1. Features

- Support 4-port integrated physical layer and transceiver for 10Base-T and 100Base-TX.
- One port supports 100Base-FX.
- Fully compliant with IEEE 802.3/802.3u.
- Support RMII (Reduced MII) interface.
- Low power consumption at 3.3 V operating voltage.
- Support three Power reduction ways:
- Power saving mode (cable detection).
- Power down mode.
- Selectable additional power reduction by 1.25:1 transformer on transmit side.
filters.
- IEEE 802.3u compliant auto-negotiation for full 10/100 Mbps control.
- Hardware controlled 10/100, Full/Half duplex, Flow control advertisement ability.
- Reversible PHY address.
- Power-on auto reset function eliminates the need for any external reset circuits.
- LEDs blinking for diagnostics on power-on.
- 100 -pin PQFP.
- $0.35 \mathrm{um}, 3.3 \mathrm{~V}$ CMOS technology.
- On-chip filtering eliminates the need for external

2. General Description

The RTL8204 is a highly integrated 3.3 V low power, 4 port, 10Base-T/100Base-TX/FX, Ethernet transceiver implemented in 0.35 um CMOS technology. Flexible hardware settings are provided to configure the various operating modes of RTL8204. The RTL8204 consists of 4 separate and independent channels. Each channel consists of 4B5B encoder/decoder, Manchester encoder/decoder, scrambler/descrambler, transmit output driver, output wave shaping, filters, digital adaptive equalizer, PLL circuit and DC restoration circuit for clock/data recovery, and RMII interface to MAC controller. Moreover, RTL8204 is featured by very low power consumption, as low as 1.6 W (max.) is achieved. Further power reduction can be done via a 1.25:1 transformer on the transmit side with power down to 1.28 W (max.). For ease of system design, only one external clock source is needed when operating with Realtek 8 -port switch controller, RTL8308, to produce a high performance switch system. Additionally, optimized pinouts are taken such that direct routing can be implemented, which simplifies the layout work and also gain EMI noise reduction. Also, on-chip filtering and waveshaping circuit eliminate the need for many components around.

Revision	Date	Change
1.00	$04 / 20 / 2000$	Original document.
1.01	$05 / 08 / 2000$	First SMI read/write cycle after power-on reset. P.7 and P.15..
1.02	$05 / 12 / 2000$	Power-on VCC rising time to complete auto-reset. P.6. Reset description in details. P.12.
1.03	$05 / 29 / 2000$	Add 100Base-FX features. P.4,5,6,7,9,11,13,14,19. Add pull high 3.3V in application circuits. P.17,18.
1.04	$07 / 05 / 2000$	MII Reg.1 Bit1=1. P.10
1.05	$07 / 20 / 2000$	Remove figure descriptions. P.17,18,19.
1.06	$08 / 03 / 2000$	Operating temperature -> Ambient Operating temperature. P.20

3. Block Diagram

4. Pin Assignments

'I' stands for inputs; 'O' stands for outputs; 'A' stands for analog; 'D' stands for digital

PIN NAME	PIN\#	TYPE	PIN NAME	PIN\#	TYPE
RXIN[A],	1,	AI	TXD[0][D],	51	I
RXIPA],	2,	AI	DGND,	52,	DGND
AGND,	3,	AGND	TXE[D],	53,	I

REALTEK Semiconductor Corp.

AGND,	4,	AGND	DVDD,	54,	DVDD
TXOP[A],	5,	AO	RXD[1][C],	55,	O
TXON[A],	6,	AO	RXD[0][C],	56,	O
AVDD,	7,	AVDD	RXER[C],	57,	I/O
AVDD,	8,	AVDD	CRSDV[C],	58,	O
TXON[B],	9,	AO	DGND,	59,	DGND
TXOP[B],	10,	AO	TXD[1][C],	60,	I
AGND,	11,	AGND	TXD[0][C],	61,	I
AGND,	12,	AGND	DVDD,	62,	DVDD
RXIP[B],	13,	AI	TXE[C],	63 ,	I
RXIN[B],	14,	AI	MDIO,	64,	I/O
AVDD,	15,	AVDD	MDC,	65,	I
AVDD,	16,	AVDD	REFCLK,	66,	I
RXIN[C].	17,	AI	DVDD,	67,	DVDD
RXIP[C],	18,	AI	RXD[1][B],	68,	O
AGND,	19,	AGND	RXD[0][B],	69,	O
AGND,	20,	AGND	RXER[B],	70,	I/O
TXOP[C],	21,	AO	CRSDV[B],	71,	O
TXON[C],	22,	AO	DGND,	72,	DGND
AVDD,	23,	AVDD	DGND,	73,	DGND
AVDD,	24,	AVDD	TXD[1][B],	74,	I
TXON[D],	25,	AO	TXD[0][B],	75,	I
TXOP[D],	26,	AO	TXE[B],	76,	I
AGND,	27,	AGND	DVDD,	77,	DVDD
AGND,	28,	AGND	RXD[1][A],	78,	O
RXIP[D],	29,	AI	RXD[0][A],	79	O
RXIN[D],	30,	AI	DVDD,	80,	DVDD
AVDD,	31,	AVDD	RXER[A],	81,	O
SDP[D],	32,	AI/O	CRSDV[A],	82,	O
SDN[D],	33,	AI/O	DGND,	83,	DGND
FXRP[D],	34,	AI/O	TXD[1][A],	84,	I
FXRN[D],	35,	AI/O	TXD[0][A],	85,	I
FXTP[D],	36,	AO	TXE[A],	86,	I
FXTN[D],	37,	AO	DGND,	87,	DGND
DPX[D],	38,	I/O	DPX[B]/PHYAD[4],	88,	I/O
ACT[D]/ANEG,	39,	I/O	ACT[B]/PHYAD[3],	89,	I/O
SPD[D]/TEST\#,	40,	I/O	SPD[B]/PHYAD[2],	90,	I/O
DPX[C]/DPLX,	41,	I/O	DPX[A]/FX_DIS,	91,	I/O
ACT[C]/PAUSE,	42,	I/O	ACT[A],	92,	I/O
SPD[C]/FORCE100,	43,	I/O	SPD[A],	93,	I/O
DVDD,	44,	DVDD	RESERVED,	94,	I/O
RXD[1][D],	45,	O	RESET\#,	95,	I
RXD[0][D],	46,	O	AGND,	96,	AGND
RXER[D]/PHYAD_RV\#	47,	I/O	IBREF,	97,	AI/O
CRSDV[D],	48,	O	AVDD,	98,	AVDD
DGND,	49,	DGND	AVDD,	99,	AVDD
TXD[1][D],	50,	I	AVDD	100	AVDD

5. Pin Descriptions

'I' stands for inputs
'O' stands for outputs
'A' stands for analog signal

PIN NAME	Pin	TYPE	DESCRIPTION
RXIP[A], RXIN[A]	2,1	AI	Differential Receive Data Input
RXIP[B], RXIN[B]	13,14		
RXIP[C], RXIN[C]	18,17		
RXIP[D], RXIN[D]	29,30		
TXOP[A], TXON[A]	5,6	AO	Differential Transmit Data Output
TXOP[B], TXON[B]	10,9		
TXOP[C], TXON[C]	21,22		
TXOP[D], TXON[D]	26,25		
FXRP[D],FXRN[D],	34,35	AI	Differential Receive Data Input for 100Base-FX. (port D) Differential Transmit Data Output for 100Base-FX. (port D)
FXTP[D],FXTN[D]	36,37	AO	AI
SDP[D],SDN[D]	32,33	AI	Signal Detect Input. (port D). When signal quality is good, SDP pin should be driven high relative to SDN pin.

Power and Ground Pins

PIN NAME	Pin	TYPE	DESCRIPTION
AVDD	$7,8,15$	P	3.3 V power supply for Analog circuit
	16,23		
	24,31,		
	98,99,		
	100		
AGND	$3,4,11$,	G	Ground for Analog circuit
	12,19,		
	20,27,		
	28,96		
DVDD	44,54,	P	Digital 3.3V power supply
	62,67,		
	77,80		
DGND	49,52,	G	Digital ground
	59,72,		
	73,83,		
	87		

Miscellaneous Pins

| PIN NAME | Pin | TYPE | DESCRIPTION |
| :--- | :--- | :---: | :--- | :--- |
| RESET\# | 95 | I | Reset Active low. To complete reset function, this pin must be
 asserted for at least 10ms. (default to high)
 While floating reset pin, the internal power-on auto reset function
 can reset chip completely instead. To guarantee auto-reset successful,
 the time for power-on VCC rising from 0V to 2V should be at least
 1ms. |
| REFCLK | 66 | I | $\mathbf{5 0 ~ M H z ~ 1 0 0 p p m ~ R e f e r e n c e ~ C l o c k ~ I n p u t ~}$ |
| IBREF | 97 | A | Reference Bias Resistor. Must be tied to analog ground through an
 external 1.96K resistor.
 For additional power reduction, use a 2.45 K Ω resistor. instead. Refer
 to Additional Power Reduction section for more details. |

RMII pins

PIN NAME	Pin	TYPE	DESCRIPTION	
TXD[1:0][A]	84,85	I	Transmit Data Input. The MAC will source TXD[1:0][n]	
TXD[1:0][B]	74,75		synchronous to REFCLK when the corresponding TXE[n] is	
TXD[1:0][C]	60,61		asserted.	
TXD[1:0][D]	50,51			
TXE[A:D]	86,76,	I	Transmit Enable. TXE[n] is asserted high by MAC to indicate	
	63,53		valid data on TXD[1:0][n]	
RXD[1:0][A]	78,79	O	Receive Data Output. RTL8204 will source RXD[1:0][n]	
RXD[1:0][B]	68,69		synchronous to REFCLK when the corresponding CRSDV[n] is	

RXD[1:0][C]	55,56		
RXD[1:0][D]	45,46		asserted. (default to low)
CRSDV[A:D]	82,71,	O	Carrier Sense and Receive Data Valid (default to low)
RXER[A:D]	58,48		O
Receive Error [A:D] Assert high when receive symbol error occurs. The corresponding port RXD[1:0][n] will be 2'b2, while RXER[n] is set. (default to low)			

SMI(Serial Management Interface) pins

PIN NAME	Pin	TYPE	DESCRIPTION
MDIO	64	I/O	Management Data I/O. Bi-directional data interface. 1.5K Ω pull- up resistor required. (as specified in IEEE802.3u) (default to high) The MAC controller should delayed at least 700us to access MII registers of RTL8204 after the end of reset because of the internal reset operation of RTL8204.
MDC	65	I	Management Data Clock. 0 to 25MHz clock sourced by MAC to sample MDIO. (default to high) The MAC controller should delayed at least 700us to access MII registers of RTL8204 after the end of reset because of the internal reset operation of RTL8204.

LED pins (LEDs activate as active high or low depending on mode pins. Refer to LED configuration section)

PIN NAME	Pin	TYPE	DESCRIPTION
DPX[A]	91	I/O	Port [n] Duplex/Collision LED: Active state indicates Full Duplex
DPX[B]	88		or Collision in Half Duplex mode
DPX[C]	41		In 10Base-T, Collision LED blinks while Jabber happens.
DPX[D]	38		
ACT[A]	92	I/O	Port [n] Activity/Link LED: Active state indicates a valid link.
ACT[B]	89		When there is receive or transmit activity, LED will toggle between
ACT[C]	42		high and low.
ACT[D]	39		
SPD[A]	93	I/O	Port [n] Speed LED: Active state indicates 100Base-TX mode.
SPD[B]	90		
SPD[C]	43		
SPD[D]	40		

Mode pins

PIN NAME	Pin	TYPE	DESCRIPTION
FX_DIS	91	I/O	FX_DIS (FX Mode): Pulled low upon reset will put Port[D] in 100Base-FX mode. (default is high)
PHYAD[4] PHYAD[3] PHYAD[2]	88 PHY Address. These 3 bits determine the highest 3 bits of 5-bit PHY address upon reset. Refer to Pin 47 PHYAD_RV\# setting.		
PHYAD_RV\#	I/O	I/O PH	PHY Address Reverse Mode: This pin is used to set PHY addresses sequence upon reset. When low, the PHY addresses are assigned internally to port[A:D] as (XXX)11, (XXX)10, (XXX)01, (XXX)00.
When high, the PHY address is assigned as (XXX)00, (XXX)01, (XXX)10, (XXX)11. Where (XXX) is PHYAD[4:2] (default is high)			
FORCE100	47	I/O	FORCE100: Force 100Base-TX Operation. Upon reset, this pin sets Reg.0.13 if ANEG is low. When this pin is pulled high and ANEG is low upon reset, all ports will be forced to 100Base-TX operation. When pulled low and ANEG is low all ports are forced to

			10Base-T operation. When ANEG is high, FORCE100 has no effect on operation. (default is high)
PAUSE	42	I/O	PAUSE: Upon reset, this pin sets Reg.4.10. It is used to advertise auto-negotiation link partner that the MAC sublayer has pause/flow control capability when set in full duplex mode. (default is high)
DPLX	41	I/O	DPLX: Force Full Duplex Mode Enable. Upon reset, this pin sets the default values of Reg.0.8 if ANEG is low. (default is high) On reset, this pin also sets Nway full-duplex ability on Reg.4.8 and Reg.4.6.
TEST\#	40	I/O	TEST\#: When low, the RTL8204 is configured as test mode. When high, it is in normal mode. This pin is reserved for internal testing only. (default is high)
ANEG	39	I/O	ANEG: Auto-Negotiation Enable. Upon reset, this pin sets Reg.0.12. Asserted high means auto-negotiation enable while low means manual selection through DPLX and FORCE100 pins. (default is high)

Reserved pins

PIN NAME	Pin	TYPE	DESCRIPTION
Reserved	94		Reserved for internal use. Must be floating.

6. Registers Description

The first six registers of the MII registers are defined by the MII specification. Other registers are defined by Realtek Semiconductor Corp. for internal use and reserved for specific use.

Register	Description	Default
0	Control Register	
1	Status Register	
2	PHY Identifier 1 Register	
3	PHY Identifier 2 Register	
4	Auto-Negotiation Advertisement Register	
5	Auto-Negotiation Link Partner Ability Register	

RO: Read Only
RW:Read/Write
LL: Latch Low until clear
LH: Latch High until clear
SC: Self Clearing

Register0 : Control Register

Reg.bit	Name	Description	Mode	Default
0.15	Reset	1=PHY reset. This bit is self-clearing.	RW/SC	0
0.14	Loopback	1=Enable loopback. This will loopback TXD to RXD and ignore all the activities on the cable media. Loopback mode is only valid for 10Base-T. 0=Normal operation.	0	
0.13	Spd_Sel	Speed select: 1=100Mbps $0=10 \mathrm{Mbps}$ When Nway is enabled, this bit reflects the result of auto- negotiation. (Read only) When Nway is disabled, this bit can be set by FORCE100 (pin43) or SMI*. (Read/Write) For port[D], when 100FX mode is enabled by pulling FX_DIS (pin91) low, this bit $=1$ regardless of Nway is enabled or not. (Read only)	RW	Set by FORCE100 (pin 43) or

0.12	Auto Negotiation Enable	1 = Enable auto-negotiation process. $0=$ disable auto-negotiation process. This bit can be set by ANEG (pin39) or SMI.(Read/Write) For port[D], when 100FX mode is enabled by pulling FX_DIS (pin91) low, this bit $=0$ regardless of ANEG (pin39) is pulled high or low. (Read only)	RW	Set by ANEG (pin 39) or 0 for 100FX
0.11	Power Down	1=Power down. All functions will be disabled except SMI function. $0=$ Normal operation.	RW	0
0.10	Isolate	1 = Electrically isolate the PHY from RMII. PHY is still able to response to MDC/MDIO. $0=$ Normal operation	RW	0
0.9	Restart Auto Negotiation	1=Restart Auto-Negotiation process. $0=$ Normal operation.	RW/SC	0
0.8	Duplex Mode	Duplex mode: 1=Full duplex operation. $0=$ Half duplex operation. When Nway is enabled, this bit reflects the result of autonegotiation. (Read only) When Nway is disabled or 100FX enabled (port[D] only), this bit can be set by DPLX (pin42) or SMI. (Read/Write).	RW	Set by DPLX (pin 41)
0.[7:0]	Reserved			0

*SMI : Serial Management Interface, which is composed of MDC,MDIO, allows MAC to manage PHY.

Register1: Status Register

Reg.bit	Name	Description	Mode	Default
1.15	100Base_T4	$0=$ no 100Base-T4 capability.	RO	0
1.14	100Base_TX_FD	1=100Base-TX full duplex capable. $0=$ not 100Base-TX full duplex capable.	RO	1
1.13	100Base_TX_HD	1=100Base-TX half duplex capable. $0=$ not 100Base-TX half duplex capable.	RO	1
1.12	10Base_T_FD	1=10Base-TX full duplex capable. $0=$ not 10Base-TX full duplex capable.	RO	1
1.11	10Base_T_HD	1=10Base-TX half duplex capable. $0=$ not $10 \mathrm{Base}-\mathrm{TX}$ half duplex capable.	RO	1
1.[10:7]	Reserved		RO	0
1.6	MF Preamble Suppression	RTL8204 will accept management frames with preamble suppressed. RTL8204 accepts management frame without preamble. Minimum of 32 preamble bits are required for the first SMI read/write transaction after reset. One idle bit is required between any two management transactions as IEEE802.3u spec defined.	RO	1
1.5	Auto-negotiate Complete	1=Auto-negotiation process completed. Reg.4,5 are valid if this bit is set. $0=$ Auto-negotiation process not completed.	RO	0
1.4	Remote Fault	1=Remote fault condition detected. $0=$ No remote fault. (When in 100FX mode for port[D], this bit means in-band signal Far-End-Fault is detected. Refer to FX MODE section)	RO/LH	0
1.3	Auto-Negotiation Ability	1=Nway auto-negotiation capable. (permanently =1) $0=$ Without Nway auto-negotiation capability.	RO	1
1.2	Link Status	$1=$ Link is established. If link had ever failed, this bit will be 0 until after reading this bit again.. $0=$ Link is failed.	RO/LL	0
1.1	Jabber Detect	1=Jabber detected. $0=$ No Jabber detected.	RO/LH	0

REALTEK Semiconductor Corp.

		The jabber function is disabled in the 100Base-X. Jabber occurs when a predefined excessive long packet is detected for 10Base-T. When the duration of TXEN exceeds the jabber timer (60ms), the transmit and loopback functions will be disabled and COL LED starts blinking. After TXEN goes low for more than 60 ms, the transmitter will be re- enabled and COL LED stops blinking.. Jabber is supported only in 10Base-T.		
1.0	Extended Capability	1=Extended register capable. 0=Not extended register capable. (permanently =1)	RO	1

Register2: PHY Identifier 1 Register

Reg.bit	Name	Description	Mode	Default
$2 .[15: 0]$	OUI	Composed of the $3^{\text {rd }}$ to $18^{\text {th }}$ bits of the Organizationally Unique Identifier (OUI), respectively.	RO	001 C h

Register3: PHY Identifier 2 Register

Reg.bit	Name	Description	Mode	Default
$3 .[15: 10]$	OUI	Assigned to the $19^{\text {th }}$ through 24 ${ }^{\text {th }}$ bits of the OUI.	RO	110010 b
$3 .[9: 4]$	Model Number	Manufacturer's model number 04.	RO	000100 b
$3 .[3: 0]$	Revision Number	Manufacturer's revision number 01.	RO	0001 b

Register4 : Auto-Negotiation Advertisement Register

Reg.bit	Name	Description	Mode	Default
4.15	Next Page	1=Next Page enabled. $0=$ Next Page disabled. (Permanently $=0$)	RO	0
4.14	Acknowledge	Permanently $=0$.	RO	0
4.13	Remote Fault	1=Advertises that RTL8204 has detected a remote fault. $0=$ No remote fault detected.	RW	0
4.[12:11]	Reserved		RO	0
4.10	Pause	1=Advertises that RTL8204 has flow control capability. $0=$ Without flow control capability.	RW	Set by PAUSE (pin 42)
4.9	100Base-T4	Technology not supported. (Permanently $=0$)	RO	0
4.8	100Base-TX-FD	1=100Base-TX full duplex capable. $0=$ Not 100 Base-TX full duplex capable.	RW	Set by DPLX (pin 41)
4.7	100Base-TX	1=100Base-TX half duplex capable. $0=$ Not 100Base-TX half duplex capable.	RW	1
4.6	10Base-T-FD	1=10Base-TX full duplex capable. $0=$ Not 10Base-TX full duplex capable.	RW	Set by DPLX (pin 41)
4.5	10Base-T	1=10Base-TX half duplex capable. $0=$ Not 10Base-TX half duplex capable.	RW	1
4.[4:0]	Selector Field	[00001]=IEEE802.3	RO	00001

Register5 : Auto-Negotiation Link Partner Ability Register

Reg.bit	Name	Description	Mode	Default
5.15	Next Page	1=Link partner desires Next Page transfer. 0=Link partner does not desire Next Page transfer.	RO	0
5.14	Acknowledge	1=Link Partner acknowledges reception of FLP words. 0=Not acknowledged by Link Partner.	RO	0
5.13	Remote Fault	$1=$ Remote Fault indicated by Link Partner. 0=No remote fault indicated by Link Partner.	RO	0
$5.12-11$	Reserved	Pause	1=Flow control supported by Link Partner. 0=No flow control supported by Link Partner.	RO
5.10		RO	0	

5.9	100Base-T4	1=100Base-T4 supported by Link Partner. $0=100$ Base-T4 not supported by Link Partner.	RO	0
5.8	100Base-TX-FD	1=100Base-TX full duplex supported by Link Partner. $0=100$ Base-TX full duplex not supported by Link Partner. For port[D] 100FX mode, this bit is set when Reg.0.8=1. When Nway disabled, this bit is set when Reg.0.13=1, and Reg.0.8=1.	RO	0
5.7	100Base-TX	1=100Base-TX half duplex supported by Link Partner. $0=100$ Base-TX half duplex not supported by Link Partner. For port[D] 100FX mode, this bit is set when Reg.0.8=0. When Nway disabled, this bit is set when Reg.0.13=1,and Reg.0.8=0.	RO	0
5.6	10Base-T-FD	1=10Base-TX full duplex supported by Link Partner. $0=10$ Base-TX full duplex not supported by Link Partner. When Nway disabled, this bit is set when Reg.0.13=0,and Reg.0.8=1.	RO	0
5.5	10Base-T	1=10Base-TX half duplex supported by Link Partner. $0=10$ Base-TX half duplex not supported by Link Partner. When Nway disabled, this bit is set when Reg.0.13=0,and Reg.0.8=0.	RO	0
5.[4:0]	Selector Field	[00001]=IEEE802.3	RO	00001

7. Functional Description

The RTL8204 is a four-port Ethernet transceiver that supports 10 Mbps and 100 Mbps applications. Upon power-up, the RTL8204 determines its operation mode for each port. If Nway is enabled, RTL8204 uses auto-negotiation/parallel detection on each port to automatically determine line speed, duplex and flow control ability. Each port can work on 10 Mbps or 100 Mbps with full-duplex or half-duplex mode independently to others. Port[D] can also be configured for 100Base-FX.

7.1 Initialization and Setup

7.1.1 Reset

RTL8204 is initialized while into reset state. There are 3 ways to get RTL8204 into reset: power-on reset, hardware reset signal (asserted for at least 10 ms), and software reset by setting MII Reg. 0.15 bit. RTL8204 flashes all LEDs once to indicate initialization completed. All setting values for operation modes are latched from corresponding mode pins at the end of reset cycle. By floating reset pin (pin95), the internal power-on auto reset circuit can reset chip completely instead. To guarantee auto-reset successful, the time for power-on VCC rising from 0 V to 2 V should be at least 1 ms .

7.1.2 Setup and configuration

RTL8204 operation mode can be either configured by hardware mode pins or software via accessing MII registers through SMI. Refer to pin description section and register description section.
LEDs' application needs to be consistent with the pulled up/down mode pins. Refer to LEDs configuration section.

7.2 10Base-T

Through Hardware/software setting or Nway, the RTL8204 can run in 10Base-T mode with all features compatible with standards. There is no 4B/5B coding/decoding, scrambler/descrambler functions in 10Base-T.

7.2.1 Transmit Function

When TXEN is active,2-bit TXD from RMII is serialized and Manchester-encoded, driven into network medium as packet stream. The internal filter shapes the driven signals to reduce the EMI emission and thus eliminating the need for an external filter. The transmit function is disabled while link is failed or auto-negotiation proceeds.

7.2.2 Receive Function

The Manchester decoder converts the incoming serial stream when squelch circuit detects the signal level above squelch level, and serial-to-parallel logic generates 2-bit (RMII) data from the serial stream. The preamble of incoming stream is striped off and regenerated. SFD is generated into RMII RXD once the incoming SFD detected and data bits entering the elastic buffer over threshold.

7.2.3 Link Monitor

The 10Base-T link pulse detection circuit always monitors the RXIP/RXIN pins for the presence of valid link pulses. Auto-polarity is implemented for correcting the detected reverse polarity of RXIP/RXIN signal pairs.

7.2.4 Jabber

Jabber occurs when TXEN is asserted over 60 ms . Both transmit and loopback functions are disabled once jabber happens. MII Reg.1.1 (Jabber detect) bit is set high until jabber disappears and bit is read again. Jabber function is not implemented in 100Base-TX. Collision LED of the corresponding port will blink while Jabber happens. Jabber dismisses after TXEN stays low for at least 60 ms .

7.2.5 Loopback

Setting MII Reg.0.14 enables loopback mode. In loopback mode, TXD is transferred onto RXD directly with TXEN changed to CRS_DV almost. Incoming data stream from network medium is blocked in this mode. Loopback function is not implemented in 100Base-TX/FX.

7.3 100Base-TX

Through Hardware/software setting or Nway, the RTL8204 can run in 100Base-TX mode with all features compatible with industries' standards. Internal 125 MHz clock is generated by an on-chip PLL circuit to synchronize the transmit data or clock the incoming data stream.

7.3.1 Transmit Function

Upon detecting TXEN high, RTL8204 converts 2 di-bits to 5bit code-group and substitute /J/K code-groups for the first 2 code-groups, which is called SSD (Start-of-Stream-Delimiter). 4B/5B coding continues for all the data as long as TXEN asserted high. At the end of TXEN, /T/R code-groups are appended to the last data field, which will be striped off at the remote receiving side. During the inter-packet gap, where TXEN deasserted, IDLE code-groups are transmitted for the sake of clocking of the remote receiver. 5-bit serial data stream after $4 \mathrm{~B} / 5 \mathrm{~B}$ coding is then scrambled as defined by TPPMD Stream Cipher function to flatten the power spectrum energy such that EMI effect can be reduced significantly.
The scrambled seed is unique for each port based on PHY addresses. Bit stream after scrambler is driven into network medium in the form of MLT-3 signaling. The multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also benefits EMI emission. Scrambling is not implemented in 100Base-FX.

7.3.2 Receive Function

The receive path includes a receiver composed of adaptive equalizer and DC restoration circuits to compensate the incoming distortion MLT-3 signal, MLT-3 to NRZI, NRZI to NRZ converter to convert analog signal to digital bit-stream , and PLL circuit to clock data bit exactly with minimum bit error rate. De-scrambler, 5B/4B decoder and serial-toparallel conversion circuits are followed. CRS_DV is asserted no later than SSD (Start-of-Stream-Delimiter) is detected by a few bits time delayed due to the elastic buffer as mentioned in RMII section and ends toggling once the data in the elastic buffer has been dumped to RMII RXD. During CRS_DV asserted, RXD is synchronized to 50 MHz reference clock.

7.4 100Base-FX

Port[D] can be configured as 100Base-FX either through hardware configuration or software configuration. For port[D], the priority of setting 100FX is greater than Nway. Scrambler is not needed in 100Base-FX.

7.4.1 Transmit function

In 100Base-FX transmit, di-bits of TXD is processed as 100Base-TX except without scrambler before NRZI stage. Instead of converting to MLT-3 signals as in 100Base-TX, serial data stream is driven out as NRZI PECL signals, which enters fiber transceiver in differential-pairs form. Fiber transceiver should be available working at 3.3 V environment. Refer to fiber application section.

PECL DC characteristics

Parameter	Symbol	Min	Max	Unit
PECL Input High Voltage	Vih	Vdd-1.16	Vdd-0.88	V
PECL Input Low Voltage	Vil	Vdd-1.81	Vdd-1.47	V
PECL Output High Voltage	Voh	Vdd-1.02		V
PECL Output Low Voltage	Vol		Vdd-1.62	V

7.4.2 Receive function

Signal is received through PECL receiver inputs from fiber transceiver, and directly passed to clock recovery circuit for

REALTEK Semiconductor Corp.

data/clock recovery. Scrambler/de-scrambler is bypassed in 100Base-FX.

7.4.3 Far-End-Fault-Indication (FEFI)

MII Reg. 1.4 (Remote Fault) is FEFI bit for port[D] when 100FX enabled, which indicates FEFI has been detected. FEFI is an alternative in-band signaling which is composed of 84 consecutive ' 1 ' followed by one ' 0 '. From RTL8204's view, once detecting 3 times this pattern, Reg.1.4 is set, which means transmit path (Remote side's receive path) gets some problems. On the other hand, to send FEFI stream pattern, 2 conditions need to be satisfied. Either no activity being received from the receive path with SDP level less than SDN level driven by fiber transceiver or the incoming signal failed in causing link OK will force RTL8204 to start sending this pattern, which in turn causes the remote side detecting Far-End-Fault. This means receive path gets some problems from RTL8204's view. The FEFI mechanism is used only in 100Base-FX.

7.5 RMII

RTL8204 meets all the RMII requirements outlined in the RMII Consortium specifications. The main advantage RMII introduced is pin count reducing; e.g., it operates at only one 50 Mhz reference clock on both TX and RX sides without separate clocks needed for Tx and Rx paths as MII interface. However, some hardware modification is needed for this change, the most important and outstanding one is the presence of an elastic buffer for absorption of the frequency difference between the reference clock of 50 Mhz and the clocking information of incoming data stream, which is not necessary for the PHY implemented with MII interface. Also, another change issues for the same cause. The MII RXDV and CRS pins are merged into one signal, CRS_DV, which is asserted high while detecting incoming packet data. Because of the timing difference between the incoming data and the output data presented on RMII RXD caused from the introducing of an elastic buffer, the internal CRS signal is deasserted maybe with CRS_DV asserting when the incoming data ends. At such condition, CRS_DV toggles at a 25 MHz rate for $100 \mathrm{Base}-\mathrm{TX}$ or 2.5 MHz for $10 \mathrm{Base}-\mathrm{T}$ (low for first di-bit of nibble, high for second, etc.) till the last data of the elastic buffer is outputted onto RMII RXD. RXD[1:0] is substituted by 2'b10 while RXER asserted.

7.5.1 SMI

SMI (Serial Management Interface) is also known as MII Management Interface, which consists of two signals, MDIO and MDC; allowing MAC controller to control and monitor the state of PHY. MDC is a clock input for PHY to latch MDIO on its rising edge. The clock can run from DC to 25 MHz . MDIO is a bi-directional connection used to write data to, or read data from PHY. The PHY address base is set by pins PHYAD[4:2] and four ports addresses of RTL8204 are internally $00,01,10.11$ or $11,10,01,00$ respectively depending on whether PHY_RV\# equals to 1 or 0 upon reset.
SMI Read/Write Cycles

	Preamble $(32$ bits $)$	Start $(2$ bits $)$	OP Code $(2$ bits $)$	PHYAD $(5$ bits $)$	REGAD $(5$ bits $)$	TrunAround $(2$ bits $)$	Data $(16$ bits $)$	Idle
Read	$1 \ldots \ldots . .1$	01	10	AAAAA	RRRRR	Z0	D.....D	Z *
Write	$1 \ldots \ldots \ldots 1$	01	01	AAAAA	RRRRR	10	D......D	Z *

*Z : high-impedance. During idle time, MDIO state is determined by an external $1.5 \mathrm{~K} \Omega$ pull-up resistor.
RTL8204 support Preamble Suppression, which allows MAC issuing Read/Write Cycles without preamble bits. However, for the first MII management cycle after power-on reset, 32-bit preamble are needed.
To guarantee the first successful SMI transaction after power-on reset, MAC should delay at least 700us to issue the first SMI Read/Write Cycle relative to the rising edge of reset.

7.6 Power Saving and Power Down mode

7.6.1 Power Saving mode

RTL8204 implements power saving mode on per port base. One port automatically enters power saving mode 10 seconds after the cable is disconncected from it regardless of whether RTL8204's operation mode is Nway or Force mode. Once one port enters power saving mode, it transmits normal link pulses only on its TXOP/TXON pins and keeps monitoring RXIP/RXIN to try to detect any incoming signals, which might be 100Base-TX MLT-3 idle pattern, 10Base-T link pulses or Nway's FLP (fast link pulses). After it detects any incoming signals, it wakes up from the power saving mode and operates in the normal mode according to the result of connection.

7.6.2 Power Down mode

Setting MII Reg.0.11 forces RTL8204's corresponding port entering power down mode, which disables all transmit/receive functions and RMII function on that port except SMI (MDC/MDIO management interface).

7.6.3 Additional Power Reduction

REALTEK Semiconductor Corp.
Additional power reduction can be gained by a 1.25:1 transformer on its TX side and using a $2.45 \mathrm{~K} \Omega$ resistor on IBREF pin. External pull-high resistors for TXOP/TXON should be changed from 50Ω to 78Ω. Refer to application section for more details. About 20% power is reduced for maximum power consumption. Both 10Base-T and 100Base-TX work well on RTL8204 for 78Ω termination resisters when using this alternative configuration.

7.7 LED configuration

All LEDs flash once for about 320 ms after power-on reset. All LEDs pins are dual function pins, which can be configured as either active high or low by pulling them low or high accordingly. If the pin is pulled high; the LED is active low after reset. Likewise, if the pin is pulled low; the LED is active high. The typical values for pull-up/down

resistors are between 1 K to $10 \mathrm{~K} \Omega$. Below shows an example to select PHYAD[4:2]=3'b010 and the circuits for LEDs.

REALTEK Semiconductor Corp.

8 Application information

8.1 10Base-T/100Base-TX Application

REALTEK Semiconductor Corp.
8.2 10Base-T/100Base-TX (Power Reduction Application)

* The fiber transceiver must work on 3.3V power supply such that it won't destroy RTL8204 while connecting together.

9 Electrical Characteristics

9.1 Absolute Maximum Ratings:

WARNING: Absolute maximum ratings are limits beyond which may cause permanent damage to the device or affect device reliability. All voltages are specified reference to GND unless otherwise specified.

Parameter	Min	Max	Units
Storage Temperature	-55	+150	${ }^{\circ} \mathrm{C}$
Vcc Supply Referenced to GND	-0.5	+4.0	V
Digital Input Voltage	-0.5	Vcc	V
DC Output Voltage	-0.5	Vcc	V

9.2 Operating Range:

Parameter	Min	Max	Units
Ambient Operating Temperature(Ta)	0	+70	${ }^{\circ} \mathrm{C}$
Vcc Supply Voltage Range(Vcc)	3.15	3.45	V

9.3 DC Characteristics $\left(0^{\circ} \mathrm{C}<\mathrm{Ta}<70^{\circ} \mathrm{C}, 3.15 \mathrm{~V}<\right.$ Vcc $\left.<3.45 \mathrm{~V}\right)$

Parameter	SYM	Conditions	Min	Typ	Max	Units
Power Supply Current for all 4 ports	Icc	10 Base-T, idle 10 Base-T, Peak continuous 100% utilization 100 Base-TX, idle 100 Base-TX, Peak continuous 100% utilization 10/100 Base-TX, low power without cable Power down		$\begin{gathered} 224 \\ 491 \\ 350 \\ 360 \\ 67 \\ 46 \end{gathered}$		mA
Power Consumption for all 4 ports	PS	10 Base-T, idle 10 Base-T, Peak continuous 100% utilization 100 Base-TX, idle 100 Base-TX, Peak continuous 100% utilization 10/100 Base-TX, low power without cable Power down		$\begin{aligned} & 0.74 \\ & 1.62 \\ & 1.15 \\ & 1.19 \\ & 0.22 \\ & 0.15 \end{aligned}$		W
TTL Input High Voltage	$\mathrm{V}_{\text {ih }}$		2.0			V
TTL Input Low Voltage	V_{il}				0.8	V
TTL Input Current	$\mathrm{I}_{\text {in }}$		-50		50	uA
TTL Input Capacitance	$\mathrm{C}_{\text {in }}$			5		pF
Output High Voltage	$\mathrm{V}_{\text {oh }}$		Vcc-0.4			V
Output Low voltage	$\mathrm{V}_{\text {ol }}$				0.4	V
LED Output Current	$\mathrm{I}_{\text {oh }}$				33	mA

Parameter	SYM	Conditions	Min	Typ	Max	Units
Output Tristate Leakage Current	$\left\|\mathrm{I}_{\mathrm{OZ}}\right\|$				10	uA
Transmitter, 100Base-TX (1:1 Transformer Ratio)						
TX+/- Output Current High	I_{OH}				40	mA
TX+/- Output Current Low	I_{OL}		0			uA
Transmitter, 10Base-T(1:1 Transformer Ratio)						
TX+/- Output Current High	I_{OH}				100	mA
TX+/- Output Current Low	I_{OL}		0			uA
Transmitter, 100Base-TX(1.25:1 Transformer Ratio)						
TX+/- Output Current High	I_{OH}				32	mA
TX+/- Output Current Low	I_{OL}		0			uA
Transmitter, 10Base-T (1.25:1 Transformer Ratio)						

9.4 AC Characteristics $\left(0^{\circ} \mathrm{C}<\mathrm{Ta}<70^{\circ} \mathrm{C}, 3.15 \mathrm{~V}<\right.$ Vcc $\left.<3.45 \mathrm{~V}\right)$

Parameter	SYM	Conditions	Min	Typ	Max	Units			
Transmitter, 100Base-TX									
Differential Output Voltage, peak-to-peak	V_{OD}	50Ω from each output to Vcc, Best-fit over 14 bit times	1.9	2.03	2.1	V			
Differential Output Voltage Symmetry	$\mathrm{v}_{\text {OS }}$	50Ω from each output to Vcc, \|Vp+		Vp-		0.99	1	1.01	\%
Differential Output Overshoot	V_{OO}	Percent of Vp+ or Vp-		3.43	5	\%			
Rise/Fall time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	10-90\% of Vp+ or Vp-	3	3.8	5	ns			
Rise/Fall time imbalance	$\left\|\mathrm{t}_{\mathrm{r}}-\mathrm{t}_{\mathrm{f}}\right\|$			200	500	ps			
Duty Cycle Distortion		Deviation from best-fit time-grid, 010101 ... Sequence		± 175	± 200	ps			
Timing jitter		Idle pattern		0.75	0.8	ns			
Transmitter, 10Base-T									
Differential Output Voltage, peak-to-peak	V_{OD}	50Ω from each output to Vcc, all pattern	4.5	5.06	5.5	V			
TP_IDL Silence Duration		Period of time from start of TP_IDL to link pulses or period of time between link pulses	13.6	15.6	16	ms			
TD Short Circuit Fault Tolerance		Peak output current on TD short circuit for 10 seconds.		152		mA			
TD Differential Output Impedance (return loss)		Return loss from 5 MHz to 10 MHz for reference resistance of 100Ω.	26		40	dB			
TD Common-Mode Output Voltage	Ecm	Terminate each end with 50Ω resistive load.		45.6	50	mV			
Transmitter Output Jitter				11.5		ns			
RD Differential Output Impedance (return loss)		Return loss from 5 MHz to 10 MHz for reference resistance of 100Ω.	35			dB			
Harmonic Content		dB below fundamental, 20 cycles of all ones data	27	28		dB			
Start-of-idle Pulse width		TP_IDL width	280		330	ns			

9.5 Digital Timing Characteristics

Parameter	SYM	Conditions	Min	Typ	Max	Units
100Base-TX Transmit System Timing						
Active TX_EN Sampled to first bit of "J on MDI output						Bits
Inactive TX_EN Sampled to first bit of "T on MDI output						Bits
TX Propagation Delay	$\mathrm{t}_{\text {TXpd }}$	From TXD[1:0] to TXOP/N				Bits
100Base-TX Receive System Timing						
First bit of "J on MDI input		From RXIP/N to CRS_DV		6	8	Bits

REALTEK Semiconductor Corp.

to CRS_DV assert						
First bit of "T on MDI input to CRS_DV de-assert		From RXIP/N to CRS_DV		16	18	Bits
RX Propagation Delay	$\mathrm{t}_{\mathrm{RXpd}}$	From RXIP/N to RXD[1:0]		15	17	Bits
10Base-T Transmit System Timing						
TX Propagation Delay	$\mathrm{t}_{\text {TXpd }}$	From TXD[1:0] to TXOP/N		5	6	Bits
TXEN to MDI output		From TXEN assert to TXOP/N		5	6	Bits
10Base-T Receive System Timing						
Carrier Sense Turn-on delay	${ }^{\text {cSON }}$	Preamble on RXIP/N to CRS_DV asserted		12		Bits
Carrier Sense Turn-off Delay	${ }^{\text {t }}$ CSOFF	TP_IDL to CRS_DV de-asserted		8	9	Bits
RX Propagation Delay	$\mathrm{t}_{\mathrm{RXpd}}$	From RXIP/N to RXD[1:0]	9		12	Bits
LED timing						
LED On Time	$\mathrm{t}_{\text {LEDon }}$	While LED blinking		43		ms
LED Off Time	$\mathrm{t}_{\text {LEDoff }}$	While LED blinking		43		ms
Jabber timing (10Base-T only)						
Jabber Active		From TXEN=1 to Jabber asserted	60	70	80	ms
Jabber de-assert		From TXEN=0 to Jabber de-asserted	60		86	ms
SMI Timing						
MDC		MDC clock rate			25	MHz
MDIO Setup Time		Write cycle	10			ns
MDIO Hold Time		Write cycle			10	ns
MDIO output delay relative to rising edge of MDC		Read cycle			15	ns

9.6 Thermal Data

Parameter	SYM	Conditions	Min	Typ	Max	Units
Thermal resistance $:$ junction to ambient, $0 \mathrm{ft} / \mathrm{s}$ airflow	$\theta \mathrm{ja}$	4 layers PCB, ambient temperature $25^{\circ} \mathrm{C}$		40.74		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance $:$ junction to case, $0 \mathrm{ft} / \mathrm{s} \mathrm{airflow}$	$\theta \mathrm{jc}$	4 layers PCB, ambient temperature $25^{\circ} \mathrm{C}$		1.00		${ }^{\circ} \mathrm{C} / \mathrm{W}$

10. 100 Pin PQFP dimension

Note:

Symbol	Dimension (mm)
A	$3.300(\mathrm{max})$
A_{1}	$0.100(\mathrm{~min})$
A_{2}	2.85 ± 0.127
b	$0.26(\min) 0.36(\mathrm{max})$
c	0.150 ± 0.008
D	14.000 ± 0.100
E	20.000 ± 0.100
e	0.650 ± 0.150
HD	17.200 ± 0.250
HE	23.200 ± 0.250
L	0.800 ± 0.150
L 1	1.600 ± 0.150
y	$0.080(\max)$
θ	$0^{\circ} \sim 8^{\circ}$

