate
6 —Interrupt Gate
7 —Trap Gate
P (o] ~Descriptor Contents are not valid
—Daescriptor Contents are valid
DPL 0-3 Descriptor Privilege Level
Word 0-31 Number of words to copy from
Count callers stack to called procedures
stack. Only used with call gate.
Destination 16-bit Selector to the target code segment
Selector selector (Call, Interrupt or Trap Gate)
Selector to the target task state
segment {Task Gate)
Destination 16-bit Entry point within the target
Offset offset code segment

Figure 18. Gate Descriptor Format

22 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

The access byte format is the same for all gate descrip-
tors. P = 1 indicates that the gate contents are valid. P=0
indicates the contents are not valid and causes excep-
tion 11 if referenced. DPL is the Descriptor Privilege
Level and specifies when this descriptor may be used by
atask (refer to privilege discussion). Bit 4 must equal Oto
indicate a system control descriptor. The Type field
specifies the descriptor type as indicated in Figure 18.

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each
of the four segment registers (CS, SS, DS, ES). Segment
descriptors are automatically loaded (cached) into a seg-
ment descriptor cache register (Figure 20) whenever the
associated segment register is loaded with a selector.

and selector privilege (RPL), as shown in Figure 19.
These fields select one of two memory-based tables of
descriptors, select the appropriate table entry, and allow
high-speed testing of the selector’s privilege attribute
(refer to privilege discussion).

Selector
Index T PRL
'l L L L 1 1 L 1 1 1 1 L L
15 8 7 2 1]
Bits Name Function

1-0 Requested
Privilege Level (RPL)

Indicates Selector Privilege
Level Desired

Only segment descriptors may be loaded into segment 2 Table Tl=0 Use Giobal
descriptor cache registers. Once loaded, all references Indicator (Tl) Descriptor Table
to that segment of memory use the cached descriptor (GDT) .
information instead of reaccessing memory. The de- Ti=1 Use Local Descriptor
scriptor cache registers are not visible to programs. No Table (LDT)
instructions exist to store their contents. They only 15-3 Index Select Descriptor Entry in
change when a segment register is loaded. Table
Selector Fields Figure 19. Selector Flelds
A protected mode selector has three fields: descriptor
entry index, local or global descriptor table indicator (T1),
PROGRAM VISIBLE "';x:;———_FFToEFTAﬁmmﬁﬁE ------- H
Segment Selectors Rights Segment Base Address Segment Size I
CS |
DS }
SS :
ES |
15 0 a7 40 39 18 15 o |
Segment Registers Segment Descriptor Cache Registers |
(Loaded by Program} | (Loaded by CPU) _}
03552-18
Figure 20. Descriptor Cache Registers
80286 23

Copyrighted By Its Respective Mnufacturer

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables, con-
tain all descriptors accessible by a task at any given time.
A descriptor table is a linear array of up to 8192 descrip-
tors. The upper 13 bits of the selector value are an index
into a descriptor table. Each table has a 24-bit base
register to locate the descriptor table in physical memory
and a 16-bit limit register that confines descriptor access
to the defined limits of the table as shownin Figure 21. A
restartable exception (13) will occur if an attempt is made
to reference a descriptor outside the table limits.

One table, called the Global Descriptor Table (GDT),
contains descriptors available to all tasks. The other ta-
ble, called the Local Descriptor Table (LDT), contains
descriptors that can be private to a task. Each task may
have its own private LDT. The GDT may contain all de-
scriptor types except interrupt and trap descriptors. The
LDT may contain only segment, task gate, and call gate
descriptors. A segment cannot be accessed by a task if
its segment descriptor does not exist in either descriptor
table at the time of access.

The LGDT and LLDT instructions load the base and limit
of the global and local descriptortables. LGDT and LLDT

are protected. They may only be executed by trusted
programs operating at level 0. The LGDT instruction
loads a six-byte field containing the 16-bit table limit and
24-bit base address of the Global Descriptor Table as
shown in Figure 22. The LLDT instruction loads a selec-
tor which refers to a descriptor in the Local Descriptor
Table. This descriptor contains the base address and
limit for an LDT, as shown in Figure 17.

Interrupt Descriptor Table

The protected mode 80286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
23), used to define up to 256 interrupts. It may contain
only task gates, interrupt gates and trap gates. The IDT
(Interrupt Descriptor Table) has a 24-bit base and 16-bit
limit register in the CPU. The protected LIDT instruction
loads these registers with a six-byte value of identical
form to that of the LGDT instruction (see Figure 22 and
Protected Mode Initialization).

References to IDT entries are made via INT instructions,
external interrupt vectors, or exceptions. The IDT must
be at least 256 bytes in size to allocate space for all
reserved interrupts.

n
. : Memory r'_ :
' 4 N\
. PGDT
.
s
LOT,
4 y
.
* p Current
° LOT
l ’
LDT,
~ oA

03552-19

Figure 21. Local and Global Descriptor Table Definitions

24

This Materi al

80286

Copyrighted By Its Respective Mnufacturer

This Materia

7 o 7 0
+5 Reserved* Base,s ¢ +4
+3 Basess +2
+1 Limitis s 0
|
16 8 7 Q

03552-20
*Must be set to 0 for compatibility with iAPX 386.

Flgure 22. Global Descriptor Table and Interrupt
Descriptor Data Types

ﬁ-_a. Memory X\
(Gate for \
Interrupt #n
Gate for
Interrupt #n—1
. Interrupt
. Descriptor
. TFable
cry (IDh)
15 0 Gate for
DT Limit | Interrupt #1
Gate for
Interrupt #0 /
IDT Base
23 o
X N
03552-21

Figure 23. Interrupt Descriptor Table Definition

Privilege

The 80286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and ac-
cess to descriptors {(and their associated segments)
within a task. Four-level privilege, as shown in Figure 24,
is an extension of the user/supervisor mode commonly
found in minicomputers. The privilege levels are num-
bered 0 through 3. Level 0 is the most privileged levet.
Privilege levels provide protection within a task. (Tasks

task’s CPL may only be changed by control transfers
through gate descriptors to a new code segment (See
Control Transfer). Tasks begin executing at the CPL
value specified by the code segment when the task is
initiated via a task switch operation. A task executing at
Level 0 can access all data segments definedinthe GDT
and the task’s LDT and is considered the most trusted
level. A task executed at Level 3 has the most restricted
access to data and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privi-
lege Level (DPL) field of the descriptor access byte. DPL
specifies the least trusted privilege level (CPL) at which
a task may access the descriptor. Descriptors with
DPL =0 are the most protected. Only tasks executing at
privilege level 0 (CPL = 0) may access them. Descriptors
with DPL = 3 are the least protected (i.e., have the least
restricted access) since tasks can access them when
CPL=0, 1, 2, or 3. This rule applies to all descriptors,
except LDT descriptors.

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a
selector. Selector RPL may establish a less trusted privi-
lege level than the current privilege level for the use of a
selector. This level is called the task's effective privilege
level (EPL). RPL can only reduce the scope of a task’s
access to data with this selector. A task’s effective privi-
lege is the numeric maximum of RPL and CPL. A selec-
tor with RPL = 0 imposes no additional restriction on its
use-while a selector with RPL =3 can only refer to seg-
ments at privilege Level 3 regardiess of the task’s CPL.
RPL is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed to
use data at a more privileged level than the caller (referto
pointer testing instructions).

are isolated by providing private LDT's for each task.) S,‘,’,‘;m.,

Operating system routines, interrupt handlers, and other ﬁ‘oﬂwm

system software can be included and protected within terfaces

the virtual address space of each task using the four

levels of privilege. Tasks may also have a separate stack

for each privilege level.

Tasks, descriptors, and selectors have a privilege level

attribute that determines whether the descriptor may be)

used. Task privilege effects the use of instructions and ~ (Jo-Speed

descriptors. Descriptor and selector privilege only effect System

access to the descriptor. Interface

Task Privilege

The task always executes at one of the four privilege

levels. A task privilege level at any specific instant is 03552-22

called the Current Privilege Level (CPL) and is defined

by the lower two bits of the CS register. CPL cannot

change during execution in a single code segment. A Figure 24. Hierarchlical Privilege Levels
80286 25

Copyrighted By Its Respective Mnufacturer

This Materi al

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the instruc-
tion used, the type of descriptorused and CPL, RPL, and
DPL. The two basic types of segment accesses are con-
trol transfer (selectors loaded into CS) and data (selec-
tors loaded into DS, ES, or SS).

Data Segment Access

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code seg-
ment descriptor. The CPL of the task and the RPL of the
selector must be the same as or more privileged (numeri-
cally equal to or lower than) than the descriptor DPL. In
general, a task can only access data segments at the
same or less privileged levels than the CPL or RPL
(whichever is numerically higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from
any privilege level.

If the privilege checks fail (e.g., DPL is numerically less
than the maximum of CPL and RPL) or an incorrect type
of descriptor is referenced (e.g., gate descriptor or exe-
cute only code segment), exception 13 occurs. If the
segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL.
All other descriptor types or privilege level violation will
cause exception 13. A not-present fault causes excep-
tion 12.

Control Transfer

Four types of control transfer can occur when a selector
is loaded into CS by a control transfer operation (see
Table 9). Each transfer type can only occur if the opera-
tion which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
rules (e.g., JMP through a call gate or RET to a Task
State Segment) will cause exception 13.

The ability to reference a descriptor for controttransfer is
also subject to rules of privilege. A CALL or JUMP in-
struction may only reference a code segment descriptor
with DPL equal to the task CPL or a conforming segment
with DPL of equal or greater privilege than CPL.. The RPL
of the selector used to reference the code descriptor
must have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal to or
less privileged than the task CPL. The selector loaded
into CS is the return address from the stack. After the
return, the selector RPL is the task’s new CPL. If CPL
changes, the old stack pointer is popped after the return
address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task’s CPL. Reference to a valid Task
State Segment descriptor causes a task switch (see
Task Switch Operation). Reference to a Task State Seg-
ment descriptor at a more privileged level than the task’s
CPL generates exception 13.

When an instruction or interrupt references a gate de-
scriptor, the gate DPL must have the same or less privi-
lege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs. If the destination

Table 9. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDTADT
Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt DT

Exception, External Gate

Interrupt
Intersegment to a lower privilege level (changes task CPL)| RET, IRET* Code Segment GDTADT
Task Switch CALL, JMP Task State Segment GDT

CALL, JMP Task Gate GDT/ADT

IRET**

Interrupt Instruction, Task Gate IDT

Exception, External
Interrupt

* NT (Nested Task bit of flag word) =0
** NT (Nested Task bit of flag word) = 1

26 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

selector contained in the gate references a code seg-
ment descriptor, the code segment descriptor DPL must
be the same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the
code segment descriptor DPL is the task’'s new CPL. If
the destination selector in the gate references a task
state segment, a task switch is automatically performed
(see Task Swiich Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege than
CPL or a non-conforming segment at the same
privilege level.

— interrupts within the task or calls that may change
privilege levels can only transfer control through a
gate at the same or a less privileged level than CPL
to a code segment at the same or more privileged
level than CPL.

— return instructions that don't switch tasks can only
return control to a code segment at the same or less
privileged level.

— task switch can be performed by a call, ajump oran
interrupt which references either a task gate or task
state segment at the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
During a JMP or CALL control transfer, the new stack
pointer is loaded into the SS and SP registers and the
previous stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction operation.
For subroutine calls that pass parameters on the stack
and cross privilege levels, a fixed number of words, as
specified in the gate, are copied from the previous stack
to the current stack. The intersegment RET instruction
with a stack adjustment value will correctly restore the
previous stack pointer upon return.

Protection

The 80286 includes mechanisms to protect critical in-
structions that affect the CPU execution state (e.g., HLT)
and code or data segments from improper usage. These
mechanisms are grouped under the term “protection”
and have three forms:

« Restricted usage of segments (e.g., no write allowed
to read-only data segments). The only segments
available for use are defined by descriptors in the
Local Descriptor Table (LDT) and Global Descriptor
Table (GDT).

e« Restricted access to segments via the rules of
privilege and descriptor usage.

» Privileged instructions or operations that may only
be executed at certain privilege levels as determined
by the CPL and I/O Privilege Level (IOPL). The IOPL
is defined by bits 14 and 13 of the flag word.

These checks are performed for all instructions and can
be spilit into three categories: segment load checks (Ta-
ble 10), operand reference checks (Table 11), and privi-
leged instruction checks (Table 12). Any violation of the
rules shown will result in an exception. A not-present

exception related to the stack segment causes excep-
tion 12.

The IRET and POPF instructions do not perform some of
their defined functions if CPL is not of sufficient privilege
(numerically small enough). Precisely, these are:

+ The IF bit is not changed if CPL > IOPL.
« The IOPL field of the flag word is not changed if
CPL>0.

No exceptions or other indication are given when these
conditions occur.

Table 10. Segment Register Load Checks

Exception
Error Description Number
Descriptor table limit exceeded 13
Segment descriptor not present 11or12
Privilege rules violated 13

Invalid descriptor/segment type segment
register load:
— Read only data segment load to SS
— Special control descripior load to DS,
ES, SS 13
— Execute only segment load to DS, ES,
SS
— Data segment load to CS
— Read/Execute code segment load
to SS

80286 27

Copyrighted By Its Respective Mnufacturer

Table 11. Operand Reference Checks

Exception
Error Description Number
Wirite into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment limit exceeded! 120r13

Note: Carry out in offset calculations is ignored.

Table 12. Privileged Instruction Checks

Exception
Error Description Number
CPL #0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT

CPL > IOPL when executing the following
instructions: 13
INS, IN, OUTS, OUT, STI, CLI, LOCK

Exceptions

The 80286 detects several types of exceptions and inter-
rupts in protected mode (see Table 13). Most are restart-
able after the exceptional condition is removed. Interrupt
handlers for most exceptions receive an error code,
pushed on the stack after the return address, that identi-
fies the selector involved (0 if none). The return address
normally points to the failing instruction, including all
leading prefixes. For a processor extension segment
overrun exception, the return address will not point at the
ESC instruction that caused the exception; however, the
processor extension registers may contain the address
of the failing instruction.

Special Operations
Task Switch Operation

The 80286 provides a built-in task switch operation
which saves the entire 80286 execution state (registers,
address space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operationis invoked
by executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS) or task gate
descriptor in the GDT or LDT. An INT n instruction, ex-
ception, or external interrupt may aiso invoke the task
switch operation by selecting a task gate descriptorin the
associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 25)
containing the entire 80286 execution state while a task
gate descriptor contains a TSS selector. The limit field
must be > 002B(H).

Each task must have a TSS associated with it. The cur-
rent TSS is identitied by a special register in the 80286
called the Task Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR is
loaded with a new selector.

The IRET instruction is used to return control to the task
that called the current task or was interrupted. Bit 14 in
the flag register is calied the Nested Task(NT) bit. It
controls the function of the IRET instruction. If NT = 0, the
IRET instruction performs the regular current task return;
when NT=1, IRET performs a task switch operation
back to the previous task.

When a CALL or INT instruction initiates a task switch,
the old and new TSS will be marked busy and the back
link field of the new TSS set to the old TSS selector. The

Table 13. Protected Mode Exceptions

This Materi al

Return Address Error
Interrupt At Failing Always Code
Vector Function Instruction? Restartable? on Stack?

8 Double exception detected Yes Noz Yes

9 Processor extension segment overrun No Noz No

10 Invalid task state segment Yes Yes Yas

11 Segment not present Yes Yes Yes

12 Stack segment overrun or segment not present Yes Yes! Yes

13 General protection Yes Noz Yes

Notes:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartable because stack segment wraparound is not permitted. This condition is identified by the value of the
saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

3. All these checks are performed for all instructions and can be split into three categories: Segment Load Checks (Table
10), Operand Reference Checks (Table 11), and Privileged Instruction Checks (Table 12). Any violation of the rules
shown will result in an exception. A not-present exception causes exception 11 or 12 and is restartable.

28 80286

Copyrighted By Its Respective Mnufacturer

NT bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
will clear NT. NT may also be set or cleared by POPF or
IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a
selector that references a busy task state segment
causes Exception 13.

} 5
4
CcPU Reserved
1 Type Description
Task Register P 'F-’; o |type
| System L 111 o 1 An Available Task State
TR |:]—-"',.-) Segment. May be used as
Base the Destination of a Task
15 [had Switch Operation.
A H . | 3 A Busy Task State
| Program Invisibe | Limit 5. : Segment. Cannot be used
| 15 0 | 1 1 as the Destination of a
| | . 1 Task Switch.
1 Limit - I B
I - — —_ —_—
| Base |
| 8)
L ————]—a 2 e
Byte
s o] Offset
Task LOT Selector 42
\ —
DS Selector © P | Description
SS Sek 38 1 | Base and Limit Fields are Valid.
0 | Segment is not Present in Memory,
CS Selector 38 Base and Limit are not defined.
ES Selector 34
DI 32
Sl 30
BP 28 Current
> Task
sP 28 State
BX 24
Task DX 22
——#=State <
Segment CX 20
AX 18
Flag Word 16
IP {Entry Point) 14
<
SSfor CPL2 12
SP for CPL 2 10
SSfor CPL 1 8 Initial
 Stacks
SP for CPL 1 6 forCPLO, 1,2
SSforCPLO 4
SPforCPLO 2
s
Back Link Selector to TSS 0
e (2
03552-23
Figure 25. Task State Segment and TSS Registers
80286 29

This Material Copyrighted By Its Respective Manufacturer

Processor Extension Context Switching

The context of a processor extension is not changed by
the task switch operation. A processor extension context
need only be changed when a different task attempts to
use the processor extension (which still contains the
context of a previous task). The 80286 detects the first
use of a processor extension after a task switch by caus-
ing the processor extension not present exception (7).
The interrupt handler may then decide whether a context
change is necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proc-
essor extension context may belong to a different task
than the current one. The processor extension not pre-
sent exception (7) will occur when attempting to execute
an ESC or WAIT instruction if TS=1 and a processor
extension is present (MP =1 in MSW).

Pointer Testing Instructions

The 80286 provides several instructions to speed pointer
testing and consistency checks for maintaining system
integrity (see Table 14). These instructions use the
memory management hardware to verify that a selector
value refers to an appropriate segment without risking an
exception. A condition flag indicates whether use of the
selector or segment will cause an exception.

Table 14. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Adjust Requested Privilege
Register Level: adjusts the RPL of the

selector to the numeric maxi-

mum of current selector RPL

value and tha RPL value in the

Selector register. Set zero flag if selec

tor RPL was changed.

VERR VERIfy for Read: sets the zero
flag is the segment referred to
Selector by the selector can be read.

VERW . VERify for Write: sets the zero
Register, flag if the segment referred to
Selector by the selector can be written.

LSL Load Segment Limit: reads
the segment limit into the reg-
ister if privilege rules and de-
scriptor type allow. Set zero
flag if successful.

LAR X Load Access Rights: reads
Register, the descriptor access rights
Selector byte into the register if privi-
lege rules allow. Set zero
flag if successful.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80286 performs the double

fault exception (8). If an exception occurs during proc-
essing of the double fault exception, the 80286 will enter
shutdown. During shutdown no further instructions or
exceptions are processed. Either NMI (CPU remains in
protected mode) or RESET (CPU exits protected mode)
canforce the 80286 out of shutdown. Shutdown is exter-
nally signalled via a HALT bus operation with A1 HIGH.

Protected Mode Initialization

The 80286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the
top of physical memory, Azs-20 will be HIGH when the
80286 performs memory references relative to the CS
register, until CS is changed. Az-20 will be zero for refer-
ences to the DS, ES, or SS segments. Changing CS in
real address mode will force Azs2 LOW whenever using
CS thereafter. The initial CS:IP value of FFOO:FFFO
provides 64K bytes of code space for initialization code
without changing CS.

Before placing the 80286 into protected mode, several
registers must be initialized. The GDT and IDT base
registers must referto a valid GDT and IDT. After execut-
ing the LMSW instruction to set PE, the 80286 must
immediately execute an intrasegment JMP instruction to
clear the instruction queue of instructions decoded in
real address mode.

To torce the 80286 CPU registers to match the initial
protected mode state assumed by software, execute a
JMP instruction with a selector referring 1o the initial TSS
used in the system. This will load the task register, local
descriptor table register, segment registers and initial
generalregister state. The TR should point at a valid TSS
since a task switch operation involves saving the current

System Interface

The 80286 system interface appears intwo forms: alocal
bus and a system bus. The local bus consists of address,
data, status, and control signals at the pins of the CPU. A
system bus is any buffered version of the local bus. A
system bus may also differ from the local bus in terms of
coding of status and control lines and/or timing and load-
ing of signals. The 80286 family includes several devices
to generate standard system buses such as the IEEE
796 Standard MULTIBUS®.

Bus Interface Signals and Timing

The 80286 microsystem local bus interfaces the 80286
to local memory and /O components. The interface has
24 address lines, 16 data lines, and 8 status and control
signals.

The 80286 CPU, 82284 clock generator, 82C288 bus
controller, 82289 bus arbiter, 8286/7 transceivers, and
8282/3 latches provide a buffered and decoded system
bus interface. The 82284 generates the system clock
and synchronizes READY and RESET. The 82C288 con-
verts bus operation status encoded by the 80286 into
command and bus control signals. These components

This Materi al

MULTIBUS is a registered trademark of Intel Corporation.

30 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

can provide the timing and electrical power drive levels
required for most system bus interfaces including the
MULTIBUS.

Physical Memory and I/O interface

A maximum of 16 megabytes of physical memory can be
addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible
as bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address.

Byte transfers occur on either half of the 16-bit local data
bus. Even bytes are accessed over D70 while odd bytes
are transferred over Diss. Even-addressed words are
transferred over Dis-o in one bus cycle, while odd-ad-
dressed words require two bus operations. The first
transfers data on D1s-e, and the second transfers dataon
D7-0. Both byte data transfers occur automatically, trans-
parent to software.

Two bus signals, Ao and BHE, control transfers over the
lower and upper halves of the data bus. Even address
byte transfers are indicated by Ao LOW and BHE HIGH.
Odd address byte transfers are indicated by Ao HIGH
and BHE LOW. Both Ao and BHE are LOW for even
address word transfers.

The I/O address space contains 64K addresses in both
modes. The /O space is accessible as either bytes or
words, as is memory. Byte-wide peripheral devices may
be attached to either the upper or lower byte of the data
bus. Byte-wide I/O devices attached to the upper data
byte (Dis-s) are accessed with odd IO addresses.
Devices on the lower data byte are accessed with even
/O addresses. An intersupt controller such as the 8259A
must be connected to the lower data byte (D7) for
proper return of the interrupt vector.

Bus Operation

The 80286 uses a double-frequency system clock (CLK
input) to control bus timing. All signals on the local bus
are measured relative to the system CLK input. The CPU
divides the system clock by 2 to produce the internal
processor clock, which determines bus state. Each proc-

essor clock is composed of two system clock cycles
named phase 1 and phase 2. The 82284 clock generator
output (PCLK) identifies the next phase of the processor
clock. (See Figure 26.)

Six types of bus operations are supported: memory read,
memory write, /O read, VO write, interrupt acknowledge,
and halt/shutdown. Data can be transferred at a maxi-
mum rate of one word per two processor clock cycles.

The 80286 bus has three basic states: idle (Ti), send
status (Ts), and perform command (Tc). The 80286 CPU
also has a fourth local bus state called hoid (Tn). Tn
indicates that the 80286 has surrendered control of the
local bus to another bus master in response to a HOLD
request.

Each bus state is one processor clock long. Figure 27
shows the four 80286 local bus states and allowed tran-
sitions.

Bus States

The idle (T)) state indicates that no data transfers are in
progress or requested. The first active state, Ts, is sig-
nalled by either status line S1 or SO going LOW also
identifying phase 1 of the processor clock. During Ts, the
command encoding, the address, and data (for a write
operation) are available on the 80286 output pins. The
82C288 bus controller decodes the status signals and
generates MULTIBUS-compatible read/write command
and local transceiver control signals.

After Ts, the perform command (Tc) state is entered.
Memory or /0 devices respond to the bus operation
during Tc, either transferring read data to the CPU or
accepting write data. Tc states may be repeated as often
as necessary to assure sufficient time for the memory or
IO device to respond. The READY signal determines
whether Tc is repeated. A repeated Tc state is called a
wait state.

During hold (Th), the 80286 will float all address, data,
and status output pins, enabling another bus master to
use the local bus. The 80286 HOLD input signal is used
to place the 80286 into the Tn state. The 80286 HLDA
output signal indicates that the CPU has entered T.

Phase 1

CLK

t#———-— One Processor Clock Cycle ————

}#——————— One Bus T State ——————

}@a— of Processof——I-— of Processor ——a
Clock Cycle Clock Cycle

QOne System
l * Clock Cycle
PCLK /

Phase 2

./

03552-24

Figure 26. System and Processor Clock Relationships

80286 31

Copyrighted By Its Respective Mnufacturer

HLDA

(

HIDA - NEWCYCLE

HLDA

NEW CYCLE

ALWAYS

READY - NEWCYCLE 03552-25

Figure 27. 80286 Bus States

Pipelined Addressing

The 80286 uses a local bus interface with pipelined tim-
ing to allow as much time as possible for data access.
Pipelined timing allows bus operations to be performed
in two processor cycles, while allowing each individual
bus operation to last for three processor cycles.

The timing of the address outputs is pipelined such that
the address of the next bus operation becomes available
during the current bus operation. Or in other words, the
first clock of the next bus operation is overiapped with the
last clock of the current bus operation. Therefore, ad-

dress decode and routing logic can operate in advance of
the next bus operation. External address latches may
hold the address stable for the entire bus operation and
provide additional AC and DC buffering.

The 80286 does not maintain the address of the current
bus operation during all Tc states. Instead, the address
for the next bus operation may be emitted during phase 2
of any Tc. The address remains valid during phase 1 of
the first Tc to guarantee hold time, relative to ALE, for the
address latch inputs.

- T Read Cycle N T T Read Cycle N + 1 - o
I "_1— y 1 3 1 |. | 1 |° |
CLK
Proc CLK I I
j#——— 2 Clock Cycle Transfer f 2 Clock Cyc:e Transfer _——:
2.5 Clock Cycle Address to Data Valid
x,,;y“,,,f‘ . Valid Addr (N) o, [Valid Addr (N + 1) ‘
%5 \ \
. — 4 N
EAD w
B D —— DS

Pipelining: valid address (N + 1) available in last phase of bus cycle (N).

Valid Read Valid Read
Data (N) Data {N + 1)
03552-26

Figure 28. Basic Bus Cycle

32

This Materi al

80286

Copyrighted By Its Respective Mnufacturer

This Materi al

Bus Control Signals

The 82C288 bus controller provides control signals: ad-
dress latch enable (ALE), Read/Write commands, data
transmit/receive (DT/R)< and data enable (DEN) that
control the address latches, data transceivers, write en-
able, and output enable for memory and I/0 systems.

The Address Latch Enable (ALE) output determines
when the address may be latched. ALE provides at least
one system CLK period of address hold time from the
end of the previous bus operation until the address for
the next bus operation appears at the latch outputs. This
adress hold time is required to support MULTIBUS and
common memory systems.

The data bus transceivers are controlled by 82C288 out-
puts_Data Enable (DEN) and Data Transmit/Receive
(DT/R). DEN enables the data transceivers while DT/R
controls transceiver direction. DEN and DT/R are timed
to prevent bus contention between the bus master, data
bus transceivers, and system data bus transceivers.

Command Timing Controls

Two system timing customization options, command ex-
tension and command delay, are provided on the 80286
local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states onthe 8086. Extemal logic can con-
trol the duration of any bus operation such that the opera-
tion is only as long as necessary. The READY input sig-
nal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data set-up time to system bus command active for any
bus operation by delaying when the system bus com-
mand becomes active. Command delay is controlled by
the 82C288 CMDLY input. After Ts, the bus controller
samples CMDLY at each failing edge of CLK. if CMDLY
is HIGH, the 82C288 will not activate the command sig-
nal. When CMDLY is LOW, the 82C288 will activate the
command signal. After the command becomes active,
the CMDLY input is not sampled.

When a command is delayed, the available response
time from command active to return read data or accept
write data is less. To customize system bus timing, an
address decoder can determine which bus operations
require delaying the command. The CMDLY input does
not affect the timing of ALE, DEN, or DT/R.

Figure 29 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system CLKs for
cycle N—1 and no delay for cycle N, and example 2
shows delaying the read command one system CLK for
cycle N-1 and one system CLK delay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80286 bus alternates
between the status and command states. The bus status
signals become inactive after Ts so that they may
correctly signal the start of the next bus operation after
the completion of the current cycle. No external
indication of Tc exists on the 80286 local bus. The bus
master and bus controller enter Tc directly after Ts and
continue executing Tc cycles until terminated by
READY.

80286 a3

Copyrighted By Its Respective Mnufacturer

This Materi al

TRead Cyde N_—1

Read Cycde N

et A R
CLK

. 2

.
T | 14

AusAo Valid Addr N-1/

Valid Addr N

~
) Ny

e |

EX1 \

2
CMDLY
__Ex2

03552-27

Figure 29. CMDLY Controls and Leading Edge of the Command

READY Operation

The current bus master and 82C288 bus controller termi-
nate each bus operation simultaneously to achieve maxi-
mum bus bandwidth. Both are informed in advance by
READY active which identifies the last Tc cycle of the
current bus operation. The bus master and bus controller
must see the same sense of the READY signal, thereby
requiring READY be synchronous to the system clock.

Synchronous Ready

The 82284 clock generator provides READY synchroni-
zation from both synchronous and asynchronous
sources (See Figure 30). The synchronous ready input
(SRDY) of the clock generator is sampled with the falling
edge of CLK atthe end of phase 1 of each Tc. The state of
SRDY is then broadcast to the bus master and bus con-
troller via the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the 82284
SRDY set-up and hold time requirements. The 82284
asynchronous ready input (ARDY) is designed to accept
such signals. The ARDY input is sampled at the begin-

ning of each Tc cycle by 82284 synchronization logic.
This provides a system CLK cycle time to resolve its
value before broadcasting it to the bus master and bus
controller.

ARDY or ARDYEN must be HIGH at the end of Ts. ARDY
cannot be used to terminate bus cycle with no wait
status.

Each ready input of the 82284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may
terminate a bus operation. These enable inputs are ac-
tive low and have the same timing as their respective
ready inputs. Address decode logic usually selects
whether the current bus operation should be terminated
by ARDY or SRDY.

Data Bus Control

Figures 31, 32, and 33 show how the DT/R, DEN, data
bus, and address signals operate for different combina-
tions of read, write, and idle bus operations. DT/R goes
active (LOW) for a read operation. DT/R remains HIGH
before, during, and between write operations.

34 80286

Copyrighted By Its Respective Mnufacturer

This Materi al

Memory Cycle N-1
Te ol

Memory Cycle N

F‘__]{ Iﬁli‘

Proc
CLK

AxAy Valid Addr

Valid Addr Valid Addr

n_— /

T

READY (See Note 2.) N
(See Note 3.)
03552-28
Notes: 1. SRADYEN is active LOW.

2. If SRDYEN is HIGH, the state of SRDY will not affect READY.

3. ARDYEN is active LOW.

Figure 30. Synchronous and Asynchronous Ready

The data bus is driven with write data during the second
phase of Ts. The delay in write data timing allows the
read data drivers, from a previous read cycle, sufficient
time 1o enter three-state OFF before the 80286 CPU
begins driving the local data bus for write operations.
Write data will always remain valid for one system clock
past the last Tc to provide sufficient hold time for MULTI-
BUS or other similar memory or IO systems. During
write-read or write-idle sequences, the data bus enters
three-state OFF during the second phase of the proces-
sor cycle after the last Tc. In a write-write sequence the
data bus does not enter three-state OFF between Tc and
Ts.

Bus Usage

The 80286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instruction fetching, processor extension data
transters, interrupt acknowledge, and halt/shutdown.
This section describes local bus activities which have
special signals or requirements.

HOLD and HLDA

HOLD and HLDA allow another bus master to gain con-
trol of the local bus by placing the 80286 bus into the Tn
state. The sequence of events required to pass control

between the 80286 and another local bus master are
shown in Figure 34.

In this example, the 80286 is initially in the Th, state as
signaled by HLDA being active. Upon leaving Tn, as sig-
naled by HLDA going inactive, a write operation is
started. During the write operation another local bus
master requests the local bus from the 80286 as shown
by the HOLD signal. After completing the write operation,
the 80286 performs one Ti bus cycle, to guarantee write
data hold time, then enters Th as signaled by HLDA going
active.

The CMDLY signaland ARDY ready are used to startand

stop the write bus command, respectively. Note that
SRDY must be inactive or disabled by SRDYEN to guar-
antee ARDY will terminate the cycle.

HOLD must not be active during the time from the lead-
ing edge of RESET until 34 CLKSs following the trailing
edge of RESET unless the 80286 is in the Halt condition.
To ensure that the 80286 remains in the Halt condition
until the processor Reset operation is complete, no inter-
rupts should occur after the execution of HLT until 34
CLKs after the trailing edge of the RESET pulse.

80286 35

Copyrighted By Its Respective Mnufacturer

This Materi al

Read _Cyde

Write Cycle

R "o nar Tl ae nar T
CLK

e e e

/

Valid Mdr\

DEN

DTAR

N

03552-29

Figure 31. Back-to-Back Read-Write Cycles

Lock

The CPU asserts an active lock signal during Interrupt-
Acknowledge cycles, the XCHG instruction, and during
some descriptor accesses. Lock is also asserted when
the LOCK prefix is used. The LOCK prefix may be used
with the following ASM-286 assembly instructions;
MOVS, INS, and OUTS. For bus cycles other than inter-
rupt-Acknowledge cycles, Lock will be active for the first
and subsequent cycles of a series of cycles to be locked.
Lock will not be shown active during the last cycle to be
locked. Forthe next-to-last cycle, Lock will become inac-
tive at the end of the first Tc regardless of the number of
wait-states inserted. For Interrupt-Acknowledge cycles,
Lock will be active for each cycle, and will become inac-
tive at the end of the first Tc for each cycle regardless of
the number of wait-states inserted.

Instruction Fetching

The 80286 Bus Unit (BU) will fetch instructions ahead of
the cument instruction being executed. This activity is
called prefetching. It occurs when the local bus would
otherwise be idle and obeys the following rules:

A prefetch bus operation starts when at least two bytes of
the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches inde-
pendent of the byte alignment of the code segment base
in physical memory.

The prefetcher will perform only a byte code fetch opera-
tion for control transfers to an instruction beginning on a
numerically odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the in-
struction queue.

In real address mode, the prefetcher may fetch up to 5
bytes beyond the last control transfer or HLT instruction
in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at the
last physical memory word of the code segment. Excep-
tion 13 will occur if the program attempts to execute
beyond the last full instruction in the code segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher wili read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any attempt
to execute it causes exception 13.

36 80286

Copyrighted By Its Respective Mnufacturer

RO 9
A Ao (s [vaiia [vaid

s - N O\ A A WY A
DDy ——————— 5, Valid Write Data / Hf& —f——— -

Thi s

DEN
DTA
03552-30
Figure 32. Back-to-Back Write-Read Cycles
Write Cycle N—1 Write Cydle N
T ! T T le Ts 1 Te —>|4— T, ——]
| 1 1
C ¢ & ' ¢ & ' ¢e ¢ ¢ o b2 ¢t ¢
CLK
AssAs >< ValidlAddr N-1 x x \ VaIidlAddrN]
-5
D me—me————— Valid'E)amN
MWTC
DEN / kf>__
DTR
03552-31
Figure 33. Back-to-Back Write-Write Cycles
80286 37

Mat eri al Copyrighted By Its Respective Manufacturer

Bus Hold Acknowledge Write Cycle Bus Hold Acknowledge
, oid Acknowledas
T, Th Tw Ta T, T, T, T Tu
BuscyceType| #11" 02| ¢, a2] w2l M e2] 0l el vl e] ni e | w% el v el
CL

ASeatigesial
HOLD™ ™\ iseeNore)

HLDA (\\ / J A

(SeeNote1) —— (See Note 1._)_

286
A
4

MR oRTE———————————— Valid

DD —————— &(valid

82284

Not Ready Not Ready ,'Yady

e £

Delay Enable

\

82C288

(See Note 7.)

ALE / \

TS =Status Cycle
TC=Command Cycle

03552-32

Notes: 1. Status lines are not driven by 80286, yet remain high due to pull-up resistors in 82C288 and 82289 during
HOLD state.

2. Address, MAiO and COD/INTA may start may start floating during any TC, depending on when internal
80286 bus arbiter decides to release bus to external HOLD. The float starts in ¢2 of TC.

3. BHE and LOCK may start floating after the end of any TC, depending on when internal 80286 bus arbiter
decidss to release bus to external HOLD.

4. The minimum HOLD | to HLDA ! time is shown. Maximum is one T, longer.
5. The earliest HOLD T time is shown which will always allow a subsequent memory cycle if pending.

6. The minimum HOLD T to HLDA T time is shown. Maximum is a function of the instruction, type of bus cycle
and other machine status (i.e., Interrupts, Waits, Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this
example. Synchronous ready state is ignored after ready is signaled via the asynchronous input.

Figure 34. MULTIBUS Write TermInated by Asynchronous Ready with Bus Hold

38 80286

This Material Copyrighted By Its Respective Manufacturer

This Materi al

Processor Extension Transfers

The processor extension interface uses /O port ad-
dresses 00F8(H), and 00FA(H), and 00FC(H) which are
part of the IO port address range and is a reserved area.
An ESC instruction with EM =0 and TS =0 will perform
I/0 bus operations to one or more of these I/O port ad-
dresses independent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor extension
operand transfers. The CPU will determine the operand
starting address and read/write status of the instruction.
For each operand transfer, two or three bus operations,
one word transfer with IO port address 00FA(H), and
one or two bus operations with memory are performed.
Three bus operations are required for each word oper-
and aligned on an odd byte address.

Iinterrupt Acknowledge Sequence

Figure 35 illustrates an interrupt acknowledge sequence
performed by the 80286 in response to an INTR input. An
interrupt acknowledge sequence consists of two INTA
bus operations. The first allows a master 8259A Pro-
grammable Interrupt Controller (PIC} to determine
which, if any, of its slaves should return the interrupt
vector. An eight-bit vector is read by the 80286 during the
second INTA bus operation to select an interrupt handier
routine from the interrupt table.

The Master Cascade Enable {MCE) signalof the 82C288
is used to enable the cascade address drivers, during
INTA bus operations (see Figure 35), onto the local ad-
dress bus for distribution to slave interrupt controllers via
the system address bus. The 80286 emits the LOCK
signal (active LOW) during Ts of the first INTA bus opera-
tion. A local bus “hold” request will not be honored until
the end of the second INTA bus operation.

Three idle processor clocks are provided by the 80286
between INTA bus operations to allow for the minimum
INTA to INTA time and CAS (cascade address) outdelay
of the 8259A. The second INTA bus operation must al-
ways have at least one extra Tc state added via logic
controlling READY. A2>—Ac are in three-state OFF until
after the first Tc state of the second INTA bus operation.
This prevents bus contention between the cascade ad-
dress drivers and CPU address drivers. The extra Tc
state allows time for the 80286 to resume driving the
address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80286 local bus is shared among several internal
units and external HOLD requests. In case of simultane-
ous requests, their relative priorities are:

(Highest) Anytransfers which assert LOCK either ex-
plicitly (via the LOCK instruction prefix) or
implicitly (i.e., segment descriptor access,
interrupt acknowledge sequence, or an

XCHG with memory).

The second of the two-byte bus operations
required for an odd aligned word operand.

Local bus request via HOLD input.

Processor extension data operand transfer
via PEREQ input.

Datatransfer performed by EU as partof an
instruction.

)
(Lowest) An instruction prefetch request from BU.
The EU will inhibit prefetching two proces-
sor clocks in advance of any data transfers
to minimize waiting by EU for a prefetch to
finish.

Halt or Shutdown Cycles

The 80286 externally indicates halt or shutdown condi-
tions as a bus operation. These conditions occur dueto a
HLT instruction or muttiple protection exceptions while
attempting to execute one instruction. A halt or shutdown
bus operation is signalled when S1, SO and COD/INTA
are LOW and M/IO is HIGH. A1 HIGH indicates halt, and
A1 LOW indicates shutdown. The 82C288 bus controller
does not issue ALE, nor is READY required to terminate
a halt or shutdown bus operation.

During halt or shutdown, the 80286 may service PEREQ
orHOLD requests. A processor extension segment over-
run exception during shutdown will inhibit further service
of PEREQ. Either NMI or RESET will force the 80286 out
of either halt or shutdown. An INTR, if interrupts are
enabled, or a processor extension segment overrun ex-
ception will also force the 80286 out of halt.

System Configurations

The versatile bus structure of the 80286 microsystem,
with a full complement of support chips, allows flexible
configuration of a wide range of systems. The basic con-
figuration, shown in Figure 36, is similar to an iAPX 86
maximum mode system. It includes the CPU plus an
8259A interrupt controller, 82284 clock generator, and
the 82C288 Bus Controller. The iAPX 86 latches (29843
and 29845) and transceivers (29833 and 29863) may be
used in an 80286 microsystem.

80286 39

Copyrighted By Its Respective Mnufacturer

INTA Cycle 1 INTA Cycle 2
T T,
puscyceype | #11ce2| a1 a2] eioa2] wiou2] wi 2] w2 e e2) e ee] miee] ecee| e e
N .

CLK

80286

AA _________(_Se:N:ls_S.)_(Dot Gare pu _ (SeoNote.fL)<:
S S o Sy SE— —

Previous (See Note 1.)
Di=Ds writo Cycle)= —————————— —D— —————————————————— Vector J———

(See Note 3.)

&

Not Ready Ready

82C288
>
m

./
/7 \
/\
MmN \ S
/N

03552-33

Notes: 1. Data is ignored.

2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width.

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A,,—A,, BHE, and LOCK
until after the first T, state.
The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by
MCE | and address outputs.
Without the wait state, the 80286 address will not be valid for a memory cycle started immediately after the second
INTA cycle. The 8259A also requires cne wait state for minimum INTA pulse width.

4. [OCK s active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a
multi-master system.

5. A,—A, exits three-state OFF during ¢2 of the second T, in the INTA cycle.

Figure 35. Interrupt Acknowledge Sequence

40 80286

This Material Copyrighted By Its Respective Manufacturer

This Materia

AEN MRDC -+ Memory Read
o = MWTC Memory Write
|"| l_l TORC 1O Read
_{CMDLY »- /O Write
%o) — Interrupt Acknowledge
FESET s <l R
57 - 51 ALE — Advanced
TEADY MCE o] L
I | PCLK * | CLK DEN r 1 Decode e e i
—— EFI CKIT DT/R 4 - c and VO Chip
= > | 132C 288 Bus r— T r j (Optional) | Selects
L Controller —1+11
= wo || [L
1| r _
SYNC READY———=a{ SFDY —
ENABLE—=| SFDYEN Reset - ! :
oo —— Y RESET M { i
READY > LOCK Address Bus
82284 lof CLK COD/NTA|-—— |
ENABLE Clock Lol READY l
Generator a7 A,
50
I'__J‘ —a] NMI BAE
r————J— — HOLD
I I <— HLDA
|] Em“ OR CAS.. < le— Chip Select
| —— PEACRK INTR INT e s
: 111 I ———"|PEREQ CAPH %
¥ ARR 80286 CPU i ¥ ™
r _LLLLI_| Doy-De = SPEN
| processor | t>DrD'|8t2 5?; <:'R""R’
I Extension | 1 Cgr?t%lgr
{Optional) N T
e — —
T 29833
> 20863 Data
Transceiver Bus
»>|T
03552-34

Figure 36. Basic 80286 System Configuration

As indicated by the dashed lines in Figure 36, the ability
to add processor extensions is an integral feature of
80286 microsystems. The processor extension interface
allows external hardware to perform special functions
andtransfer data concurrent with CPU execution of other
instructions. Full system integrity is maintained because
the 80286 supervises all data transfers and instruction
execution for the processor extension.

The 80286 with the 80287 numeric processor extension
(NPX) uses this interface. The iAPX 286/287 has all the
instructions and data types of an iAPX 86/87 or iAPX
88/87. The 80287 NPX can perform numeric calculations
and data transfers concurrently with CPU program exe-
cution. Numerics code and data have the same integrity
as all other information protected by the 80286 protec-
tion mechanism.

The 80286 can overlap chip select decoding and ad-
dress propagation during the data transfer for the previ-
ous bus operation. This information is latched into the
29843/45’s by ALE during the middle of a Ts cycle. The
latched chip select and address information remains sta-
ble during the bus operation while the next cycle’s ad-
dress is being decoded and propagated into the system.
Decode logic can be implemented with a high-speed
bipolar PROM.

The optional decode logic shown in Figure 36 takes ad-
vantage of the overlap between address and data of the
80286 bus cycle to generate advanced memory and I/O-
select signals. This minimizes system performance deg-
radation caused by address propagation and decode
delays. in addition to selecting memory and l/O, the ad-
vanced selects may be used with configurations support-
ing local and system buses to enable the appropriate bus
interface for each bus cycle. The COD/INTA and M/IC
signals are applied to the decode logic to distinguish
between interrupt, 1/0, code and data bus cycles.

By adding the 82289 bus arbiter chip, the 80286 provides
a MULTIBUS system bus interface as shown in Figure
37. The ALE output of the 82C288 for the MULTIBUS
bus is connected to its CMDLY input to delay the start of
commands one system CLK as required to meet MULTI-
BUS address and write data set-up times. This arrange-
ment will add at least one extra Tc state to each bus
operation which uses the MULTIBUS.

A second 82C288 bus controlier and additional latches
and transceivers could be added to the local bus of
Figure 37. This configuration allows the 80286 to support
an on-board bus for local memory and peripherals and
the MULTIBUS for system bus interfacing.

80286 41

Copyrighted By Its Respective Mnufacturer

This Materi al

—— SYSB/FESB
RESET Cwit
INIT pt———
Vee Multibus
ANYRQST BPRO ——
_al50 P [«— [Bus Arbitration
ST B'Ugv admmmm——
—wREADY o e o
i CLK T
EN WIS]
82289
Bus Arbiter
Ve
AN pmc Memory Read
I_'DI_I MWTC * Memory Write
o VO Read
CMDLY [y - /O Write
ST X X % =5 NTA = |nterrupt Ackr g
FES k51 51 ALE
I «—{PClk FEADY “SECE
— —EF CLk :':sza pus DTR
- us
-E. F Controller WG
Sync Ready=—-——8» SROY Reset
Enable—— %EN ese)
Asyne Ready o1 ARDVEN ! RESET MO
82284 ek CODEEER Address Bus
Gonorator —|EEADY TA—
| & ArrA
r__J 3 —|NMI BHE,
—_ —s|HOLD
i r «—|HLDA J =
—— ——_»|chrOR
[| cas: Bl cn
p Select
: 1] r -————m INTR INT
| —— CAP INTA
RERREE 80286 7 Wi
] 1
KL IRE cPU ;o]
r Diys-Dy = SPEEN
DD, 8259A
| Processor | 4 82594 <: ReIR,
| Extension - Controller
| (Optiona) |'NTTT—
|
R 29833
or
> 29863 Data
f‘l’ransceiver Bus
03552-35

Figure 37. MULTIBUS System Bus Interface

Figure 38 shows the interface of the 80286 with the
Am2968 Dynamic Memory Controller. The interface is a
timing controlier which consists of some control logic and
adelay line. The timing controller runs asynchronously to
the CPU. It arbitrates between memory requests and
refresh requests by generating the proper signals to the
dynamic memory controller and memory. The design
described is a simple, cost-effective solution to interfac-

ing the 80286 with the Am2968. A further description
about DRAM selection based on processor speed may
be found in the Am2968 Application Note.

Two-operand instructions (e.g., MOV and ADD) are usu-
ally three to six bytes long. Memory-to-memory opera-
tions are provided by a special class of string instructions
requiring one to three bytes.

42

80286

Copyrighted By Its Respective Mnufacturer

l Address Bus > Au
P AP SELO, 1
A21—A23 A Decoder Am2968
l RaS Qu ‘e AcA;
& N PPN [
Delay MSEL 7
Line CASI
@ Control | AFRQ MGl A4 CAS
© Logic
AQQ % AmPAL o LUCIe NI DRAM
BHE Am9064
80286 st EN Am9ooC2
16 MH 56
CLK LVl =
82284 WE,
CLK
Generator
_READY -
1 {}
L D Q
s2cess |-DEN
Bus = 16
Do—Dss Control DT/R
TR 2946
Data Bus i
03552-36

Figure 38. 80286 Interface with the Am2968 Dynamic Memory Controller

Table 15. 80286 Systems Recommended Pull-up Resistor Values

80286 Pin and Name Pull-up Value Purpose
4-57
550 Pull B, 37, and PEACK inactive during 80286
20KQ +10% hold periods.
6-PEACK
53-ERROR Pull ERROR and BUSY inactive when 80287
20KQ+ 10% not present (or temporarily removed from
54-BUSY socket).
Pull READY inactive within required minimum
63-READY 910Q+5% time (C, = 150 pF, Ia < 7mA).
80286 43

This Material Copyrighted By Its Respective Manufacturer

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte6
7.8 5432107 3 4 219 e
1l I - T R
Low Disp/Data | High Disp/Data Low Data | High Data |
Opcode d{w|mod| reg o r Lo e I 4

Register Operand/Extension of Opcode
Register Mode/Memory Mode with Displacement Length
‘Word/Byte Operation
Direction is 1o Register/Direction is from Register
Operation (Instruction) Code
A. Short Opcode Format Example 03552-87
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
765422107 654321076543210_
T CITIICTT S RN
Longolpcodo mod| reg | vm —_ P L —_——d
B. Long Opcode Format Example
03552-38

Flgure 39. 80286 Instructlon Format Examples

44 80286

This Material Copyrighted By Its Respective Manufacturer

This Materi al

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes

The instruction clock counts listed below establish the
maximum execution rate of the 80286. With no delays in
bus cycles, the actual clock count of an 80286 program
will average 5% more than the calculated clock count,
due to instruction sequences which execute faster than
they can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An
8-MHz processor clock has a clock period of 125
nanoseconds and requires an 80286 system clock (CLK
input) of 16 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and
is ready for execution. Control transfer instruction
clock counts include all time required to fetch, de-
code, and prepare the next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor exiension data transfer or
local bus HOL D requests.

4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD field are
not shown. If necessary they appear after the instruction
fields shown.

Above/below refers to unsigned value
Greater refers to positive signed value

Less refers to less positive (more negative) signed
values

itd=1 then to register; if d = 0 then from register

ifw=1 then word instruction; if w= 0 then byte
instruction

if s =0 then 16-bit inmediate data to form the
operand

if s=0 then animmediate data byte is sign-

extended to form the 16-bit operand
x= don't care
z=used for string primitives for comparison with ZF
FLAG
If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory oper-
and.

*= add one clock if offset calculation requires sum-
ming 3 elements
n= number of times repeated
m=_number of bytes of code in next instruction

Level (L)—Lexical nesting level of the procedure
The following comments describe possible exceptions,

side effects, and allowed usage for instructions in both
operating modes of the 80286.

Real Address Mode Only

1. Thisis a protected mode instruction. Attempted exe-
cution in real address mode will result in an unde-
fined opcode exception (6).

2. Asegmentoverrun exception (13) will occur if aword
operand reference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9)
will occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the value of
the operand.

7. LOCK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. LOCK does not remain active between all operand
transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the
memory operand cannot be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an ex-
ception. The segment must be present to avoid a
not-present exception (11). If the SS register is the
destination, and a segment-not-present violation oc-
curs, a stack exception (12) occurs.

11. All segment descriptor accesses in the GDT or LDT
made by this instruction will automatically assert
LOCK to maintain descriplor integrity in multiproces-
sor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protec-
tion exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if
CPL#0.

14. A general protection exception (13) occurs if
CPL>IOPL.

15. The IF field of the flag word is not updated if
CPL>IOPL. The IOPL field is updated only if
CPL=0.

16. Any violation of privilege rules as applied to the se-
lector operand do not cause a protection exception;
rather, the instruction does not return a result and the
zero fiag is cleared.

17. If the starting address of the memory operand vio-
lates a segment limit, or an invalid access is at-

80286 a5

Copyrighted By Its Respective Mnufacturer

tempted, a general protection exception (13) will oc- 18. The destination of an INT, JMP, CALL, RET, orIRET

cur before the ESC instruction is executed. A stack instruction must be in the defined limit of a code
segment overrun exception (12) will occur if the segment or a general protection exception (13)
stack limit is violated by the operand’s starting ad- will occur.

dress. If a segment limit is violated during an at-
tempted data transfer, then a processor extension
segment overrun exception (9) occurs.

46 80286

This Material Copyrighted By Its Respective Manufacturer

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES

Storage Temperature —-6510 + 150°C Commercial {C) Devices

Voltage on Any Pin with Temperature (TC) Oto +85°C
Respectto Ground —10to+7.0V Supply Voltage (vce) 5 V15%

Power Dissipation 3.15 Watts

Operating ranges define those limits between which the
functionality of the device is guaranteed.

Stresses above those listed under ABSOLUTE MAXI-
MUM RATINGS may cause permanent device failure.
Functionality at or above these limits is not implied. Ex-
posure to absolute maximum ratings for extended peri-
ods may affect device reliability.

DC CHARACTERISTICS (Vec=5V +5%, Tcase =0 to +85° C)

Parameter Description Test Conditions Min. Max. unit
ViL Input LOW Voltage -5 8 \
ViH Input HIGH Voltage 2.0 Vcc+.5 \'
Vie CLK Input LOW Voliage -5 .6 \
Viie CLK Input HIGH Voltage 3.8 Vcc+.5 \'/
VoL Output LOW Voltage lo.=2.0 mA .45 v
VoH Output HIGH Voltage lon=—400 pA 2.4 \'
Iui Input Leakage Current 0V <VN < Vee +10 HA
fo Output Leakage Current 0.45 V < Vour< Vec +10 HA
lec Supply Current (turn on, 0°C) Note 1 600 mA
Coik CLK Input Capacitance Fc=1 MHz 20 pF
Cin Other Input Capacitance Fc=1 MHz 10 pF
Co Input /Output Capacitance Fc=1 MHz 20 pF
.o Output Leakage Current 0 V < Vour < 045V +1 mA
I Input Sustaining Current on Vin= OV 30 500 HA

BUSY and ERROR pins
IL.cr Input CLK Leakage Current 0.45 < Vw < Vee +10 A
ILca Input CLK Leakage Current 0V< Vin<0.45V +1 mA
Note: Low temperature is worst case.
80286 47

This Materia

Copyrighted By Its Respective Mnufacturer

SWITCHING CHARACTERISTICS
Vec=45V15%, Tease=0°1t0 +85°C
AC Timings are referenced to 0.8 V and 2.0 V points of signals as illustrated in datasheet waveforms, unless otherwise

noted.
8 MHz 10 MHz
Parameters| Description Test Conditions Min. | Max. | Min.| Max. | Unit

1 System Clock (CLK) Period 62 125 50| 125 | ns

2 System Clock (CLK) LOW Time at 1.0V 15 100 12| 109 ns

3 System Clock (CLK) HIGH Time at 3.6V 25 110 16 | 113 | ns
17 System Clock (CLK) Rise Time 1.0V to 3.6V 10 8 ns
18 System Clock (CLK) Fall Time 3.6Vio 1.0V 10 8 ns
4 Asynchronous Inputs Setup Time Note 1 20 20 ns

5 Asynchronous Inputs Hold Time Note 1 20 20 ns

6 RESET Setup Time 28 23 ns

7 RESET Hold Time 5 5 ns

8 Read Data Setup Time 10 8 ns

) Read Data Hold Time 8 8 ns
10 READY Setup Time 38 26 ns
11 READY Hold Time 25 25 ns
12 Status/PEACK Valid Delay Note 2, Note 3 1 40 - - | ns
12a Status/PEACK Active Delay Note 2, Note 3 — — 1 22 | ns
12b Status/PEACK Inactive Delay Note 2, Note 3 - - 1 30 | ns
13 Address Valid Delay Note 2, Note 3 1 60 1 35 ns
14 Write Data Valid Delay Note 2, Note 3 0 50 0 30 ns
15 Address/Status/Data Float Delay Note 2, Note 4 0 50 0 47 ns
16 HLDA Valid Delay Note 2, Note 3 0 50 0 47 ns
19 Address Valid to Status Note 3, Note 5, 38 27 ns

Valid Setup Time Note 6

Notes: 1. Asynchronous inputs are INTR, NMI, HOLD PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

. Delay from 1.0V on the CLK 1o 0.8V or 2.0V or float on the output as appropriate for valid or floating condition.
. Output load: C_=100pF.
. Float condition occurs when output current is less than |, in magnitude.

. Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status
going inactive reaching 0.8 V.

o A WN

6. Forload capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec, and maximum 7 ns for
10 MHz spec.
48 80286

This Material Copyrighted By Its Respective Manufacturer

SWITCHING CHARACTERISTICS (continued)

Vec = +5V+5%, Tease=0°10 +85° C

AC Timings are referenced to 0.8V and 2.0 V points of signals as illustrated in datasheet waveforms, unless
otherwise noted.

12.5MHz 16 MHz
Parameters| Description Test Conditions Min. | Max.| Min.|{ Max] Unit

1 System Clock (CLK) Period 40 125 31 125 ns

2 System Clock (CLK) LOW Time at 1.0V 11 112 10| 113} ns

3 System Clock {CLK) HIGH Time at 3.6V 13 114 12| 115 ns
17 System Clock (CLK) Rise Time 1.0V to 3.6V 8 8 ns
18 System Clock (CLK) Fall Time 3.6Vio1.0V 8 B ns
4 Asynchronous Inputs Setup Time Note 1 15 11 ns

5 Asynchronous Inputs Hold Time Note 1 15 11 ns
(5] RESET Setup Time 18 14 ns

7 RESET Hold Time 5 3 ns

8 Read Data Setup Time 5 5 ns

9 Read Data Hold Time 6 5 ns
10 READY Setup Time 22 15 ns
11 READY Hold Time 20 ns
12 Status/PEACK Valid Delay Note 2, Note 3 - - 1 18| ns
12a Status/PEACK Active Delay Note 2, Note 3 3 18 1 18| ns
12b Status/PEACK Inactive Delay Note 2, Note 3 3 20 1 20| ns
13 Address Valid Delay Note 2, Note 3 1 32 1 29| ns
14 Write Data Valid Delay Note 2, Note 3 0 30 0 22 ns
15 Address/Status/Data Float Delay Note 2, Note 4 0 32 0 29| ns
16 HLDA Valid Delay Note 2, Note 3 0 25 0 25 ns
19 Address Valid to Status Note 3, Note 5, 22 22 ns

Valid Setup Time Note 6

Notes: 1. Asynchronous inputs are INTR, NMI, HOLD PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

. Delay from 1.0V on the CLK to 0.8V or 2.0 V or float on the output as appropriate for valid or floating condition.
. Output load: C, = 100 pF.
. Float condition occurs when output current is less than |, in magnitude.

. Delay measured from address aither reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status
going inactive reaching 0.8 V.

6. Forload capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHZ spec, and maximum 7 ns for

“n b~ ON

10 MHz spec.
Device
Output |
CL
Note: 7. AC Test Loading on Outputs :_[03552-39
40V
CLK input
045V
03552-40
Note: 8. AC Drive and Measurement Points—CLK Input
80286 49

This Material Copyrighted By Its Respective Manufacturer

4.0V
/)K_ 3.6V
CLK input 36V
- 1.0V

1.0V
0.45V
24V ETUP - thowo
Other V7 20V | 20V
Dovice 0.8V | 0.8V
nput 45y : -
jo—— toerav

X 2.0V
Device
Output 0.8V

Note: AC Setup, Hold and Delay Time Measurement—General

0355241

50 80286

This Material Copyrighted By Its Respective Manufacturer

SWITCHING WAVEFORMS
Major Cycle Timing

Read Cycle illustrated Write Cycle lllustrated
with zero wait states with one walt state

Bus Cycle Type T

| AAAAAAAA

Valid ¥ Tg

80286

X ald ¥ Ty

Valid Write Data

82284

82C288

@—--—

| DN y I !L.__
Note: The modified timing is due to the CMDLY signal being active. 0355242
80286 51

This Material Copyrighted By Its Respective Manufacturer

SWITCHING WAVEFORMS (continued)

80286 Asynchronous Input Signal Timing 80286 Reset Input Timing and Subsequent
Processor Cycle Phase
Bus Cycle Type f———— Ty
v,
CLK ﬁ
PCLK
(See Nate 1.)
INTR, NMI,
HOLD, PEREQ
(See Note 2.)
(See Note 2.) DK
0355243
Notes: 1. PCLK indicates which processor cycle phase will

occur on the next CLK. PCLK may not indicate the

correct phase until the firstbus cycle is performed.

2. These inputs are asynchronous. The setup and Note: When RESFET meets the set-up time shown, the next
hold times shown assure recognition for testing CLK will start or repeat ¢1 of a processor cycle.
purposes.

Exiting and Entering Hold
_Bus Cycle Type T,orT, T, Tu
1 1 1
CLK
(See Note 4.) ™ @
HLDA
5
p—
lo-— —r @ I-— (See Note 3.)
§ 5-% - 1 Ts
2 S
l—
PEACK % = ®I1__ ________
k- !f NPX Transter ¢ (Sea Note 1)
BAE, [TCK
Ag1Aq
M0,
COD/IRTA
[
3 PCLK
8
©
0355245
Notes: 1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is
shown.

2. The data bus will be driven as shown if the last cycle before T, in the diagram was a write T,.

3. The 80286 floats its status pins during T,. External 20 k2 resistors keep these signals high (see Table 15).

4. For HOLD request set-up to HLDA, refer to Figure 34.

5. BHE and TOCK are driven at this time but will not become valid until T,.

6. The data bus will remain in three-state OFF if a read cycle is performed.

52 80286

This Material Copyrighted By Its Respective Manufacturer

SWITCHING WAVEFORMS (continued)

80286 PEREQ/PEACK Timing Required PEREQ Timing for One Transfer Only

— V,
* VO Read ¥ proc. ext. o memory Memory Write if proc. ext. to memory
/ Memory Read if memory to proc. ext. / VO Wrike if memory to proc. ext.
so® ~N__ /T 7
Memory address ¥ proc. ext. to memory transfer
1O port address OOFA(H) ¥ memory to proc. ext. transier
AcsiAs '8
WG,) b @& X
COD/INTA
— \—-mputmooFA(mlpm-LhnwyMu
@ o _.@ Memory address § memofy to proc. ext. transfer
PEACR (See Note 1.)
— Q —
i
e (S0 Note 2) ——1(2)
- T T T TS
PEREQ b o, 1

0355246

Assuming word-aligned memory operand; if odd-aligned, 80286 transfers to/from memory byte-at-a-time
with two memory cycles.

Notes: 1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence.
The first bus operation will be either a memory read at operand address or /O read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (shown above) is: 3x
1-11 max—4 min. The actual, configuration dapendent, maximum time is:3x 1—-11 max—4 min+ Ax2x1. Aisthe
number of extra T, states added to either the first or second bus operation of the processor extension data operand
transfer sequence.

80286 53

This Material Copyrighted By Its Respective Manufacturer

Initial 80286 Pin State During Reset

Bus Cycle Type
TX TX
cLK__/_]
Ve
— j— (See Note 1)
RESET T
éﬁ-«"‘f 4] At least L
1 16 CLK Periods |
-5
PEACR Unknown
A’ﬁ Unknown
M
COD/ImI’(; Unknown
[BCR Unknown
e (0))
If hold is NOT active (See Note 4.)
HLDA Unknown <
I >

0972047

Notes: 1. Set-up time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one
system CLK period later.
2. Set-up and hold times for RESET | must be met for proper operation, but RESET { may occur during ¢1 or ¢2.
. The data bus is only guaranteed to be in three-state OFF at the time shown.

4. HOLD is acknowledged during RESET, causing HLDA to go active and the appropriate pins to float. If HOLD remains
active while RESET goes inactive, the 80286 remains in HOLD state and will not perform any bus accesses until
HOLD is deactivated.

w

54 80286

This Material Copyrighted By Its Respective Manufacturer

80286 INSTRUCTION SET SUMMARY

Clock Count Comments
b | T | e, |

Function Format Mode Mods Mode Address
DATA TRANSFER
MOV = Move:
Register to Register/Memory| 1000 100w/| mod reg r/m 2,3 2,3 2
Register/Memory to Register] 100010 1w| mod reg r/m 2,5* 25" 2 9
Immediate to register/ 110001 1w| mod00OOIr/m data data if w=1 2,3* 2,3

Memory
Immediate to register 1011wreg data data if w=1 2 2
Memory to accumulator 1010000w| addr-low addr-high 5 2 9
Accumulator to memory 1010001w| addr-low addr-high 3 3 2 9
Register/memory to 10001110 |modOregr/m 2,5° 17,19 2 9,10,11

segment register
Segment register to 10001100 lmodo reg r/mJ 23" 2,3* 2 9

register/memory
PUSH=Push:
Memory 11111111 mod110mm | 5 5 2 9
Register 01010reg 3 3 2 9
Segment register 00Q0reg110 3 3 2 9
Immediate 0110100] data)l e 2 9
PUSHA = Push Al 01100000] 17 e P K]
POP=Pop
Memory 10001111 modOOOrlmJ 5* 5* 2 9
Register 01011reg 5 5 2 9
Segment register 000reg111| (reg=01) 5 20 2 9,10,11
POPA=Pop All 01100001 19 19 2 o
XCHG = Exchange:
Register/memory with [100001 1w] modregrim_| as 35 27 79

register
Register with accumulator 3 3
IN =Input from:
Fixed port 1110010w] port | 5 14
Variable port 1110110w 5 14
OUT =Output to:
Fixed port 1110011w| port] 3 3 14
Variable port 1110111w 3 3 14
XLAT =Translate byteto AL| 11010111 5 9
LEA =Load EA to register 10001101 jmodregr/m 3* 3*
LDS = Load pointer to DS 11000101 | modregr/m |(mod = 11) 7 21 2 9,10,11
LES = L oad pointer to ES 11000100 | modregr/m | (mod =« 11) 7 21" 2 9,10,11
LAHF = Load AH with flags | 10011111 2 2
SAHF =Store AH into flags | 10011110 2 2
PUSHF = Push flags 10011100 3 3 9
POPF=Pop flags 10011101 5 5 24 9,15

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 62.
80286 55

This Materia

Copyrighted By Its Respective Mnufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
st | v | reat |V
e Address | Adde
Function Format Mode Mode | Mode | Mode
ARITHMETIC
ADD=Add:
Reg/memory with register to either |000000dw | mod reg 'm 27| 27 2 9
Immediate to register/memory 100000sw | mod0Or/m data data if sw=01 3,77 3.7 2 9
Immediate to accumulator 0000010w| data data if w=1 3 3
ADC = Add with carry:
Reg/memory with register to either |[000100dw | modreg ¥/m 27| 27 2 9
Immediate to register/memory 100000sw | mod0D10r/m data data if s'w=01 377 3.7 2 9
Immediate to accumulator 0001010w | dala data if w=1 3 3
INC =Increment:
Register/memory 1111111w| mod00O r/m] 2,7 | 2,7 2 9
Register 01000reg 2 2
SUB =Subtract:
Reg/memery and register to either |001010dw | modreg /m 27| 27 2 9
Immediate from register/memory 100000sw | mod101r/m data dataifsw=1 3,77 3,7 2 9
Immediate from accumulator 0001110w | data data if w=1 3 3
SBB = Subtract with borrow:
Reg/memory and register to either |000110dw | modreg /m 27| 2.7 2 9
Immediate from register/memory 100000sw | mod011r/m data data if sw=01 3, 77| 3,7 2 9
Immediate from accumulator 0010110w | data data ifw=1 3 3
DEC = Decrement:
Register/memory 1111111w] mod0O1 r/m] 2,7 2,7 2 9
Register 0100 1reg 2 2
CMP =Compare:
Register/memory with register 0011101w]| modregr/m 2,6 | 2,6 2 9
Register with register/memory 0011100w | modregr/m 2,77 27 2 9
Immediate with register/memory 100000sw | mod111rm data data if sw=01 3,6"] 3,67 2 9
Immediate with accumulator 0011110w | data data ifw=1 3 3
NEG =Change sign 1111011tw | mod011rm 2 7 2 7
AAA = ASCI| adjust for add 00110111 3 3
DAA =Decimal adjust for add 00100111 3 3
AAS = ASCII adjust for subtract 00111111 3 3
DAS = Decimal adjust for subtract 00101111 3 3
MUL = Multiply (unsigned) 1111011w]| mod1000m]|
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24° 24* 2 9
IMUL = Integer mutiply (signed) 1111901 1w | mod10tpm] < ool weiinaligas Srabnapas
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2
Memory-Word 24" 24 2

Shaded areas indicate instructions not available in IAPX 86, 88 microsystems.
See footnotes on page 62.

56 80286

This Material Copyrighted By Its Respective Manufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Real Virtust |Reat |Virtual
Address | Address |Address]Address
Function Format Mode Mode Mode | Mode
ARITHMETIC (Continued)
| IMUL = Integer immediate multiply: [0110 1041 CEoatfeneat] 2w
DIV = Divide (unsigned): [f111011w] modi10mm]
Register-Byte 14 14
Register-Word 22 22
Memory-Byte 17" 17 2,6 6,9
Memory-Word 25" 25" 2,6 6,9
IDIV = Integer divide (signed) [1 111011 wI modt11r/m I
Register-Byte 17 17
Register-Word 25 25
Memory-Byte 20" 20° 2 9
Memory-Word 28" 28" 2 9
AAM = ASCII adjust for muitiply 11010100 { 00001010 16 16
AAD = ASCI| adjust for divide 11010101 00001010 14 14
CBW = Convert byte to word 10011000 2 2
CWD=Convert word to double word [10011001 2 2
LOGIC
ShifvRotate Instructions:
Register/Memory by 1 [[101000w [mod TTTrm | 2,7 27 2 9
5+n,| 5+n,
Register/Memory by CL ff1ot1001w] mod TTT m | 8+n*| 8+n* 2 9
Register Memory by Count [i1ooooow] mod TTTvim | gen] Bent |2 9
T Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHU/SAL
101 SHR
111 SAR
AND=And:
Reg/memory and register to either [001000dw | mod reg /m 2,7 27 2 9
Immediate to register/memory 1000000w | med100r/m data dataifw=1 3,771 3.7 2 9
Immediate to accumulator 0010010w | data data f w=1 3 3
TEST = And function to flags, no resuli:
Register/memory and register 1000010w | modreg /m 2,6°| 26" 2 9
Immediate data and register/memory [1111011w | mod00O0rm data data if w=1 3,6*| 3,6” 2 9
Immediate data and accumulator 1010100w | data dataifw=1 3 3
OR=0r:
Reg/memory and register to either [000010dw | modreg r/m 2,77l 27 2 9
Immediate to register/memory 1000000w | modDO1rm data dataifw=1 3,71 3.7 2 9
Immediate to accumulator 0000110w]| data data ifw=1 3 3
XOR = Exclusive or:
Reg/memory and register to either (001100dw | modregrm 2,77 2,7 2 9
Immediate to register/memory 1000000w | mod110rm data data if w=1 3,71 37 2 9
Immediate to accumulator 0011010w]| data data if w=1 3 3
NOT =Invert register/memory 1111011w | mod010rm 2,7 27 2 9
Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 62.
80286 57

This Materi al

Copyrighted By Its Respective Mnufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
Reai Virtual Real Virtual
Address Address Address Address
Function Format Mode Mode Mode Mode
STRING MANIPULATION:
MOVS = Move byte/word 1010010w 5 5 2 9
CMPS = Compare byte/word 1010011w 8 8 2 9
SCAS = Scan byte/word 1010111w 7 7 2 9
LODS = Load byte/wd to ALVAX 1010110w 5 5 2 9
STOS = Stor byte/wd from AL/A 1010101w 3 3 2 9
INS = Input byte/wd from DX port 0110110w 5 5 2 9,14
OUTS:OqumbyteMwDXpan 1011011 1w -5 5 2 9,14
Repeated by countinCX -7 o L R PR e '
MOVS = Move string 11110010 1010010w 5+4n 5+4n 2 9
CMPS = Compare string 1111001z 1010011w 5+9n 5+9n 2 9
SCAS = Scan string 11110012 | 1010111w 5+8n 5+8n 2 9
LODS = Load string 1111010 1010110w 5+4n 5+4n 2 9
STOS = Store string 11110010 [1010101w 443n 4+3n 2 9
INS =Input string. : 111100101 01101 3+0w]} S+4n - adn 2 9,14
QUTS =Output string - - oclgtiicoctro jot1i01tiw] Sedn] 5440 2 9,14
CALL=Call:
Direct within segment 11101000 | disp-low disp-high 7+m 7+m 2
Register memory indirect 11111111 mod 0 10 r/m 7+mtt+m|7+m11+m 2 8,9
within segment
Direct intersegment [1 0011010 segment offset 13+m 26+m 2 8,11,12
segment selector
Protected Mode Only (Direct Intersegment):
Via call gate to same privilege level 41+m 8,11,12
Via call gate to different privilege level, no parameters 82+m 8,11,12
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12
Via TSS 177+m 8,11,12
Via task gate 182+m 8,11,12
Indirect intersegment [11111311 [modo11om | (mod.11) 16+m 29+m* 2 |8,9,11,12
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 44+m* 89,11,12
Via call gate to different privilege level, no parameters 83+m" 8,9,11,12
Via call gate to different privilege level, x parameters 90 +4x +m* 89,1112
Via TSS 180 +m* 8,9,11,12
Via task gate 185+m* 8,9,11,12
JMP = Unconditional jump
Shortllong 11101011 | disp-low 7+m 7+m 8
Direct within segment 11101001 | displow disp-high 7+m 7+m 8
Register/mem indirect within segmen{ 1t 111 t111 | mod 100 rim 7+m1t+m*[7+m11+m" 2 8,9
Direct intersegment 11101010 segment offset 1t+m 23+m 8,11,12
segment selector
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 38+m 811,12
Via TSS 176+m 8,11,12
Via task gate 180+m 8,11,12
Indirect intersegment {[11111111 [mod101rm | (mod«11) 15+m* 26 +m* 2 [8,9,11,12

Shaded areas indicate instructions not available in tAPX 86, 88 microsystems.

See footnotes on page 62.

58

80286

This Material Copyrighted By Its Respective Manufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
- 3‘..“‘ Virtual . Pfll _V‘I_r‘lunl
Function Format Mode Mode Mode Mode
CONTROL TRANSFER (Continued):
Protected Mode Only {Indirect Intersegment)
Via call gate to same privilege level 41+m* 8,9,11,12
Via TSS 178+m* 8,9,11,12
Via task gate 183+m* 8,9,11,12
RET = Return from CALL:
Within segment 11000011 11+m t1+m 2 8,9
Within seg adding immed to SP 11000010 datadow | datahigh | 11+m 114m 2 8,9
Intersegment 11001011 15+m 25+m 2 |8,9,11,12
Intersegment adding immediateto SP| 11001010 data-low I data-high] 15+m 2 18,9,11,12
Protected Mode Only {RET):
To different privilege level 55+m
JEAJZ = Jump on equal zero ro 11101 00] disp l 7+mor3 | 7+mor3 8
JUWJINGE =
Jump on less not greater or equal [0111110 ol disp] 7+mor3 7+mor3 8
JLEWING =
Jump on less or equal not greater [01111110 I disp] 7+mor3 7+mor3 8
JBAINAE=
Jump on below not above or equal [01110010 l disp I 7+mor3 | 7+mor3 8
JBE/JNA =
Jump on below or equal not above 01110110 disp 7+mor 3 7+mor3 8
JP/JPE = Jump on parity/parity even 01111010 disp 7+mor3 7+mor3 8
JO = Jump on overflow 01110000 disp 7+mor3 7+mor3 8
JS =Jump on sign 01111000 disp 7+4mor3 7+mor3 8
JNE/JNZ =
Jump on not equal not zera [01110101 l disp] 7+4mor3 7+mor3 8
JNLAIGE =
Jump on not less greater or equal I 01111101 | disp J 7+mor3 7+mor3 8
JNLENVG =
Jump on not less or equal greater [o1111111 I disp l 7+mor3 7+mor3 8
JNBIJAE =
Jump on not below above or equal [01110011 l disp] 7+mor3 | 7+mor3 8
JNBE/JA =
Jump on not below or equal above 01110111 disp 7+mor3 7+mor3 8
JNP/JPO = Jump on not par/par odd 01111011 disp 7+mor3 7+mor3 8
JNO = Jump on not overflow 01110001 disp 7+meor3 7+mor3 8
JNS = Jump on not sign 01111001 disp 7+mor3 7+mor3 8
LOOP = Loop CX Times 11100010 disp 8+mor4 | 8+mord 8
LOOPZ/LOOPE =
Loop while zero equal [11100001 l disp J 8+mord4 | 8+mord 8
LOOPNZ/LOOPNE =
Loop while not zerc equal 11100000 disp 8+mor4 8+mord 8
JCXZ =Jump on CX zero 11100011 disp 8+mord4 | 8+mord 8
ENTER = Enter Procedure 11601000 data-low data-high] L
L=0 S L ; G fon 11 11 2 9
L=1 Sl ; - : 15§ - 15 2 9
Lat S LT 16-40-1)° 2 9
LEAVE:=LoaveProcedure | 11001001] 5 512 9
Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 62.
80286 59

This Material Copyrighted By Its Respective Manufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Address Address Address Address
Function Format Mode Mode Mode Mode
CONTROL TRANSFER (Continued):
INT = Interrupt:
Type specified 11001101 type I 23+m 2
Type 3 11001100 23+m 2
INTO = Interrupt on overflow 11001110 24-mor3| 24—or3 2
(3if no) (3if no)

(Interrupt) | (Interrupt)
Protected Mode Only:

Via interrupt or trap gate to same privilege level 404+ m 8,11,12
Via interrupt or trap gate to fit different privilege level 78+m 8,11,12
Via Task Gate 167+m 8,11,12
IRET = Interrupt return 11001111 17+m 31+m 24 89,11,
12,15
Protected Mode Only:
To different privilege level 55+m 8,9,11,
12,15
To different task (NT =1) 169+m | 89,11,12
BOUND = Detect value-out of range ﬁmaco:,o‘ modregum | oo g 18l 2e |
g ind X N . i 2 g g p (ossinT] :
clack count
if excep-|
tion 6)
PROCESSOR CONTROL
CLC =Clear carry 11111000 2 2
CMC = Complement carry 1111010+% 2 2
STC =Set carry 11111001 2 2
CLD = Clear direction 11111100 2 2
STD =Set direction 11111101 2 2
CLI=Clear interrupt 1111101¢C 3 3 14
STl = Set interrupt 1111101 ¢ 2 2 14
HLT =Halt 11110100 2 2 13
WAIT = Wait 1001101 1 3 3
LOCK =Bus lock prefix 11110000 0 0 14
CTS=Cleartask switched flag -~ © 1 0000141} 00000110 7 o o2 e 2# 8 b8
ESC = Processor Extension Escape 10011TTT mod LLL r/m I 920 9-20° 5 17
(TTT LL are opcode to processor extension)
SEG =Segment override prefix reg 0 0

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 62.

60 80286

This Material Copyrighted By Its Respective Manufacturer

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments

Protected Protected
Virtual Real Virtuet

Mode | Mode | Mode | Mode

Function Format

s | 013

S e

| s1s

R TR IRY)

,‘9

s leas

leit,48

3 1913
9 -

9,16

| oe

| a6

| a6

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 62.

80286 61

This Material Copyrighted By Its Respective Manufacturer

This Materi al

Footnotes

The effective Address {EA) of the memory operand is
computed according to the mod and r/m fields:

if mod =11 then r/m is treated as a REG field

if mod =00 then DISP =0", disp-low and disp-high are
absent

if mod=01 then DISP =disp-low sign-extended to 16
bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low
if /m=000 then EA = (BX) +(SI) + DISP

if /m =001 then EA = (BX) +(D!) + DISP

if /m=010 then EA = (BP) +(Sl) + DISP

if /m =011 then EA=(BP) + (DI) + DISP

if /m=100 then EA=(S!) + DISP

if ym=101 then EA = (DI} + DISP

if ym=110 then EA=(BP) + DISP*

if yfm=111 then EA=(BX) +DISP

DISP follows 2nd byte of instruction (before data if re-
quired)

*except if mod=00 and /m=110 then EA=disp-high:
disp-low.

SEGMENT OVERRIDE PREFIX
[001reg110]
REG is assigned according to the following:

Segment

REG Register
00 ES
01 Cs
10 SS
11 DS

REG is assigned according to the following table:

16-Bit (w=1) 8-Bit (W=0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op-
erands of the string primitive operations (those ad-
dressed by the DI register) are computed using the ES
segment, which may not be overridden.

62 80286

Copyrighted By Its Respective Mnufacturer

PHYSICAL DIMENSIONS*
CA2068

Ry
f
#

5

Eﬁ—-i -

]

b
A

I [

(J I L mre [
oobo

|
___‘,___;+_____h___

|

|
1 ! R o

*For reference only. All dimensions are measured in inches. BSC is an ANSI standard for Basic Space Centering.

80286

This Material Copyrighted By Its Respective Manufacturer

63

PHYSICAL DIMENSIONS (continued)

BOTTOM VIEW
{Pins facing up)
Base Plane
1.140
- 075 x 45° REF. 180 Seatng Plane =
in 1 (Reference Corner) fa— 1.000 BSC.
025
B CDEF GHUJI KL ‘_m
' eoodoeoe +
2| coecocdooce f
B X ! e D7 e
| oo /// ®0e v 0]
1.140 5] @@ ®e ——
BT &o -- == ._
sc 7| @@ LX) 080
| @@ / / LX) ves [*— 7%
o] @@ | ee o585 —
ALY BECX NoRCNONONCRONCY =
114 ﬂ@@@@@@?T ¥
030 w/REF _.’ I‘_ 00 8¢
(3 PLACES) 080 :_33 PID # 07547C
‘980
9% f—
64 80286

This Material Copyrighted By Its Respective Manufacturer

PHYSICAL DIMENSIONS (continued)
PLO68

|
p
p
1]
p
A
b
b
p
o}
a]
g
p
1]
1]
p
p
J
X
%

T

TRARRARRARAARA

Lo o L o T L L L

]

]
COTTTOUCTUTOUOTOUOW

.

-5
0oy
_'&

f ‘x

o

80286

This Material Copyrighted By Its Respective Manufacturer

This Materi al

Sales Offices

North American

ALABAMA(205) 882-9122
ARIZONA ..(602) 242-4400
CALIFORNIA,
Culver City ..(213) 645-1524
Newport Beach ..(714) 752-6262
Rosaeville(916) 786-6700
San Diego ..(619) 560-7030
San Jose....

..(408) 452-0500
Woodland Hills. . 992-4155
CANADA Ontario,
..(613) 592-0060
Wlllowdale

..(416) 224-5193

COLORADO ... $303) 741-2900
CONNECTICU ..(203) 264-7800
FLORIDA,

Clearwater{813) 530-9971

Ft. Lauderdale(305) 776-2001

Orlando(407) 830-8100
GEORGIA(404) 449-7920
ILLINOIS,

Chicago .(312) 773-4422

Naperville ..(312) 505-9517
KANSAS (913) 451-3115
MARYLAND .. (301) 796-9310
MASSACHUSETTS. (617) 273-3970

NEW JERSEY,
Cherry Hill ..5609) 662-2900
Parsippany(201) 299-0002
NEW YORK,
Liverpool ..(315) 457-5400
Paughkeepsie .. 914) 471-8180

Rochester ..
NORTH CAROLINA.
OHIO,

Columbus...

Dayton..

~(716) 272-9020
..(919) 878-8111

..(614) 891-6455
1 (513) 439-0470
..5503) 245-0080
" (215) 398-8006
. (803) 772-6760

SOUTH CAROLINA .

TEXA
Austin ..(512) 346-7830
Dallas 934-9099
Houston ... 785-9001
international
BELGIUM, Bruxelles TEL (02) 771-91-42
FAX (02) 762-37-12
TLX846-61028
FRANCE, Paris TEL . 49-75-10-10
FAX ..{(1) 49-75-10-13
TLX 263282

WEST GERMANY,
Hannover area............ ...{0511) 736085

(0511) 721254

Minchencccooeeeee (089) 4114-0
(0BY) 406490
............. 523883
Stuttgart...........c......... TEL. (071 12 62 3377
FAX .(0711) 625187

TLX e 7218
HONG KONG TEL 852-5-8654525
FAX ...852-5-8654335
TLX 67955AMDAPHX
ITALY, Milan ... TEL ...(02) 3390541
(02) 3533241
FAX (02) 3498000
TLX 843-315286

JAPAN,

Kanagawa..........ceceeu. TEL462-47-2911
FAX .462-47-1729
Tokyo oo TEL .(03) 345-8241

.(03) 342-5196
.J24064AMDTKOJ
....06-243-3250
...06-243-3253

International (Commued)

KOREA, Seoul TEL822-784-0030
FAX ...822-784-8014

LATIN AMERICA,
Ft. Lauderdale............. TEL.... (305) 484-8600
FAX . 305) 485-9736
TEL 5109554261 AMDFTL

NORWAY, Hovik............ TEL ...(03) 010156
(02) 591959
9079

SINGAPORE65-3481188
..65-3480161
55650 AMDMMI

SWEDEN,
Stockhoim (0B) 733 03 50
FAX. (0B) 733 22 85
TLX. .. 11602
TAIWAN .. TEL . 213393

886-2-7122066
..8B6-2-7723422

...(0925) 828008
(0925) 827693

TLX e e 851-628524
London area TEL .

UNITED KINGDOM,
Manchester area......... "l:'EL

North American Representanves
CANADA

Burnaby, B.C.

DAVETEK MARKETING ..., (604) 430-3680
Callgary, Alberta

TEK MARKETING (403) 291-4984

Kanata, Onta

VITEL ELECTRONICS ...{613) 592-0060
Mississauga, Ontario

VITEL ELECTRONICS ..o (416) 676-9720
Lachine, Quebec

VITEL ELECTRONICS ..o (514) 636-5951
IDAHO
ILLIINTERMOUNTAIN TECH MKTGccccenee {208) 888-6071

|Nl;-llEARTLAND TECHNICAL MARKETING{(312) 577-9222
Huntington - INDIANAPOL!IS ELECTRONIC
O‘R,A:RK TING CONSULTANTS, INC. ..{317) 921-3450
LORENZ SALESccooiiiici {319) 377-4666
KANSAS
Merriam - LORENZ SALES .. (913) 384-6556
Wichila —LORENZ SALES.... {316) 721-0500
KENTUCK
ELECTRONIC MARKETING
CONSULTANTS, INC .
MICHIGAN
Birmingham - MIKE RAICK ASSOCIATES .. (313; 644-5040
Holland — COM-TEK SALES, INC (618) 399-7273
Novi - COM-TEK SALES, INC (313) 344-1409
MISSOURI

..(317) 921-3452

LORENZ SALES ... (314) 997-4558

NEBRASKA
LORENZ SALES{402) 475-4660

NEW MEXICO,

NE‘\II'VHS?RSON DESERT STATES ..o {505) 293-8555
East Syracuse — NYCOM, INC (315) 437-8343
Woodbury —- COMPONENT

OH(IlgNSUL ANTS, INC . e (D 168) 364-8020

Centerville - DOLFUSS ROCT & CO..
Columbus — DOLFUSS ROOT & CO
Strongsville - DOLFUSS ROOT & CO.

PENNSYLVANIA
DOLFUSS ROOT & CO ..o {412) 221-4420

(513) 433-6776
.{614) 885-4844
.{218) 23B-0300

PUERTO RICO
COMP, REP. ASSOCIATES . (809) 746-6550
UTAH, R? MARKETING .. {801) 595-0631
WASHINGTON
ELECTRA TECHNICAL SALES......oo....... (206) 821-7442
WISCONSIN

HEARTLAND TECHNICAL MARKETING.....(414) 792-0920

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For spedific testing details,
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

Tel: {408) 732-2400 + TWX: 910-339-9280 - TELEX: 34-6306 « TOLL FREE: {800) 538-8450

ﬂ Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA
‘ - (408) 749'57cﬁOV 2 5 1001
a8 3

APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323

© 1989 Advanced Micro Devices, Inc.
5/16/89
Printed in USA

Copyrighted By Its Respective Mnufacturer

